1
|
Chen W, Jian X, Yu B. Review of Applications of Microneedling in Melasma. J Cosmet Dermatol 2025; 24:e16707. [PMID: 39731267 DOI: 10.1111/jocd.16707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Melasma, a common skin pigmentation disease, can negatively impact patients' mental health, social interactions, and physical appearance. Although we now have several treatments accessible, such as medicines, chemical peels, and phototherapy, which can help ease symptoms to some extent, the requirement for a long-term effective and safe treatment for patients is far from met. In the face of this problem, microneedling, as an innovative treatment, provides a new avenue for treating melasma. Although microneedling has been extensively investigated for treating other skin issues such as inflammation, scarring, and photoaging, research into its use in melasma treatment is still in its early stages. OBJECTIVE This study aimed to gather and assess clinical information on microneedling's effectiveness in treating melasma, covering research gaps and serving as a beneficial reference for clinical therapy. METHODS We searched PubMed, Cochrane, Scopus, Embase, and Web of Science databases for articles with the keywords "microneedling," "percutaneous collagen induction", and "melasma." Following a thorough assessment, we selected 64 clinical studies that matched the requirements for in-depth analysis. RESULTS After thoroughly reviewing these data, we concluded that microneedling has tremendous potential for treating melasma. Microneedling can significantly improve treatment outcomes, especially when paired with additional therapies such as topical medicines or phototherapy. CONCLUSION Overall, the evidence reported in this study demonstrates that microneedling is an essential advancement in melasma treatment. Not only can it improve the efficacy of topical drugs and other treatment modalities, but it also has an excellent safety and tolerability profile, making it desirable to patients and clinicians. While the current findings are encouraging, more study is needed to refine treatment protocols, investigate the long-term consequences of microneedling, and establish it as the standard of care for melasma treatment. We anticipate that microneedling will play an increasingly important role in the future of melasma treatment, providing our patients with more hope and a broader choice of treatment alternatives.
Collapse
Affiliation(s)
- Wenwen Chen
- Department of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xingling Jian
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
2
|
James JJ, Pahal S, Jayaraman A, Nayak A D, Koteshwar Narasimhachar S, Sundarrajan S, Basappa Veerabhadraiah B, Srinivasan B, Vemula PK, Nguyen TD, Kadamboor Veethil S. Polymeric Microneedles for Transdermal Delivery of Human Placental Tissue for the Treatment of Osteoarthritis. Macromol Biosci 2024:e2400485. [PMID: 39704612 DOI: 10.1002/mabi.202400485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Biologics targeting matrix-degrading proteases, cartilage repair, and inflammation are emerging as promising approaches for osteoarthritis (OA) treatment. Recent research highlights biologic-human placental tissue (HPT) as a potential OA therapy due to its biocompatibility, abundant protein biofactors, and ability to reduce cartilage degradation by suppressing protease expression. Microneedles (MNs) are receiving growing attention for enhancing transdermal delivery of biologics as an alternative to conventional subcutaneous injections. The lyophilized human placental extract (LHP) loaded polymeric MNs are fabricated using a micromolding technique for transdermal delivery. Ex vivo release studies reveal that MNs exhibit a gradual and consistent release of LHP, indicating a sustained delivery profile. LHP-MNs are nontoxic and anti-inflammatory in nature against human skin cells and interleukin (IL-1β) induced synovial cells. Furthermore, the in vivo study shows that LHP-MNs substantially improve behavioral parameters in OA rat models and lower serum concentrations of tumor necrosis factor- α (TNF-α) and cartilage oligomeric matrix protein (COMP) biomarkers, thereby alleviating knee and ankle joint injuries. Histopathological analysis indicates that LHP-MNs significantly preserve cartilage integrity. The study results suggest that employing polymeric MNs for transdermal delivery of LHP can be a promising treatment approach for OA, with the added benefit of excellent patient compliance.
