1
|
Chen T, Sun C, Abbas SC, Alam N, Qiang S, Tian X, Fu C, Zhang H, Xia Y, Liu L, Ni Y, Jiang X. Multi-dimensional microfluidic paper-based analytical devices (μPADs) for noninvasive testing: A review of structural design and applications. Anal Chim Acta 2024; 1321:342877. [PMID: 39155092 DOI: 10.1016/j.aca.2024.342877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/20/2024]
Abstract
The rapid emergence of microfluidic paper-based devices as point-of-care testing (POCT) tools for early disease diagnosis and health monitoring, particularly in resource-limited areas, holds immense potential for enhancing healthcare accessibility. Leveraging the numerous advantages of paper, such as capillary-driven flow, porous structure, hydrophilic functional groups, biodegradability, cost-effectiveness, and flexibility, it has become a pivotal choice for microfluidic substrates. The repertoire of microfluidic paper-based devices includes one-dimensional lateral flow assays (1D LFAs), two-dimensional microfluidic paper-based analytical devices (2D μPADs), and three-dimensional (3D) μPADs. In this comprehensive review, we provide and examine crucial information related to paper substrates, design strategies, and detection methods in multi-dimensional microfluidic paper-based devices. We also investigate potential applications of microfluidic paper-based devices for detecting viruses, metabolites and hormones in non-invasive samples such as human saliva, sweat and urine. Additionally, we delve into capillary-driven flow alternative theoretical models of fluids within the paper to provide guidance. Finally, we critically examine the potential for future developments and address challenges for multi-dimensional microfluidic paper-based devices in advancing noninvasive early diagnosis and health monitoring. This article showcases their transformative impact on healthcare, paving the way for enhanced medical services worldwide.
Collapse
Affiliation(s)
- Ting Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Ce Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Syed Comail Abbas
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Nur Alam
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Sheng Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiuzhi Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Chenglong Fu
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Hui Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Yuanyuan Xia
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Liu Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.
| | - Xue Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
2
|
Ma L, Zhao X, Hou J, Huang L, Yao Y, Ding Z, Wei J, Hao N. Droplet Microfluidic Devices: Working Principles, Fabrication Methods, and Scale-Up Applications. SMALL METHODS 2024; 8:e2301406. [PMID: 38594964 DOI: 10.1002/smtd.202301406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/01/2023] [Indexed: 04/11/2024]
Abstract
Compared with the conventional emulsification method, droplets generated within microfluidic devices exhibit distinct advantages such as precise control of fluids, exceptional monodispersity, uniform morphology, flexible manipulation, and narrow size distribution. These inherent benefits, including intrinsic safety, excellent heat and mass transfer capabilities, and large surface-to-volume ratio, have led to the widespread applications of droplet-based microfluidics across diverse fields, encompassing chemical engineering, particle synthesis, biological detection, diagnostics, emulsion preparation, and pharmaceuticals. However, despite its promising potential for versatile applications, the practical utilization of this technology in commercial and industrial is extremely limited to the inherently low production rates achievable within a single microchannel. Over the past two decades, droplet-based microfluidics has evolved significantly, considerably transitioning from a proof-of-concept stage to industrialization. And now there is a growing trend towards translating academic research into commercial and industrial applications, primarily driven by the burgeoning demands of various fields. This paper comprehensively reviews recent advancements in droplet-based microfluidics, covering the fundamental working principles and the critical aspect of scale-up integration from working principles to scale-up integration. Based on the existing scale-up strategies, the paper also outlines the future research directions, identifies the potential opportunities, and addresses the typical unsolved challenges.
Collapse
Affiliation(s)
- Li Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiong Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Junsheng Hou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Lei Huang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Yilong Yao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Zihan Ding
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Jinjia Wei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Nanjing Hao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
3
|
Duan S, Cai T, Liu F, Li Y, Yuan H, Yuan W, Huang K, Hoettges K, Chen M, Lim EG, Zhao C, Song P. Automatic offline-capable smartphone paper-based microfluidic device for efficient biomarker detection of Alzheimer's disease. Anal Chim Acta 2024; 1308:342575. [PMID: 38740448 DOI: 10.1016/j.aca.2024.342575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disease with no effective treatment. Efficient and rapid detection plays a crucial role in mitigating and managing AD progression. Deep learning-assisted smartphone-based microfluidic paper analysis devices (μPADs) offer the advantages of low cost, good sensitivity, and rapid detection, providing a strategic pathway to address large-scale disease screening in resource-limited areas. However, existing smartphone-based detection platforms usually rely on large devices or cloud servers for data transfer and processing. Additionally, the implementation of automated colorimetric enzyme-linked immunoassay (c-ELISA) on μPADs can further facilitate the realization of smartphone μPADs platforms for efficient disease detection. RESULTS This paper introduces a new deep learning-assisted offline smartphone platform for early AD screening, offering rapid disease detection in low-resource areas. The proposed platform features a simple mechanical rotating structure controlled by a smartphone, enabling fully automated c-ELISA on μPADs. Our platform successfully applied sandwich c-ELISA for detecting the β-amyloid peptide 1-42 (Aβ 1-42, a crucial AD biomarker) and demonstrated its efficacy in 38 artificial plasma samples (healthy: 19, unhealthy: 19, N = 6). Moreover, we employed the YOLOv5 deep learning model and achieved an impressive 97 % accuracy on a dataset of 1824 images, which is 10.16 % higher than the traditional method of curve-fitting results. The trained YOLOv5 model was seamlessly integrated into the smartphone using the NCNN (Tencent's Neural Network Inference Framework), enabling deep learning-assisted offline detection. A user-friendly smartphone application was developed to control the entire process, realizing a streamlined "samples in, answers out" approach. SIGNIFICANCE This deep learning-assisted, low-cost, user-friendly, highly stable, and rapid-response automated offline smartphone-based detection platform represents a good advancement in point-of-care testing (POCT). Moreover, our platform provides a feasible approach for efficient AD detection by examining the level of Aβ 1-42, particularly in areas with low resources and limited communication infrastructure.
