1
|
Palasantzas VEJM, Tamargo-Rubio I, Le K, Slager J, Wijmenga C, Jonkers IH, Kumar V, Fu J, Withoff S. iPSC-derived organ-on-a-chip models for personalized human genetics and pharmacogenomics studies. Trends Genet 2023; 39:268-284. [PMID: 36746737 DOI: 10.1016/j.tig.2023.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
Genome-wide association studies (GWAS) have now correlated hundreds of genetic variants with complex genetic diseases and drug efficacy. Functional characterization of these factors remains challenging, particularly because of the lack of human model systems. Molecular and nanotechnological advances, in particular the ability to generate patient-specific PSC lines, differentiate them into diverse cell types, and seed and combine them on microfluidic chips, have led to the establishment of organ-on-a-chip (OoC) platforms that recapitulate organ biology. OoC technology thus provides unique personalized platforms for studying the effects of host genetics and environmental factors on organ physiology. In this review we describe the technology and provide examples of how OoCs may be used for disease modeling and pharmacogenetic research.
Collapse
Affiliation(s)
- Victoria E J M Palasantzas
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Isabel Tamargo-Rubio
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kieu Le
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jelle Slager
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vinod Kumar
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Shen B, Yang X, Noll SE, Yang X, Liu Y, Jia S, Zhao J, Zheng S, Zare RN, Zhong H. Cell-Based Ambient Venturi Autosampling and Matrix-Assisted Laser Desorption Ionization Mass Spectrometric Imaging of Secretory Products. Anal Chem 2022; 94:3456-3466. [PMID: 35157418 DOI: 10.1021/acs.analchem.1c03625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cell-based ambient Venturi autosampling device was established for the monitoring of dynamic cell secretions in response to chemical stimulations in real time with temporal resolution on the order of a second. Detection of secretory products of cells and screening of bioactive compounds are primarily performed on an ambient autosampling probe and matrix-assisted laser desorption ionization (MALDI) mass spectrometry. It takes advantage of the Venturi effect in which the fluid flowing through an inlet capillary tube is automatically fed into a parallel array of multiple outlet capillaries. Cells are incubated inside the inlet capillary tube that is connected with either a syringe pump or liquid chromatography (LC) for the transfer of single compounds or mixtures, respectively. Secretory products were continuously pushed into the outlet capillaries and then spotted into a compressed thin film of the matrix material 9-aminoacridine for MALDI mass spectrometric imaging. In physiological pH, without the use of high voltages and without the use of chemical derivatizations, this platform can be applied to the direct assay of neurotransmitters or other secretory products released from cells in response to the stimulation of individual compounds or LC-separated eluates of natural mixtures. It provides a new way to identify bioactive compounds with a detection limit down to 0.04 fmol/pixel.
Collapse
Affiliation(s)
- Baojie Shen
- Laboratory of Mass Spectrometry, College of Chemistry, Key Laboratory of Pesticides and Chemical Biology, Central China Normal University, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Xiaoyu Yang
- Laboratory of Mass Spectrometry, College of Chemistry, Key Laboratory of Pesticides and Chemical Biology, Central China Normal University, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Sarah Elizabeth Noll
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiaojie Yang
- Laboratory of Mass Spectrometry, College of Chemistry, Key Laboratory of Pesticides and Chemical Biology, Central China Normal University, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Yanping Liu
- Laboratory of Mass Spectrometry, College of Chemistry, Key Laboratory of Pesticides and Chemical Biology, Central China Normal University, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Shanshan Jia
- Laboratory of Mass Spectrometry, College of Chemistry, Key Laboratory of Pesticides and Chemical Biology, Central China Normal University, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Jiaxing Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Shi Zheng
- Laboratory of Mass Spectrometry, College of Chemistry, Key Laboratory of Pesticides and Chemical Biology, Central China Normal University, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Hongying Zhong
- Laboratory of Mass Spectrometry, College of Chemistry, Key Laboratory of Pesticides and Chemical Biology, Central China Normal University, Ministry of Education, Wuhan, Hubei 430079, P. R. China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
3
|
de Hoyos-Vega JM, Hong HJ, Stybayeva G, Revzin A. Hepatocyte cultures: From collagen gel sandwiches to microfluidic devices with integrated biosensors. APL Bioeng 2021; 5:041504. [PMID: 34703968 PMCID: PMC8519630 DOI: 10.1063/5.0058798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocytes are parenchymal cells of the liver responsible for drug detoxification, urea and bile production, serum protein synthesis, and glucose homeostasis. Hepatocytes are widely used for drug toxicity studies in bioartificial liver devices and for cell-based liver therapies. Because hepatocytes are highly differentiated cells residing in a complex microenvironment in vivo, they tend to lose hepatic phenotype and function in vitro. This paper first reviews traditional culture approaches used to rescue hepatic function in vitro and then discusses the benefits of emerging microfluidic-based culture approaches. We conclude by reviewing integration of hepatocyte cultures with bioanalytical or sensing approaches.