Collapse
Affiliation(s)
- Jithu Jerin James
- Faculty of Pharmacy, M S Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| | - Suman Pahal
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka, 560065, India
- Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, CT, 06269, USA
| | - Anbu Jayaraman
- Faculty of Pharmacy, M S Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| | - Damodar Nayak A
- Faculty of Pharmacy, M S Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| | - Sridhar Koteshwar Narasimhachar
- Cancyte Technologies Pvt Ltd., Sri Shankara Research Centre, Rangadore Memorial Hospital, Shankarapuram, Bengaluru, 560004, India
| | - Sudarson Sundarrajan
- Cancyte Technologies Pvt Ltd., Sri Shankara Research Centre, Rangadore Memorial Hospital, Shankarapuram, Bengaluru, 560004, India
| | | | - Bharath Srinivasan
- Faculty of Pharmacy, M S Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| | - Praveen K Vemula
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka, 560065, India
| | - Thanh D Nguyen
- Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, CT, 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Sandhya Kadamboor Veethil
- Faculty of Pharmacy, M S Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| |
Collapse
|
3
|
Jaiswal S, Jawade S. Microneedling in Dermatology: A Comprehensive Review of Applications, Techniques, and Outcomes. Cureus 2024; 16:e70033. [PMID: 39449889 PMCID: PMC11499218 DOI: 10.7759/cureus.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Microneedling, also known as collagen induction therapy, is a minimally invasive dermatological procedure that has gained widespread popularity for treating various skin conditions, including acne scars, wrinkles, hyperpigmentation, and stretch marks. By creating controlled micro-injuries in the skin, microneedling stimulates the body's natural healing processes, resulting in increased collagen and elastin production, essential for maintaining skin elasticity and firmness. Over the past few decades, microneedling has evolved significantly, with advancements such as automated devices, radiofrequency microneedling, and combination therapies enhancing its effectiveness and safety profile. This comprehensive review explores the mechanisms of action, various techniques, and clinical applications of microneedling, highlighting its advantages over other skin rejuvenation methods. The review also examines patient satisfaction, safety considerations, and potential complications, providing a balanced perspective on its clinical utility. Furthermore, the discussion includes future directions in microneedling technology and research, focusing on emerging innovations and potential new applications. As the field advances, microneedling is poised to play an increasingly important role in aesthetic medicine, offering a reliable and effective solution for skin rejuvenation and beyond. This review is a valuable resource for healthcare professionals, guiding the optimization of microneedling practices and informing future research efforts.
Collapse
Affiliation(s)
- Sharwari Jaiswal
- Dermatology, Venereology and Leprosy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sugat Jawade
- Dermatology, Venereology and Leprosy, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Nagpur, IND
| |
Collapse
|
4
|
Masimov R, Wasan EK. Chitosan non-particulate vaccine delivery systems. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12921. [PMID: 39114808 PMCID: PMC11303186 DOI: 10.3389/jpps.2024.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Chitosan is an extensively used polymer for drug delivery applications in particulate and non-particulate carriers. Chitosan-based particulate, nano-, and microparticle, carriers have been the most extensively studied for the delivery of therapeutics and vaccines. However, chitosan has also been used in vaccine applications for its adjuvant properties in various hydrogels or as a carrier coating material. The focus of this review will be on the usage of chitosan as a vaccine adjuvant based on its intrinsic immunogenicity; the various forms of chitosan-based non-particulate delivery systems such as thermosensitive hydrogels, microneedles, and conjugates; and the advantages of its role as a coating material for vaccine carriers.