Collapse
Affiliation(s)
- Sixuan Duan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK; Key Laboratory of Bionic Engineering, Jilin University, 5988 Renmin Street, Changchun, 130022, China
| | - Tianyu Cai
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China
| | - Fuyuan Liu
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK
| | - Yifan Li
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK
| | - Hang Yuan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China
| | - Wenwen Yuan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, 710079, China
| | - Kaizhu Huang
- Department of Electrical and Computer Engineering, Duke Kunshan University, 8 Duke Avenue, Kunshan, 215316, China
| | - Kai Hoettges
- Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK
| | - Min Chen
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK
| | - Eng Gee Lim
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK
| | - Chun Zhao
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK
| | - Pengfei Song
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China; Department of Electrical and Electronic Engineering, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK.
| |
Collapse
|
4
|
Atabakhsh S, Haji Abbasali H, Jafarabadi Ashtiani S. Thermally programmable time delay switches for multi-step assays in paper-based microfluidics. Talanta 2024; 271:125695. [PMID: 38295445 DOI: 10.1016/j.talanta.2024.125695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Paper-based microfluidic devices offer advantages such as low cost and disposability for point-of-care diagnostic applications. However, actuation of fluids on paper can be a challenge in multi-step and complex assays. In this work, a thermally programmable time-delay switch (TPTDS) is presented which operates by causing delays in the fluid path of a microfluidics paper-based analytical device (μPAD) by utilizing screen-printed wax micro-bridges. The time-delay is achieved through an electrical power feedback loop which indirectly adjusts the temperature of each individual micro-bridge, melting the wax into the paper. The melted wax manipulates the fluid flow depending on its penetration depth into the paper channel, which is a function of the applied temperature. To demonstrate functionality of the proposed method, the TPTDS is employed to automate and perform the nitrate assay which requires sequential delivery of reagents. Colorimetric detection is used to quantify the results by utilizing an electronic color sensor.
Collapse
Affiliation(s)
- Saeed Atabakhsh
- Department of Electrical Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Hossein Haji Abbasali
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 14395/515, Iran
| | - Shahin Jafarabadi Ashtiani
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 14395/515, Iran.
| |
Collapse
|
5
|
Vloemans D, Van Hileghem L, Ordutowski H, Dal Dosso F, Spasic D, Lammertyn J. Self-Powered Microfluidics for Point-of-Care Solutions: From Sampling to Detection of Proteins and Nucleic Acids. Methods Mol Biol 2024; 2804:3-50. [PMID: 38753138 DOI: 10.1007/978-1-0716-3850-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Self-powered microfluidics presents a revolutionary approach to address the challenges of healthcare in decentralized and point-of-care settings where limited access to resources and infrastructure prevails or rapid clinical decision-making is critical. These microfluidic systems exploit physical and chemical phenomena, such as capillary forces and surface tension, to manipulate tiny volumes of fluids without the need for external power sources, making them cost-effective and highly portable. Recent technological advancements have demonstrated the ability to preprogram complex multistep liquid operations within the microfluidic circuit of these standalone systems, which enabled the integration of sensitive detection and readout principles. This chapter first addresses how the accessibility to in vitro diagnostics can be improved by shifting toward decentralized approaches like remote microsampling and point-of-care testing. Next, the crucial role of self-powered microfluidic technologies to enable this patient-centric healthcare transition is emphasized using various state-of-the-art examples, with a primary focus on applications related to biofluid collection and the detection of either proteins or nucleic acids. This chapter concludes with a summary of the main findings and our vision of the future perspectives in the field of self-powered microfluidic technologies and their use for in vitro diagnostics applications.