Collapse
Affiliation(s)
- Jose M. de Hoyos-Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Hye Jin Hong
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| |
Collapse
|
4
|
Celikkin N, Presutti D, Maiullari F, Fornetti E, Agarwal T, Paradiso A, Volpi M, Święszkowski W, Bearzi C, Barbetta A, Zhang YS, Gargioli C, Rizzi R, Costantini M. Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip Technologies. Front Bioeng Biotechnol 2021; 9:732130. [PMID: 34604190 PMCID: PMC8481890 DOI: 10.3389/fbioe.2021.732130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades, biomedical research has significantly boomed in the academia and industrial sectors, and it is expected to continue to grow at a rapid pace in the future. An in-depth analysis of such growth is not trivial, given the intrinsic multidisciplinary nature of biomedical research. Nevertheless, technological advances are among the main factors which have enabled such progress. In this review, we discuss the contribution of two state-of-the-art technologies-namely biofabrication and organ-on-a-chip-in a selection of biomedical research areas. We start by providing an overview of these technologies and their capacities in fabricating advanced in vitro tissue/organ models. We then analyze their impact on addressing a range of current biomedical challenges. Ultimately, we speculate about their future developments by integrating these technologies with other cutting-edge research fields such as artificial intelligence and big data analysis.
Collapse
Affiliation(s)
- Nehar Celikkin
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Dario Presutti
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Fabio Maiullari
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
| | | | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Alessia Paradiso
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Claudia Bearzi
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
| | - Andrea Barbetta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, MA, United States
| | - Cesare Gargioli
- Department of Biology, Rome University Tor Vergata, Rome, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Milan, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Organ-Chip Models: Opportunities for Precision Medicine in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13174487. [PMID: 34503294 PMCID: PMC8430573 DOI: 10.3390/cancers13174487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Among all types of cancer, Pancreatic Ductal Adenocarcinoma (PDAC) has one of the lowest survival rates, partly due to the failure of current chemotherapeutics. This treatment failure can be attributed to the complicated nature of the tumor microenvironment, where the rich fibro-inflammatory responses can hinder drug delivery and efficacy at the tumor site. Moreover, the high molecular variations in PDAC create a large heterogeneity in the tumor microenvironment among patients. Current in vivo and in vitro options for drug testing are mostly ineffective in recapitulating the complex cellular interactions and individual variations in the PDAC tumor microenvironment, and as a result, they fail to provide appropriate models for individualized drug screening. Organ-on-a-chip technology combined with patient-derived organoids may provide the opportunity for developing personalized treatment options in PDAC. Abstract Pancreatic Ductal Adenocarcinoma (PDAC) is an expeditiously fatal malignancy with a five-year survival rate of 6–8%. Conventional chemotherapeutics fail in many cases due to inadequate primary response and rapidly developing resistance. This treatment failure is particularly challenging in pancreatic cancer because of the high molecular heterogeneity across tumors. Additionally, a rich fibro-inflammatory component within the tumor microenvironment (TME) limits the delivery and effectiveness of anticancer drugs, further contributing to the lack of response or developing resistance to conventional approaches in this cancer. As a result, there is an urgent need to model pancreatic cancer ex vivo to discover effective drug regimens, including those targeting the components of the TME on an individualized basis. Patient-derived three-dimensional (3D) organoid technology has provided a unique opportunity to study patient-specific cancerous epithelium. Patient-derived organoids cultured with the TME components can more accurately reflect the in vivo tumor environment. Here we present the advances in organoid technology and multicellular platforms that could allow for the development of “organ-on-a-chip” approaches to recapitulate the complex cellular interactions in PDAC tumors. We highlight the current advances of the organ-on-a-chip-based cancer models and discuss their potential for the preclinical selection of individualized treatment in PDAC.
Collapse
|
6
|
Low LA, Sutherland M, Lumelsky N, Selimovic S, Lundberg MS, Tagle DA. Organs-on-a-Chip. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:27-42. [PMID: 32285363 DOI: 10.1007/978-3-030-36588-2_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organs-on-chips, also known as "tissue chips" or microphysiological systems (MPS), are bioengineered microsystems capable of recreating aspects of human organ physiology and function and are in vitro tools with multiple applications in drug discovery and development. The ability to recapitulate human and animal tissues in physiologically relevant three-dimensional, multi-cellular environments allows applications in the drug development field, including; (1) use in assessing the safety and toxicity testing of potential therapeutics during early-stage preclinical drug development; (2) confirmation of drug/therapeutic efficacy in vitro; and (3) disease modeling of human tissues to recapitulate pathophysiology within specific subpopulations and even individuals, thereby advancing precision medicine efforts. This chapter will discuss the development and evolution of three-dimensional organ models over the past decade, and some of the opportunities offered by MPS technology that are not available through current standard two-dimensional cell cultures, or three-dimensional organoid systems. This chapter will outline future avenues of research in the MPS field, how cutting-edge biotechnology advances are expanding the applications for these systems, and discuss the current and future potential and challenges remaining for the field to address.