Collapse
Affiliation(s)
| | - Ellen K. Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Hasan M, Choi J, Akter H, Kang H, Ahn M, Lee S. Antibody-Conjugated Magnetic Nanoparticle Therapy for Inhibiting T-Cell Mediated Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307148. [PMID: 38161230 PMCID: PMC10953552 DOI: 10.1002/advs.202307148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Tolerance induction is critical for mitigating T cell-mediated inflammation. Treatments based on anti-CD3 monoclonal antibody (mAb) play a pivotal role in inducing such tolerance. Anti-CD3 mAb conjugated with dextran-coated magnetic nanoparticles (MNPs) may induce inflammatory tolerance is posited. MNPs conjugated with anti-CD3 mAb (Ab-MNPs) are characterized using transmission and scanning electron microscopy, and their distribution is assessed using a nanoparticle tracking analyzer. Compared to MNPs, 90% of Ab-MNPs increased in size from 54.7 ± 0.5 to 71.7 ± 2.7 nm. The in vitro and in vivo studies confirmed the therapeutic material as nontoxic and biocompatible. Mice are administered various dosages of Ab-MNPs before receiving concanavalin-A (ConA), an inflammation inducer. Preadministration of Ab-MNPs, as opposed to MNPs or anti-CD3 mAb alone, significantly reduced the serum levels of interferon-γ and interleukin-6 in ConA-treated mice. Additionally, the transdermal stamp patch as an effective delivery system for Ab-MNPs is validated. This study demonstrates the utility of the Ab-MNP complex in pathologies associated with T cell-mediated hyperinflammation, such as organ transplantation and COVID-19.
Collapse
Affiliation(s)
- Mahbub Hasan
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
- Department of Biochemistry and Molecular BiologyLife Science FacultyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganj8100Bangladesh
| | - Jong‐Gu Choi
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
| | - Hafeza Akter
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
| | - Hasung Kang
- Department of MedicineCollege of MedicineSeoul National UniversitySeoul08826South Korea
| | - Meejung Ahn
- Department of Animal ScienceCollege of Life ScienceSangji UniversityWonju26339South Korea
| | - Sang‐Suk Lee
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
| |
Collapse
|
6
|
Shauly O, Marxen T, Menon A, Gould DJ, Miller LB, Losken A. Radiofrequency Microneedling: Technology, Devices, and Indications in the Modern Plastic Surgery Practice. Aesthet Surg J Open Forum 2023; 5:ojad100. [PMID: 38887534 PMCID: PMC11181949 DOI: 10.1093/asjof/ojad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
Background Since the initial invention of microneedling, advancements have been made to improve the desired effects. The addition of radiofrequency to microneedling devices was developed within the past decade as a way to induce thermal injury and increase dermal heating to enhance the dermal wound healing cascade. Objectives With an overabundance of literature and mainstream media focused on microneedling and radiofrequency microneedling, this review aims to focus on the available high-quality evidence. Methods A comprehensive review of the literature was performed across PubMed (National Institutes of Health, Bethesda, MD) and Embase (Elsevier, Amsterdam, the Netherlands) databases. Attention was focused on manuscripts that provided objective data with respect to clinical application, innovation, anatomy, and physiology. Results Optimal outcomes are achieved when needle depth is targeted to the reticular dermis. Needle depth should reflect the relative differences in epidermal and dermal thickness throughout the face. A depth of at least 1.5 mm should be used for the forehead and temporal skin, 1.0 mm for the malar region, 2.0 mm (maximum depth for radiofrequency microneedling) for the nasal side walls, 0.5 mm for the perioral skin, and 1.5 mm for the neck. Deeper settings can be used with care to provide some fat reduction in the submentum. Conclusions The authors find herein that radiofrequency microneedling is a safe adjunctive tool to surgical aesthetic procedures. The addition of radiofrequency poses an advance over traditional microneedling devices for skin tightening, with improvements in both safety and efficacy over time. Level of Evidence 5
Collapse
Affiliation(s)
- Orr Shauly
- Corresponding Author: Dr Orr Shauly, Division of Plastic Surgery, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA. E-mail: ; Instagram: @orrshaulymd
| | | | | | | | | | | |
Collapse
|
7
|
Malek-Khatabi A, Sadat Razavi M, Abdollahi A, Rahimzadeghan M, Moammeri F, Sheikhi M, Tavakoli M, Rad-Malekshahi M, Faraji Rad Z. Recent progress in PLGA-based microneedle-mediated transdermal drug and vaccine delivery. Biomater Sci 2023; 11:5390-5409. [PMID: 37387317 DOI: 10.1039/d3bm00795b] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Microneedles (MNs) have recently been found to have applications in drug, vitamin, protein and vaccine delivery. Polymeric MN arrays continue to attract increasing attention due to their capability to bypass the skin's stratum corneum (SC) barrier with minimal invasiveness. These carriers can achieve the targeted intradermal delivery of drugs and vaccines and improve their transdermal delivery level. As a nontoxic FDA-approved copolymer, polylactic glycolic acid (PLGA) has good biocompatibility and biodegradability. Currently, PLGA-based MNs have a noticeable tendency to be utilized as a delivery system. This study focuses on the most recent advances in PLGA-based MNs. Both PLGA nanoparticle-based MNs and PLGA matrix-based MNs, created for the delivery of vaccines, drugs, proteins and other therapeutic agents, are discussed. The paper also discusses the various types of MNs and their potential applications. Finally, the prospects and challenges of PLGA-based MNs are reviewed.