Collapse
Affiliation(s)
- Dries Vloemans
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium
| | | | - Henry Ordutowski
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium
| | | | - Dragana Spasic
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
González-Martínez E, Rekas A, Moran-Mirabal J. Simple and Inexpensive Fabrication of High Surface-Area Paper-Based Gold Electrodes for Electrochemical and Surface-Enhanced Raman Scattering Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55183-55192. [PMID: 37972391 DOI: 10.1021/acsami.3c15224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Paper has emerged as an excellent alternative to create environmentally benign disposable electrochemical sensing devices. The critical step to fabricating electrochemical sensors is making paper conductive. In this work, paper-based electrodes with a high electroactive surface area (ESA) were fabricated using a simple electroless deposition technique. The polymerization time of a polydopamine adhesion layer and the gold salt concentration during the electroless deposition step were optimized to obtain uniformly conductive paper-based electrodes. The optimization of these fabrication parameters was key to obtaining the highest ESA possible. Roughening factors (Rf) of 7.2 and 2.3 were obtained when cyclic voltammetry was done in sulfuric acid and potassium ferricyanide, respectively, demonstrating a surface prone to fast electron transfer. As a proof of concept, mercury detection was done through anodic stripping, achieving a limit of quantification (LOQ) of 0.9 ppb. By changing the metal deposition conditions, the roughness of the metalized papers could also be tuned for their use as surface-enhanced Raman scattering (SERS) sensors. Metallized papers with the highest SERS signal for thiophenol detection yielded a LOQ of 10 ppb. We anticipate that this method of fabricating nanostructured paper-based electrodes can accelerate the development of simple, cost-effective, and highly sensitive electrochemical and SERS sensing platforms.
Collapse
Affiliation(s)
| | - Adrianna Rekas
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Jose Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4M1, Canada
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
7
|
Fernandes GM, Barreto DN, Batista AD, da Silveira Petruci JF. A fully integrated 3D printed platform for sulfite determination in beverages via gas diffusion membrane extraction and digital video treatment. Food Chem 2023; 406:135094. [PMID: 36470085 DOI: 10.1016/j.foodchem.2022.135094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
In this study, we have described a miniaturized, simple, and low-cost device for sulfite determination in beverages by coupling Gas Diffusion Microextraction to paper-based analytical devices. The color change of an acid-base indicator - promoted by the generated gaseous SO2 - impregnated onto the paper surface was monitored in the function of time by video recording using a smartphone. The analytical information was related to the Hue, Saturation, Value (HSV) color space extracted from the video file. The complete analytical platform was built using a 3D printer, allowing the easy fabrication of a low-cost tailored device. Under optimized conditions, a linear relation from 5 to 90 mg L-1 was obtained using 30 µL of the reagent, 1 mL of sample, and 10 min of analysis. The relative standard deviation and the limit of detection were 2.2 % and 1.6 mg L-1, respectively. The method was successfully employed in several beverages, such as juices, soda, and coconut water.
Collapse
Affiliation(s)
| | - Diandra Nunes Barreto
- Federal University of Uberlândia (UFU), Institute of Chemistry, Uberlândia, MG, Brazil
| | | | | |
Collapse
|
8
|
Karim K, Lamaoui A, Amine A. Paper-based optical sensors paired with smartphones for biomedical analysis. J Pharm Biomed Anal 2023; 225:115207. [PMID: 36584551 DOI: 10.1016/j.jpba.2022.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The traditional analytical methods used for biomedical analysis are expensive and not easy to handle and require sophisticated instruments, thus their application is limited in resource-limited settings. Due to their portability, low cost, and ability to be applied to different analytical techniques, paper-based analytical devices are becoming valuable tools for biomedical analysis. The integration of smartphones into analytical devices has provided the ability to build portable, cost-effective, straightforward analytical devices for biomedical analysis and mobile health. The key aim of this review is to emphasize the recent applications of PADs combined with a smartphone for the optical analysis of biomedical species. We started this review by highlighting the type of papers and their modifications with different materials to prepare the PADs. After that, this review presents various detection methods including colorimetry, fluorescence, and luminescence where the smartphone is used for read-out. In the end, we provided the recent applications of the analysis of different biomedical compounds such as cancer and cardiovascular biomarkers, metal ions, glucose, viruses, etc. We believe that the present review will attract a wide scientific community in the areas of analytical chemistry, sensors, and clinical testing.
Collapse
Affiliation(s)
- Khadija Karim
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco
| | - Abderrahman Lamaoui
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco
| | - Aziz Amine
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco.
| |
Collapse
|
9
|
Huang C, Jiang Y, Li Y, Zhang H. Droplet Detection and Sorting System in Microfluidics: A Review. MICROMACHINES 2022; 14:mi14010103. [PMID: 36677164 PMCID: PMC9867185 DOI: 10.3390/mi14010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 05/26/2023]
Abstract
Since being invented, droplet microfluidic technologies have been proven to be perfect tools for high-throughput chemical and biological functional screening applications, and they have been heavily studied and improved through the past two decades. Each droplet can be used as one single bioreactor to compartmentalize a big material or biological population, so millions of droplets can be individually screened based on demand, while the sorting function could extract the droplets of interest to a separate pool from the main droplet library. In this paper, we reviewed droplet detection and active sorting methods that are currently still being widely used for high-through screening applications in microfluidic systems, including the latest updates regarding each technology. We analyze and summarize the merits and drawbacks of each presented technology and conclude, with our perspectives, on future direction of development.