Collapse
Affiliation(s)
- Lucie A Low
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA.
| | - Margaret Sutherland
- National Institute for Neurological Disorder and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Nadya Lumelsky
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, MD, USA
| | - Seila Selimovic
- National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD, USA
| | - Martha S Lundberg
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | - Danilo A Tagle
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Parrish J, Lim K, Zhang B, Radisic M, Woodfield TBF. New Frontiers for Biofabrication and Bioreactor Design in Microphysiological System Development. Trends Biotechnol 2019; 37:1327-1343. [PMID: 31202544 PMCID: PMC6874730 DOI: 10.1016/j.tibtech.2019.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023]
Abstract
Microphysiological systems (MPSs) have been proposed as an improved tool to recreate the complex biological features of the native niche with the goal of improving in vitro-in vivo extrapolation. In just over a decade, MPS technologies have progressed from single-tissue chips to multitissue plates with integrated pumps for perfusion. Concurrently, techniques for biofabrication of complex 3D constructs for regenerative medicine and 3D in vitro models have evolved into a diverse toolbox for micrometer-scale deposition of cells and cell-laden bioinks. However, as the complexity of biological models increases, experimental throughput is often compromised. This review discusses the existing disparity between MPS complexity and throughput, then examines an MPS-terminated biofabrication line to identify the hurdles and potential approaches to overcoming this disparity.
Collapse
Affiliation(s)
- Jonathon Parrish
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; New Zealand Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland, New Zealand
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; New Zealand Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland, New Zealand
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Toronto General Research Institute, University Health Network, Toronto, ON, Canada; The Heart and Stroke/Richard Lewar Centre of Excellence, Toronto, ON, Canada
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; New Zealand Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland, New Zealand.
| |
Collapse
|
8
|
Varma S, Voldman J. Caring for cells in microsystems: principles and practices of cell-safe device design and operation. LAB ON A CHIP 2018; 18:3333-3352. [PMID: 30324208 PMCID: PMC6254237 DOI: 10.1039/c8lc00746b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microfluidic device designers and users continually question whether cells are 'happy' in a given microsystem or whether they are perturbed by micro-scale technologies. This issue is normally brought up by engineers building platforms, or by external reviewers (academic or commercial) comparing multiple technological approaches to a problem. Microsystems can apply combinations of biophysical and biochemical stimuli that, although essential to device operation, may damage cells in complex ways. However, assays to assess the impact of microsystems upon cells have been challenging to conduct and have led to subjective interpretation and evaluation of cell stressors, hampering development and adoption of microsystems. To this end, we introduce a framework that defines cell health, describes how device stimuli may stress cells, and contrasts approaches to measure cell stress. Importantly, we provide practical guidelines regarding device design and operation to minimize cell stress, and recommend a minimal set of quantitative assays that will enable standardization in the assessment of cell health in diverse devices. We anticipate that as microsystem designers, reviewers, and end-users enforce such guidelines, we as a community can create a set of essential principles that will further the adoption of such technologies in clinical, translational and commercial applications.
Collapse
Affiliation(s)
- Sarvesh Varma
- Department of Electrical Engineering and Computer Science
, Massachusetts Institute of Technology
,
77 Massachusetts Avenue, Room 36-824
, Cambridge
, USA
.
; Fax: +617 258 5846
; Tel: +617 253 1583
| | - Joel Voldman
- Department of Electrical Engineering and Computer Science
, Massachusetts Institute of Technology
,
77 Massachusetts Avenue, Room 36-824
, Cambridge
, USA
.
; Fax: +617 258 5846
; Tel: +617 253 1583
| |
Collapse
|
9
|
Karnik S, Lee C, Cancino A, Bhushan A. Real-time measurement of cholesterol secreted by human hepatocytes using a novel microfluidic assay. TECHNOLOGY 2018; 6:135-141. [PMID: 31548979 PMCID: PMC6756770 DOI: 10.1142/s2339547818500097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The use of microfluidics has become widespread in recent years because of the use of lesser resources such as small size, low volume of reagents, and physiological representation of mammalian cells. One of the advantages of microfluidic-based cell culture is the ability to perfuse culture media which tends to improve cellular health and function. Although measurement of cellular function conventionally is carried out using well-plates and plate readers, these approaches are insufficient to carry out in-line analysis of perfused cell cultures because of mismatch between volumes and sensitivity. We report the development of a novel microfluidic device and assay that is carried out under perfusion, in-line to measure the cholesterol secreted from a human hepatocyte tissue-chip. The heart of the assay is the unique implementation of enzymatic chemistry that is carried out on a polystyrene bead. Using this approach, we successfully measured cholesterol secreted by the perfused human hepatocytes.
Collapse
Affiliation(s)
- Sonali Karnik
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago
| | - Chaeeun Lee
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago
| | - Andrea Cancino
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago
- Corresponding Author: Abhinav Bhushan, Assistant Professor, Department of Biomedical Engineering, Illinois Institute of Technology, Chicago,
| |
Collapse
|