Collapse
Affiliation(s)
- Atefeh Malek-Khatabi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Sadat Razavi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alyeh Abdollahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Rahimzadeghan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moammeri
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Sheikhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Tavakoli
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield, QLD 4300, Australia.
| |
Collapse
|
8
|
Ahmadpour A, Isgor PK, Ural B, Eren BN, Sarabi MR, Muradoglu M, Tasoglu S. Microneedle arrays integrated with microfluidic systems: Emerging applications and fluid flow modeling. BIOMICROFLUIDICS 2023; 17:021501. [PMID: 37153866 PMCID: PMC10162023 DOI: 10.1063/5.0121578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/15/2023] [Indexed: 05/10/2023]
Abstract
Microneedle arrays are patches of needles at micro- and nano-scale, which are competent and versatile technologies that have been merged with microfluidic systems to construct more capable devices for biomedical applications, such as drug delivery, wound healing, biosensing, and sampling body fluids. In this paper, several designs and applications are reviewed. In addition, modeling approaches used in microneedle designs for fluid flow and mass transfer are discussed, and the challenges are highlighted.
Collapse
Affiliation(s)
- Abdollah Ahmadpour
- Department of Mechanical Engineering, College of Engineering, Koç University, Türkiye
| | - Pelin Kubra Isgor
- Department of Biomedical Sciences and Engineering, College of Engineering, Koç University, Türkiye
| | - Berk Ural
- Department of Mechanical Engineering, College of Engineering, Koç University, Türkiye
| | - Busra Nimet Eren
- Department of Mechanical Engineering, College of Engineering, Koç University, Türkiye
| | | | - Metin Muradoglu
- Department of Mechanical Engineering, College of Engineering, Koç University, Türkiye
| | | |
Collapse
|
9
|
Ibrahim M, Shimizu T, Ando H, Ishima Y, Elgarhy OH, Sarhan HA, Hussein AK, Ishida T. Investigation of anti-PEG antibody response to PEG-containing cosmetic products in mice. J Control Release 2023; 354:260-267. [PMID: 36632951 DOI: 10.1016/j.jconrel.2023.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Polyethylene glycol (PEG), a polyether compound, is available in molecular weights from ∼300 g/mol to ∼10,000,000 g/mol. In the molecular weight range of ∼750 to ∼5000, PEG is commonly used in bioconjugation technology and nano-formulations to improve the circulation half-life of the formulations and increase their stability. In cosmetics, lower molecular weight PEG compounds such as PEG 60 or PEG 100 are widely used as emulsifiers and skin penetration enhancers. PEG polymers are generally recognized as biologically inert and non-immunogenic. However, it is recently reported that the "pre-existing" anti-PEG antibodies have been detected in high percentages of healthy individuals who have never received treatment with parenteral PEGylated formulations. To the best of our knowledge, we are the first to attempt to find an explanation for the source of pre-existing anti-PEG antibodies in healthy individuals. In a murine study, we demonstrated that topically applied PEG derivatives, present in two commercially available cosmetic products, could efficiently penetrate the stratum corneum and reach the systemic circulation. The skin penetration of PEG derivatives was further enhanced in injured or otherwise compromised skin. Daily application of cosmetic PEG derivatives primed the immune system, inducing anti-PEG IgM production. Anti-PEG IgM was detected by Day 14 in mice with normal skin, while anti-PEG IgM was detected as early as day 7 in mice with compromised skin. In addition, in mice with pre-induced circulating levels of anti-PEG IgM, topically applied PEG derivatives from cosmetic products appeared to bind to the pre-induced anti-PEG IgM, lowering blood levels. Current results indicate that PEG derivatives in cosmetic products may be an important contributor to the source of the "pre-existing" anti-PEG antibodies that have been detected in healthy individuals.