Collapse
Affiliation(s)
- Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuwen Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| |
Collapse
|
10
|
Chen C, Meng H, Guo T, Deshpande S, Chen H. Development of Paper Microfluidics with 3D-Printed PDMS Barriers for Flow Control. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40286-40296. [PMID: 36001301 DOI: 10.1021/acsami.2c08541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Paper microfluidics has been extensively exploited as a powerful tool for environmental and medical detection applications. Both flow delay and compatibility with either polar or non-polar reagents are indispensable for the automation of detections requiring multiple reaction steps. This article reports the systematic studies of a 3D-printing protocol, characterization, and application of both the partially and fully penetrated polydimethylsiloxane (PDMS) barriers for flexible flow control in paper microfluidics. The physical parameters of PDMS barriers printed using a simple liquid dispenser were found related to the printing pressure, speed, diffusion time after printing, baking temperature, and PDMS viscosity. The capability of PDMS barriers to confine the flow of non-polar solvents was demonstrated using oil flow in both wax- and PDMS-surrounded channels. It was identified that the minimum width of channels to prevent leakage was 470 ± 54 μm, which was as narrow as that fabricated using stamps from lithography. Both the partially penetrated barriers (PPBs) and constriction channels were of the capability to delay flow in paper microfluidics. Additionally, an in silico investigation led to the further understanding that the reduction of channel cross-section resulting from PPBs was the primary reason for flow delay. Our results suggest that increasing the penetration depth of the barriers is more efficient in delaying flow than increasing the PPB length. Finally, devices with four inlet channels and 0-6 PPBs across each channel were successfully applied in flow delay for sequential fluid delivery. These results improve the understanding of the major factors, affecting the 3D PDMS barrier fabrication and the resulting flow control in paper microfluidics, providing practical implications for applications in various fields.
Collapse
Affiliation(s)
- Chang Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Haixu Meng
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
11
|
A portable tool for colorimetric detection of corrosion inhibitors using paper-based analytical devices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Zub K, Hoeppener S, Schubert US. Inkjet Printing and 3D Printing Strategies for Biosensing, Analytical, and Diagnostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105015. [PMID: 35338719 DOI: 10.1002/adma.202105015] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Inkjet printing and 3D inkjet printing have found many applications in the fabrication of a great variety of devices, which have been developed with the aim to improve and simplify the design, fabrication, and performance of sensors and analytical platforms. Here, developments of these printing technologies reported during the last 10 years are reviewed and their versatile applicability for the fabrication of improved sensing platforms and analytical and diagnostic sensor systems is demonstrated. Illustrative examples are reviewed in the context of particular advantages provided by inkjet printing technologies. Next to aspects of device printing and fabrication strategies, the utilization of inkjet dispensing, which can be implemented into common analytical tools utilizing customized inkjet printing equipment as well as state-of-the-art consumer inkjet printing devices, is highlighted. This review aims to providing a comprehensive overview of examples integrating inkjet and 3D inkjet printing technologies into device layout fabrication, dosing, and analytical applications to demonstrate the versatile applicability of these technologies, and furthermore, to inspire the utilization of inkjet printing for future developments.
Collapse
Affiliation(s)
- Karina Zub
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
13
|
Zheng J, Zhu M, Kong J, Li Z, Jiang J, Xi Y, Li F. Microfluidic paper-based analytical device by using Pt nanoparticles as highly active peroxidase mimic for simultaneous detection of glucose and uric acid with use of a smartphone. Talanta 2022; 237:122954. [PMID: 34736679 DOI: 10.1016/j.talanta.2021.122954] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
Herein, a simple microfluidic paper-based analytical device (μPAD) by using platinum nanoparticles (Pt NPs) as highly active peroxidase mimic for simultaneous determination of glucose and uric acid was fabricated. The μPAD consisted of one sample transportation layer, four paper-based detection chips, and two layers of hydrophobic polyethylene terephthalate (PET) films. The four detection chips were immobilized with various chromogenic reagents, Pt NPs, and specific oxidase (glucose oxidase or uricase). H2O2 generated by specific enzymatic reactions could oxidize co-immobilized chromogenic reagents to produce colored products by using Pt NPs as efficient catalyst. The multi-layered structure of μPAD could effectively improve the color uniformity and color intensity. Total color intensity from each two detection chips modified with distinct chromogenic reagents were used for quantitative analysis of glucose and uric acid, respectively, resulting in significantly improved sensitivity. The linear range for glucose and uric acid detection was 0.01-5.0 mM and 0.01-2.5 mM, respectively. Satisfied results were obtained for glucose and uric acid detection in real serum samples. An easy-to-use smartphone APP was developed for convenient and intelligent detection. The developed μPAD integrated with smartphone as detector holds great applicability for simple and portable on-site analysis.
