1
|
Yu Q, Xiao Y, Guan M, Zhang X, Yu J, Han M, Li Z. Copper metabolism in osteoarthritis and its relation to oxidative stress and ferroptosis in chondrocytes. Front Mol Biosci 2024; 11:1472492. [PMID: 39329090 PMCID: PMC11425083 DOI: 10.3389/fmolb.2024.1472492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Ferroptosis, an iron-ion-dependent process of lipid peroxidation, damages the plasma membrane, leading to non-programmed cell death. Osteoarthritis (OA), a prevalent chronic degenerative joint disease among middle-aged and older adults, is characterized by chondrocyte damage or loss. Emerging evidence indicates that chondrocyte ferroptosis plays a role in OA development. However, most research has concentrated on ferroptosis regulation involving typical iron ions, potentially neglecting the significance of elevated copper ions in both serum and joint fluid of patients with OA. This review aims to fill this gap by systematically examining the interplay between copper metabolism, oxidative stress, ferroptosis, and copper-associated cell death in OA. It will provide a comprehensive overview of copper ions' role in regulating ferroptosis and their dual role in OA. This approach seeks to offer new insights for further research, prevention, and treatment of OA.
Collapse
Affiliation(s)
- Qingyuan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yanan Xiao
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mengqi Guan
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xianshuai Zhang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jianan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mingze Han
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhenhua Li
- Orthopedic Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Li Y, Wang Y, Ding Y, Fan X, Ye L, Pan Q, Zhang B, Li P, Luo K, Hu B, He B, Pu Y. A Double Network Composite Hydrogel with Self-Regulating Cu 2+/Luteolin Release and Mechanical Modulation for Enhanced Wound Healing. ACS NANO 2024; 18:17251-17266. [PMID: 38907727 DOI: 10.1021/acsnano.4c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Designing adaptive and smart hydrogel wound dressings to meet specific needs across different stages of wound healing is crucial. Here, we present a composite hydrogel, GSC/PBE@Lut, that offers self-regulating release of cupric ions and luteolin and modulates mechanical properties to promote chronic wound healing. The double network hydrogel, GSC, is fabricated through photo-cross-linking of gelatin methacrylate, followed by Cu2+-alginate coordination cross-linking. On one hand, GSC allows for rapid Cu2+ release to eliminate bacteria in the acidic pH environment during inflammation and reduces the hydrogel's mechanical strength to minimize tissue trauma during early dressing changes. On the other hand, GSC enables slow Cu2+ release during the proliferation stage, promoting angiogenesis and biocompatibility. Furthermore, the inclusion of pH- and reactive oxygen species (ROS)-responsive luteolin nanoparticles (PBE@Lut) in the hydrogel matrix allows for controlled release of luteolin, offering antioxidant and anti-inflammatory effects and promoting anti-inflammatory macrophage polarization. In a murine model of Staphylococcus aureus infected wounds, GSC/PBE@Lut demonstrates exceptional therapeutic benefits in antibacterial, anti-inflammatory, angiogenic, and tissue regeneration. Overall, our results suggest that smart hydrogels with controlled bioactive agent release and mechanical modulation present a promising solution for treating chronic wounds.
Collapse
Affiliation(s)
- Yue Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yunpeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Liansong Ye
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Comfort Care Dental Center, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Shi B, Li YR, Xu J, Zou J, Zhou Z, Jia Q, Jiang HB, Liu K. Advances in amelioration of plasma electrolytic oxidation coatings on biodegradable magnesium and alloys. Heliyon 2024; 10:e24348. [PMID: 38434039 PMCID: PMC10906185 DOI: 10.1016/j.heliyon.2024.e24348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 03/05/2024] Open
Abstract
Magnesium and its alloys are considered excellent materials for biodegradable implants because of their good biocompatibility and biodegradability as well as their mechanical properties. However, the rapid degradation rate severely limits their clinical applications. Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), is an effective surface modification technique. However, there are many pores and cracks on the coating surface under conventional PEO process. The corrosive products tend to penetrate deeply into the substrate, reducing its corrosion resistance and the biocompatibility, which makes PEO-coated Mg difficult to meet the long-term needs of in vivo implants. Hence, it is necessary to modify the PEO coating. This review discusses the formation mechanism and the influential parameters of PEO coatings on Mg. This is followed by a review of the latest research of the pretreatment and typical amelioration of PEO coating on biodegradable Mg alloys in the past 5 years, including calcium phosphate (Ca-P) coating, layered double hydroxide (LDH)-PEO coating, ZrO2 incorporated-PEO coating, antibacterial ingredients-PEO coating, drug-PEO coating, polymer-PEO composite coating, Plasma electrolytic fluorination (PEF) coating and self-healing coating. Meanwhile, the improvements of morphology, corrosion resistance, wear resistance, biocompatibility, antibacterial abilities, and drug loading abilities and the preparation methods of the modified PEO coatings are deeply discussed as well. Finally, the challenges and prospects of PEO coatings are discussed in detail for the purpose of promoting the clinical application of biodegradable Mg alloys.