Collapse
Affiliation(s)
- Mohamed Ibrahim
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Omar Helmy Elgarhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Hatem A Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Amal K Hussein
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
10
|
Pharmacokinetic Study of Triptolide Nanocarrier in Transdermal Drug Delivery System-Combination of Experiment and Mathematical Modeling. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020553. [PMID: 36677610 PMCID: PMC9866283 DOI: 10.3390/molecules28020553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023]
Abstract
Compared with traditional oral and injection administration, the transdermal administration of traditional Chinese medicine has distinctive characteristics and advantages, which can avoid the "first pass effect" of the liver and the destruction of the gastrointestinal tract, maintain a stable blood concentration, and prolong drug action time. However, the basic theory and technology research in transdermal drug delivery are relatively limited at present, especially regarding research on new carriers of transdermal drug delivery and pharmacokinetic studies of the skin, which has become a bottleneck of transdermal drug delivery development. Triptolide is one of the main active components of Tripterygium wilfordii, which displays activities against mouse models of polycystic kidney disease and pancreatic cancer but its physical properties and severe toxicity limit its therapeutic potential. Due to the previously mentioned advantages of transdermal administration, in this study, we performed a detail analysis of the pharmacokinetics of a new transdermal triptolide delivery system. Triptolide nanoemulsion gels were prepared and served as new delivery systems, and the ex vivo characteristics were described. The metabolic characteristics of the different triptolide transdermal drug delivery formulations were investigated via skin-blood synchronous microdialysis combined with LC/MS. A multiscale modeling framework, molecular dynamics and finite element modeling were adopted to simulate the transport process of triptolide in the skin and to explore the pharmacokinetics and mathematical patterns. This study shows that the three-layer model can be used for transdermal drug delivery system drug diffusion research. Therefore, it is profitable for transdermal drug delivery system design and the optimization of the dosage form. Based on the drug concentration of the in vivo microdialysis measurement technology, the diffusion coefficient of drugs in the skin can be more accurately measured, and the numerical results can be verified. Therefore, the microdialysis technique combined with mathematical modeling provides a very good platform for the further study of transdermal delivery systems. This research will provide a new technology and method for the study of the pharmacokinetics of traditional Chinese medicine transdermal drug delivery. It has important theoretical and practical significance in clarifying the metabolic transformation of percutaneous drug absorption and screening for appropriate drugs and dosage forms of transdermal drug delivery.
Collapse
|
11
|
Enhanced Micro-Channeling System via Dissolving Microneedle to Improve Transdermal Serum Delivery for Various Clinical Skincare Treatments. Pharmaceutics 2022; 14:pharmaceutics14122804. [PMID: 36559297 PMCID: PMC9781352 DOI: 10.3390/pharmaceutics14122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Topical liquid formulations, dissolving microneedles (DMNs), and microscale needles composed of biodegradable materials have been widely used for the transdermal delivery of active compounds for skincare. However, transdermal active compound delivery by topical liquid formulation application is inhibited by skin barriers, and the skincare efficacy of DMNs is restricted by the low encapsulation capacity and incomplete insertion. In this study, topical serum application via a dissolvable micro-channeling system (DMCS) was used to enhance serum delivery through micro-channels embedded with DMNs. Transdermal serum delivery was evaluated after the topical-serum-only application and combinatorial serum application by assessing the intensity of allophycocyanin (APC) loaded with the serum in the porcine skin. APC intensity was significantly higher in the skin layer at a depth of 120-270 μm upon combinatorial serum application as compared to topical-serum-only application. In addition, the combinatorial serum application showed significantly improved efficacy in the clinical assessment of skin hydration, depigmentation, improvement of wrinkles, elasticity, dermal density, skin pores, and skin soothing without any safety issues compared to the serum-only application. The results indicate that combinatorial serum application with DMCS is a promising candidate for improving skincare treatments with optimal transdermal delivery of active compounds.