Collapse
Affiliation(s)
- Jie Zheng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Min Zhu
- PLA Army Academy of Artillery and Air Defense, Hefei, Anhui, 230031, People's Republic of China
| | - Jiao Kong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Zimu Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Jianming Jiang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Yachao Xi
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Fang Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| |
Collapse
|
14
|
Dikyol C, Ercan UK. Evaluation of Penetration Depth of Antimicrobial Effect by Cold Atmospheric Plasma Treatment In vitro. PLASMA MEDICINE 2022. [DOI: 10.1615/plasmamed.2022043466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Lomae A, Preechakasedkit P, Teekayupak K, Panraksa Y, Yukird J, Chailapakul O, Ruecha N. Microfluidic Paper-based Device for Medicinal Diagnosis. Curr Top Med Chem 2022; 22:2282-2313. [PMID: 36330618 DOI: 10.2174/1568026623666221103103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The demand for point-of-care testing (POCT) devices has rapidly grown since they offer immediate test results with ease of use, makingthem suitable for home self-testing patients and caretakers. However, the POCT development has faced the challenges of increased cost and limited resources. Therefore, the paper substrate as a low-cost material has been employed to develop a cost-effective POCT device, known as "Microfluidic paper-based analytical devices (μPADs)". This device is gaining attention as a promising tool for medicinal diagnostic applications owing to its unique features of simple fabrication, low cost, enabling manipulation flow (capillarydriven flow), the ability to store reagents, and accommodating multistep assay requirements. OBJECTIVE This review comprehensively examines the fabrication methods and device designs (2D/3D configuration) and their advantages and disadvantages, focusing on updated μPADs applications for motif identification. METHODS The evolution of paper-based devices, starting from the traditional devices of dipstick and lateral flow assay (LFA) with μPADs, has been described. Patterned structure fabrication of each technique has been compared among the equipment used, benefits, and drawbacks. Microfluidic device designs, including 2D and 3D configurations, have been introduced as well as their modifications. Various designs of μPADs have been integrated with many powerful detection methods such as colorimetry, electrochemistry, fluorescence, chemiluminescence, electrochemiluminescence, and SER-based sensors for medicinal diagnosis applications. CONCLUSION The μPADs potential to deal with commercialization in terms of the state-of-the-art of μPADs in medicinal diagnosis has been discussed. A great prototype, which is currently in a reallife application breakthrough, has been updated.
Collapse
Affiliation(s)
- Atchara Lomae
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Pattarachaya Preechakasedkit
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Kanyapat Teekayupak
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Yosita Panraksa
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Jutiporn Yukird
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Nipapan Ruecha
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
16
|
Hu T, Li W, Xu K, Chen K, Li X, Yi H, Ni Z. Portable and Intelligent Urine Glucose Analyzer Based on a CdTe QDs@GOx Aerogel Circular Array Sensor. ACS OMEGA 2021; 6:32655-32662. [PMID: 34901614 PMCID: PMC8655949 DOI: 10.1021/acsomega.1c03449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
Diabetes is a public health problem characterized by hyperglycemia, high mortality, and morbidity. A simple, rapid, and sensitive glucose detection method for diabetes screening and health self-management of patients with diabetes is of great significance. Therefore, an attractive urine glucose (UG) analyzer with advantages of fastness, sensitivity, and portability was developed. A cadmium telluride quantum dots (CdTe QDs)@glucose oxidase (GOx) aerogel circular array sensor can emit visible red fluorescence when excited by a 365 nm ultraviolet light source inside the analyzer. When urine samples containing glucose were dropped onto the sensor, glucose was oxidized by GOx to produce hydrogen peroxide (H2O2), which quenched the red fluorescence of CdTe QDs. The fluorescence images of the sensor were obtained using a CCD camera, and the linear relationship between the glucose concentration and the gray value of the fluorescence image was established. The analyzer shows good sensitivity (LOD, 0.12 mM) with a wide linear range of 0.12-26 mM. Based on the linear relation, the software of the analyzer was written in the C++ language, which can automatically give the gray value of the image and the corresponding glucose concentration. The UG analyzer was used for the detection of a large number clinical samples and compared with a variety of UG test papers, which all showed good detection performance. The novel analyzer we proposed has an important significance in the screening of diabetes and the self-management of diabetic patients.
Collapse
Affiliation(s)
| | | | | | | | - Xiao Li
- .