Collapse
|
12
|
Microneedle arrays for cutaneous and transcutaneous drug delivery, disease diagnosis, and cosmetic aid. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
13
|
Pająk J, Szepietowski JC, Nowicka D. Prevention of Ageing-The Role of Micro-Needling in Neck and Cleavage Rejuvenation: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159055. [PMID: 35897441 PMCID: PMC9332435 DOI: 10.3390/ijerph19159055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022]
Abstract
Although interest in aesthetic medicine is growing, the focus is often placed outside of the facial area, namely on the skin of the neck and cleavage. Exposure to the sun and muscle movements cause the prompt development of wrinkles that may appear there, even before they show up on the face. We conducted a literature review devoted to micro-needling to identify its role in anti-ageing treatments and to determine the gaps in current knowledge. A search in Medline identified 52 publications for neck and face micro-needling. Micro-needling is an anti-ageing procedure that involves making micro-punctures in the skin to induce skin remodelling by stimulating the fibroblasts responsible for collagen and elastin production. It can be applied to the skin of the face, neck, and cleavage. Two to four weeks should be allowed between repeated procedures to achieve an optimal effect. The increase in collagen and elastin in the skin can reach 400% after 6 months, with an increase in the thickness of the stratum granulosum occurring for up to 1 year. In conclusion, micro-needling can be considered an effective and safe aesthetic medicine procedure which is conducted at low costs due to its low invasiveness, low number of adverse reactions, and short recovery time. Little evidence identified in the literature suggests that this procedure requires further research.
Collapse
Affiliation(s)
- Justyna Pająk
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, 50-368 Wroclaw, Poland; (J.P.); (J.C.S.)
| | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, 50-368 Wroclaw, Poland; (J.P.); (J.C.S.)
| | - Danuta Nowicka
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, 50-368 Wroclaw, Poland; (J.P.); (J.C.S.)
- Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
14
|
Tam C, Khong J, Tam K, Vasilev R, Wu W, Hazany S. A Comprehensive Review of Non-Energy-Based Treatments for Atrophic Acne Scarring. Clin Cosmet Investig Dermatol 2022; 15:455-469. [PMID: 35359828 PMCID: PMC8963193 DOI: 10.2147/ccid.s350040] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
Scarring is a dire consequence of acne vulgaris. Particularly, atrophic acne scarring is highly prevalent among young adults, and its physical and psychological effects can persist throughout their lives if left untreated. This literature review will analyze various non-energy-based approaches to treating atrophic acne scarring, emphasizing recent advances within the last 5 to 10 years. To accomplish this, we performed a PubMed search for various acne scar treatments such as chemical peels, dermabrasion, microdermabrasion, subcision, microneedling, punch techniques, dermal fillers, and thread lifting. Our findings and analysis show that there is no panacean solution to treating atrophic acne scars, which explains the evolving trend towards developing unique combinatorial treatments. Although a fair comparison of each treatment approach is difficult to achieve due to the studies’ varying sample sizes, strength of evidence, treatment execution, etc, there still remains a level of consensus on what treatments are well suited for particular scar types.