Phone: 86-025-52090518. Fax: 86-025-52090504
| | - Hong Yi
- . Phone: 86-025-52090504. Fax: 86-025-52090504
| | - Zhonghua Ni
- . Phone: 86-025-52090518. Fax: 86-025-52090504
| |
Collapse
|
17
|
Zhang H, Yang Y, Dai J, Han A. Fabrication methods for a gel-based separation-free device for whole blood glucose detection. MethodsX 2021; 8:101236. [PMID: 34434759 PMCID: PMC8374154 DOI: 10.1016/j.mex.2021.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this paper, we describe two fabrication methods (well array-based and biopsy punching-based) of gel disks to construct a gel-based point-of-care (POC) diagnosis device for direct colorimetric measurement of human whole blood glucose without any extra blood separation step. The gel disks are made of Polyethylene glycol (PEG) diacrylate (PEG-DA) containing immobilized glucose colorimetric assay reagents. The performances of three types of PEG-DA gel (molecular weight: 575, 3,400, and 10,000) based sensors as well as the two fabrication methods were investigated.The fabricated devices enabled colorimetric whole blood glucose sensing assay without the need for blood cell separation The biopsy punching-based gel disk fabrication method provided less variation on the fabricated gel disks
Collapse
Affiliation(s)
- Han Zhang
- Department of Electrical and Computer engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Yongjian Yang
- Department of Electrical and Computer engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Jing Dai
- Department of Electrical and Computer engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Arum Han
- Department of Electrical and Computer engineering, Texas A&M University, College Station, Texas 77843, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA.,Center for Remote Health Technologies & Systems, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
18
|
Zou X, Ji Y, Li H, Wang Z, Shi L, Zhang S, Wang T, Gong Z. Recent advances of environmental pollutants detection via paper-based sensing strategy. LUMINESCENCE 2021; 36:1818-1836. [PMID: 34342392 DOI: 10.1002/bio.4130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/22/2022]
Abstract
Paper has become one of the most promising substrates for building low-cost and powerful sensing platforms due to its self-pumping ability and compatibility with multiple patterning methods. Paper-based sensors have been greatly developed in the field of environmental monitoring. In this review, we introduced the research and application of paper-based sensors in environmental monitoring, focusing on the deposition and patterning methods of building paper-based sensors, and summarized the applications of detecting environmental pollutants, including metal ions, anions, explosives, neurotoxins, volatile organic compounds, and small molecules. In addition, the development prospects and challenges of promoting paper-based sensors are also discussed. The current review will provide references for the construction of portable paper-based sensors, and has implications for the field of on-site real-time detection of the environment.
Collapse
Affiliation(s)
- Xue Zou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yayun Ji
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hangzhou Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhaoli Wang
- Chengdu Academy of Environmental Sciences, Chengdu, China
| | - Linhong Shi
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Shengli Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tengfei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.,State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Tai WC, Chang YC, Chou D, Fu LM. Lab-on-Paper Devices for Diagnosis of Human Diseases Using Urine Samples-A Review. BIOSENSORS 2021; 11:260. [PMID: 34436062 PMCID: PMC8393526 DOI: 10.3390/bios11080260] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
In recent years, microfluidic lab-on-paper devices have emerged as a rapid and low-cost alternative to traditional laboratory tests. Additionally, they were widely considered as a promising solution for point-of-care testing (POCT) at home or regions that lack medical infrastructure and resources. This review describes important advances in microfluidic lab-on-paper diagnostics for human health monitoring and disease diagnosis over the past five years. The review commenced by explaining the choice of paper, fabrication methods, and detection techniques to realize microfluidic lab-on-paper devices. Then, the sample pretreatment procedure used to improve the detection performance of lab-on-paper devices was introduced. Furthermore, an in-depth review of lab-on-paper devices for disease measurement based on an analysis of urine samples was presented. The review concludes with the potential challenges that the future development of commercial microfluidic lab-on-paper platforms for human disease detection would face.
Collapse
Affiliation(s)
- Wei-Chun Tai
- Department of Oral and Maxillofacial Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Yu-Chi Chang
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan;
| | - Dean Chou
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan;
- Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
20
|
Modha S, Castro C, Tsutsui H. Recent developments in flow modeling and fluid control for paper-based microfluidic biosensors. Biosens Bioelectron 2021; 178:113026. [PMID: 33545552 DOI: 10.1016/j.bios.2021.113026] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
Over the last 10 years, researchers have shown that paper is a promising substrate for affordable biosensors. The field of paper-microfluidics has evolved rapidly in that time, with simple colorimetric assays giving way to more complex electrochemical devices that can handle multiple samples at a given time. As paper devices become more complex, the ability to precisely control different fluids simultaneously becomes a challenge. Specifically, automated flow control is a necessary attribute to make paper-based devices more useable in resource-limited settings. Flow control strategies on paper are typically developed experimentally through trial-and-error, with little focus on theory. This is because flow behavior in paper is not well understood and sometimes difficult to predict precisely. Additionally, popular theoretical models are too simplistic, making them unsuitable for complex device designs and application conditions. A better understanding of flow theory would allow devices conceived straight from theoretical models. This could save time and resources by reducing experimental work. In this review, we provide an overview of different theoretical models used to characterize imbibition in paper substrates and document the latest flow control strategies that have been applied to automated fluid control on paper. Additionally, we look at current efforts to commercialize paper-based devices along with challenges facing this industry.