Collapse
Affiliation(s)
- Curtis Tam
- Salar Hazany M.D. Inc, Beverly Hills, CA, USA
| | | | - Kevin Tam
- Salar Hazany M.D. Inc, Beverly Hills, CA, USA
| | | | - Wesley Wu
- Department of Dermatology, Veterans Affairs Medical Center, Seattle, WA, USA
| | | |
Collapse
|
15
|
Saha I, Palak A, Rai VK. Relevance of NLC-gel and microneedling-assisted tacrolimus ointment against severe psoriasiform: In vitro dermal retention kinetics, in vivo activity and drug distribution. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Arjmand B, Khodadost M, Jahani Sherafat S, Rezaei Tavirani M, Ahmadi N, Hamzeloo Moghadam M, Okhovatian F, Rezaei Tavirani S, Rostami-Nejad M. Low-Level Laser Therapy: Potential and Complications. J Lasers Med Sci 2021; 12:e42. [PMID: 34733765 DOI: 10.34172/jlms.2021.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/03/2021] [Indexed: 12/26/2022]
Abstract
Introduction: Laser therapy has attracted experts' attention in medical sciences. Many benefits of laser therapy are presented besides some complications. In the present study, it is tried to present a new perspective of laser therapy in the various fields of medicine. Methods: Laser therapy-related articles which are combined with regenerative medicine, cosmetic, dentistry, neurodegenerative diseases, kidney, bone fracture, and vaginal function in the English language were searched through the google scholar search engine in the range of 2000-2021. After title screening, the abstracts were evaluated to access the full texts. Results: Basic concepts and various kinds of lasers which are applied in medicine were explained. Applications of laser therapy in various fields of medicine such as pain reduction, wound healing, regenerative medicine, dentistry, and several other body organs were highlighted and some complications were pointed. Conclusion: High potential of laser therapy for application in medicine implies a reconsideration of the laser properties and also styles of laser applications to improve the treatment and prevention of its side effects.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Khodadost
- School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics research center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayebali Ahmadi
- Proteomics research center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hamzeloo Moghadam
- Traditional Medicine and Materia Medica Research Center, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Okhovatian
- Physiotherapy Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Rezaei Tavirani
- Proteomics research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Kaushik V, Keck CM. Influence of mechanical skin treatment (massage, ultrasound, microdermabrasion, tape stripping and microneedling) on dermal penetration efficacy of chemical compounds. Eur J Pharm Biopharm 2021; 169:29-36. [PMID: 34508806 DOI: 10.1016/j.ejpb.2021.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 02/03/2023]
Abstract
The influence of mechanical skin treatments (massage, ultrasound, microdermabrasion, tape stripping and microneedling) on the dermal penetration efficacy was investigated. Results show that microneedling was the most effective tool. It increased the penetration efficacy (amount of penetrated active and penetration depth) by a factor > 2. Microdermabrasion and tape stripping remove parts of the stratum corneum (SC). This reduces the barrier function and increases the penetration efficacy. Microdermabrasion removed about 23% of the SC. Tape stripping removed about 34% of the SC and thus resulted in a slightly more pronounced increase in the penetration efficacy (+31% after tape stripping and +18% after microdermabrasion). Massage and skin treatment with ultrasound decreased the penetration efficacy by about one third when compared to skin where the formulations were applied without any mechanical treatment. The penetration reducing effect is caused by mechanical stress (pressure), which reduces the thickness of the SC. The increased density of the SC is considered to decrease the intercellular space within the SC and with this the flux for chemical compounds. Therefore, massage and other mechanical treatments that increase the density of the SC should be avoided if efficient dermal penetration is required.
Collapse
Affiliation(s)
- Vasudha Kaushik
- Department of Pharmaceutics and Biopharmaceutics, Philipps - Universität Marburg, Robert - Koch - Straße 4, 35037 Marburg, Germany
| | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps - Universität Marburg, Robert - Koch - Straße 4, 35037 Marburg, Germany.
| |
Collapse
|
18
|
Dsouza L, Chaudhari P, Brahmam B, Lewis SA. Derma roller mediated transdermal delivery of tizanidine invasomes for the management of skeletal muscle spasms. Eur J Pharm Sci 2021; 165:105920. [PMID: 34192586 DOI: 10.1016/j.ejps.2021.105920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 02/03/2023]
Abstract
Tizanidine hydrochloride (TIZ) is a skeletal muscle relaxant used to treat spasms, a sudden involuntary muscle contraction. The currently available oral dosage forms exhibit low oral bioavailability due to high first-pass metabolism. Frequent administration of the drug is thus necessary because of the short half-life of the drug. Transdermal delivery is an excellent alternative, but the skin's outer stratum corneum barrier prevents most drugs from being effectively delivered into the bloodstream. Here we present a pre-clinical investigation of derma roller mediated delivery of TIZ invasome gel as a potential approach for treating muscle spasm. Further, specific terpenes namely limonene and pinene in different concentrations and their impact on the properties of the prepared TIZ invasomes, including particle size, drug entrapment, and ex vivo drug release, were investigated. TIZ invasomes were incorporated into a gel and delivered to rats with and without pre-treatment of the skin with a derma roller. Pre-treated skin achieved maximum drug plasma concentrations within 3 ± 0.00 h of gel application and maintained for 24 h. In the untreated skin the maximum plasma drug levels was achieved at the end of 6 ± 0.00 h. The findings were further supported by in vivo efficacy studies conducted using rotarod and actophotometer. Overall, the study indicates that derma roller mediated transdermal delivery of TIZ loaded invasomes is a promising strategy for enhancing the bioavailability of TIZ.