Collapse
Affiliation(s)
- Sidharth Modha
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Carlos Castro
- Department of Mechanical Engineering, California State Polytechnic University, Pomona, Pomona, CA, 91768, USA
| | - Hideaki Tsutsui
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA; Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, 92521, USA; Stem Cell Center, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
21
|
Gölcez T, Kiliç V, Sen M. A Portable Smartphone-based Platform with an Offline Image-processing Tool for the Rapid Paper-based Colorimetric Detection of Glucose in Artificial Saliva. ANAL SCI 2021; 37:561-567. [PMID: 33012755 DOI: 10.2116/analsci.20p262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, a microfluidic paper-based analytical device (μPAD) was integrated with a smartphone app capable of offline (without internet access) image processing and analysis for the rapid colorimetric detection of glucose. A self-inking stamp was used to form hydrophobic channels on a piece of paper-towel due to its superior water absorption efficiency. As demonstrated, the developed sensor was employed for the colorimetric detection of glucose in artificial saliva in the linear scope of 0 - 1 mM with a calculated detection limit of 29.65 μM. The experimental results show that the quantitative analysis of glucose with the proposed smartphone platform could be completed in less than one minute. The app developed for the smartphone platform is capable of extracting the color-changing area with an embedded image processing tool which could address the problem of color uniformity in the detection zones of μPAD. The integrated platform has great potential to be used for non-invasive measurements of glucose in body fluids, like tears, sweat and saliva.
Collapse
Affiliation(s)
- Tansu Gölcez
- Biomedical Technologies Graduate Program, Izmir Katip Celebi University
| | - Volkan Kiliç
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University
| | - Mustafa Sen
- Department of Biomedical Engineering, Izmir Katip Celebi University
| |
Collapse
|
22
|
Selective colorimetric urine glucose detection by paper sensor functionalized with polyaniline nanoparticles and cell membrane. Anal Chim Acta 2021; 1158:338387. [PMID: 33863418 DOI: 10.1016/j.aca.2021.338387] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/02/2021] [Accepted: 02/28/2021] [Indexed: 01/27/2023]
Abstract
For the diabetes diagnosis, noninvasive methods are preferred to invasive methods; urine glucose measurement is an example of a noninvasive method. However, conventional noninvasive methods for urine glucose measurement are not intuitive. Furthermore, such methods exhibit low selectivity because they can detect interfering molecules in addition to glucose. Herein, we fabricate a noninvasive, intuitive, and highly selective paper sensor consisting of polyaniline nanoparticles (PAni-NPs) and red blood cell membranes (RBCMs). The PAni-NPs (adsorbed on the paper) are highly sensitive to hydrogen ions and change color from emeraldine blue to emeraldine green within a few seconds. The RBCM (coated on the PAni-NP-adsorbed paper) having the glucose transporter-1 protein plays the role of a smart filter that transports glucose but rejects other interfering molecules. In particular, the selectivity of the RBCM-coated PAni-NP-based paper sensor was approximately improved ∼85%, compared to the uncoated paper sensors. The paper sensor could detect urine glucose over the range of 0-10 mg/mL (0-56 mM), with a limit of detection of 0.54 mM. The proposed paper sensor will facilitate the development of a highly selective and colorimetric urine glucose monitoring system.
Collapse
|
23
|
Zhang H, Chen Z, Dai J, Zhang W, Jiang Y, Zhou A. A low-cost mobile platform for whole blood glucose monitoring using colorimetric method. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Distance-Based Detection of Ag+ with Gold Nanoparticles-Coated Microfluidic Paper. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00157-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
You SM, Jeong KB, Luo K, Park JS, Park JW, Kim YR. Paper-based colorimetric detection of pathogenic bacteria in food through magnetic separation and enzyme-mediated signal amplification on paper disc. Anal Chim Acta 2021; 1151:338252. [PMID: 33608074 DOI: 10.1016/j.aca.2021.338252] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 01/09/2023]
Abstract
Herein, we report a colorimetric sensing system for the detection of highly virulent bacteria, Escherichiacoli O157:H7, in sausage by utilizing magnetic separation and enzyme-mediated signal amplification on paper disc. For magnetic separation, Poly-l-lysine coated starch magnetic particles (PLL@SMPs) were synthesized and utilized for the separation and concentration of the bacteria in sample suspension. Horseradish peroxidase-conjugated antibody (HRP-Antibody) and 3,3',5,5'- tetramethylbenzidine (TMB) were employed for the specific signal amplification in the presence of target bacteria. The synthesized PLL@SMPs showed an excellent capture efficiency (>90%) for the pathogenic bacteria in large volume sample suspension. The intrinsic problems associated with the non-specific binding of sensing components that lead to the high background signal and low sensitivity in colorimetric detection was successfully resolved by employing hyaluronic acid as a blocking agent. The effective separation and concentration of target bacteria by PLL@SMPs and target-specific signal amplification with exceptionally high signal to noise ratio enabled the detection of target bacteria with a detection limit in the single digit regime. The sensing system proposed in this study was successfully used for the detection of the target pathogenic bacteria, E. coli O157:H7, in sausage sample with the limit of detection (LOD) as low as 30.8 CFU/mL with 95% probability. The simple nature of paper-based detection system with a great sensitivity and specificity would provide an effective means of evaluating the safety of food and environmental samples.