Collapse
Affiliation(s)
- Leonna Dsouza
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Bheemisetty Brahmam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India.
| |
Collapse
|
19
|
Puri A, Frempong D, Mishra D, Dogra P. Microneedle-mediated transdermal delivery of naloxone hydrochloride for treatment of opioid overdose. Int J Pharm 2021; 604:120739. [PMID: 34048932 DOI: 10.1016/j.ijpharm.2021.120739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/03/2023]
Abstract
Naloxone (NAL) is administered parenterally or intranasally for treating opioid overdose. The short duration of action of NAL calls for frequent re-dosing which may be eliminated by the development of a transdermal system. This study aimed to assess the effect of microneedles on improving the skin permeation of NAL hydrochloride. In vitro permeation of NAL across intact and microneedle-treated (Dr. Pen™ Ultima A6) porcine skin was evaluated. The effect of microneedle length and application duration, and donor concentration on NAL permeation were investigated. In-vitro in-vivo correlation of the permeation results was done to predict the plasma concentration kinetics of NAL in patients. In vitro passive permeation of NAL after 6 h was observed to be 8.25±1.06 µg/cm2. A 56- and 37-fold enhancement was observed with 500 and 250 µm needles applied for 1 min, respectively. Application of 500 µm MNs for 2 min significantly reduced the lag time to ~ 8 min and increasing the donor concentration for the same treatment group doubled the permeation (p < 0.05). Modeling simulations demonstrated the attainment of pharmacokinetic profile of NAL comparable to those obtained with the FDA-approved intramuscular and intranasal devices. Microneedle-mediated transdermal delivery holds potential for rapid and sustained NAL delivery for opioid overdose treatment.
Collapse
Affiliation(s)
- Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA.
| | - Dorcas Frempong
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Dhruv Mishra
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
20
|
Alimardani V, Abolmaali SS, Yousefi G, Rahiminezhad Z, Abedi M, Tamaddon A, Ahadian S. Microneedle Arrays Combined with Nanomedicine Approaches for Transdermal Delivery of Therapeutics. J Clin Med 2021; 10:E181. [PMID: 33419118 PMCID: PMC7825522 DOI: 10.3390/jcm10020181] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Organic and inorganic nanoparticles (NPs) have shown promising outcomes in transdermal drug delivery. NPs can not only enhance the skin penetration of small/biomacromolecule therapeutic agents but can also impart control over drug release or target impaired tissue. Thanks to their unique optical, photothermal, and superparamagnetic features, NPs have been also utilized for the treatment of skin disorders, imaging, and biosensing applications. Despite the widespread transdermal applications of NPs, their delivery across the stratum corneum, which is the main skin barrier, has remained challenging. Microneedle array (MN) technology has recently revealed promising outcomes in the delivery of various formulations, especially NPs to deliver both hydrophilic and hydrophobic therapeutic agents. The present work reviews the advancements in the application of MNs and NPs for an effective transdermal delivery of a wide range of therapeutics in cancer chemotherapy and immunotherapy, photothermal and photodynamic therapy, peptide/protein vaccination, and the gene therapy of various diseases. In addition, this paper provides an overall insight on MNs' challenges and summarizes the recent achievements in clinical trials with future outlooks on the transdermal delivery of a wide range of nanomedicines.
Collapse
Affiliation(s)
- Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Gholamhossein Yousefi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Zahra Rahiminezhad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
| | - Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
| | - Alimohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| |
Collapse
|