Collapse
Affiliation(s)
- Sang-Mook You
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Ki-Baek Jeong
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Ke Luo
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Jin-Sung Park
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Ji-Won Park
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Young-Rok Kim
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
26
|
Dai J, Zhang H, Huang C, Chen Z, Han A. A Gel-Based Separation-Free Point-of-Care Device for Whole Blood Glucose Detection. Anal Chem 2020; 92:16122-16129. [DOI: 10.1021/acs.analchem.0c03801] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jing Dai
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Zheyuan Chen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Center for Remote Health Technologies & Systems, Texas A&M University, College Station, Texas 77843 United States
| |
Collapse
|
27
|
Lobo‐Júnior EO, Chagas CLS, Duarte LC, Cardoso TMG, Souza FR, Lima RS, Coltro WKT. Inexpensive and nonconventional fabrication of microfluidic devices in PMMA based on a soft‐embossing protocol. Electrophoresis 2020; 41:1641-1650. [DOI: 10.1002/elps.202000131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/06/2022]
Affiliation(s)
| | - Cyro L. S. Chagas
- Instituto de Química Universidade Federal de Goiás Goiânia GO Brazil
- Instituto de Química Universidade de Brasília Brasília DF Brazil
| | - Lucas C. Duarte
- Instituto de Química Universidade Federal de Goiás Goiânia GO Brazil
| | | | - Fabrício R. Souza
- Instituto de Química Universidade Federal de Goiás Goiânia GO Brazil
| | - Renato S. Lima
- Laboratório Nacional de Nanotecnologia Centro Nacional de Pesquisa em Energia e Materiais Campinas SP Brazil
- Instituto de Química Universidade Estadual de Campinas Campinas SP Brazil
| | - Wendell K. T. Coltro
- Instituto de Química Universidade Federal de Goiás Goiânia GO Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica Campinas SP Brazil
| |
Collapse
|
28
|
Liu C, Miao Y, Zhang X, Zhang S, Zhao X. Colorimetric determination of cysteine by a paper-based assay system using aspartic acid modified gold nanoparticles. Mikrochim Acta 2020; 187:362. [PMID: 32476039 DOI: 10.1007/s00604-020-04333-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/16/2020] [Indexed: 11/25/2022]
Abstract
A method is described for cysteine (Cys) determination on paper-based analytical devices using aspartic acid modified gold nanoparticles (Asp-AuNPs). The Asp-AuNPs were characterized by their size, zeta potential, and UV-visible absorption spectrum. After the addition of Cys, it will interact with Asp-AuNPs selectively and leads to the aggregation of Asp-AuNPs. A color change from red to blue can be observed on the paper-based analytical devices. The results were recorded using a cell phone and subsequently analyzed using the Photoshop software. The ratiometric color intensity at red channel and blue channel (Red/Blue) increased linearly in the range 99.9-998.7 μM for Cys (R = 0.9984), and the limit of detection was 1.0 μM. The effects of assay conditions have been investigated and are discussed. The Cys concentration was determined as (0.27 ± 0.02 mM) in human plasma, and the recovery was from 99.2 to 101.1%. Graphical abstract Schematic representation of the paper-based assay system using aspartic acid modified gold nanoparticles (Asp-AuNPs). The ratiometric color intensity method was used for the cysteine (Cys) determination.
Collapse
Affiliation(s)
- Chunye Liu
- School of Pharmacy, Xi' an Medical University, Xi'an, 710021, China.
| | - Yanqing Miao
- School of Pharmacy, Xi' an Medical University, Xi'an, 710021, China
| | - Xuejiao Zhang
- School of Pharmacy, Xi' an Medical University, Xi'an, 710021, China
| | - Shuli Zhang
- Department of Medical Technology, Xi' an Medical University, Xi'an, 710021, China
| | - Xiaojun Zhao
- School of Pharmacy, Xi' an Medical University, Xi'an, 710021, China
| |
Collapse
|
29
|
Hosseini S, Azari P, Cardenas-Benitez B, Martínez-Guerra E, Aguirre-Tostado FS, Vázquez-Villegas P, Pingguan-Murphy B, Madou MJ, Martinez-Chapa SO. A LEGO inspired fiber probe analytical platform for early diagnosis of Dengue fever. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110629. [DOI: 10.1016/j.msec.2020.110629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
|