Collapse
Affiliation(s)
- Biying Shi
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Yu Ru Li
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Jiaqi Xu
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Jiawei Zou
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Zili Zhou
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Qi Jia
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Heng Bo Jiang
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Kai Liu
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| |
Collapse
|
4
|
Hu J, Shao J, Huang G, Zhang J, Pan S. In Vitro and In Vivo Applications of Magnesium-Enriched Biomaterials for Vascularized Osteogenesis in Bone Tissue Engineering: A Review of Literature. J Funct Biomater 2023; 14:326. [PMID: 37367290 DOI: 10.3390/jfb14060326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Bone is a highly vascularized tissue, and the ability of magnesium (Mg) to promote osteogenesis and angiogenesis has been widely studied. The aim of bone tissue engineering is to repair bone tissue defects and restore its normal function. Various Mg-enriched materials that can promote angiogenesis and osteogenesis have been made. Here, we introduce several types of orthopedic clinical uses of Mg; recent advances in the study of metal materials releasing Mg ions (pure Mg, Mg alloy, coated Mg, Mg-rich composite, ceramic, and hydrogel) are reviewed. Most studies suggest that Mg can enhance vascularized osteogenesis in bone defect areas. Additionally, we summarized some research on the mechanisms related to vascularized osteogenesis. In addition, the experimental strategies for the research of Mg-enriched materials in the future are put forward, in which clarifying the specific mechanism of promoting angiogenesis is the crux.
Collapse
Affiliation(s)
- Jie Hu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiahui Shao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Gan Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jieyuan Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shuting Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
5
|
Wu N, Gao H, Wang X, Pei X. Surface Modification of Titanium Implants by Metal Ions and Nanoparticles for Biomedical Application. ACS Biomater Sci Eng 2023; 9:2970-2990. [PMID: 37184344 DOI: 10.1021/acsbiomaterials.2c00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Implant surface modification can improve osseointegration and reduce peri-implant inflammation. Implant surfaces are modified with metals because of their excellent mechanical properties and significant functions. Metal surface modification is divided into metal ions and nanoparticle surface modification. These two methods function by adding a finishing metal to the surface of the implant, and both play a role in promoting osteogenic, angiogenic, and antibacterial properties. Based on this, the nanostructural surface changes confer stronger antibacterial and cellular affinity to the implant surface. The current paper reviews the forms, mechanisms, and applications of nanoparticles and metal ion modifications to provide a foundation for the surface modification of implants.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Ghezzi D, Sassoni E, Boi M, Montesissa M, Baldini N, Graziani G, Cappelletti M. Antibacterial and Antibiofilm Activity of Nanostructured Copper Films Prepared by Ionized Jet Deposition. Antibiotics (Basel) 2022; 12:55. [PMID: 36671256 PMCID: PMC9854604 DOI: 10.3390/antibiotics12010055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Metal coatings represent good strategies to functionalize surfaces/devices and limit bacterial contamination/colonization thanks to their pleiotropic activity and their ability to prevent the biofilm formation. Here, we investigated the antibacterial and antibiofilm capacity of copper coatings deposited through the Ionized Jet Deposition (IJD) on the Calgary Biofilm Device (CBD) against the growth of two gram-negative and two gram-positive pathogenic strains. Three areas (i.e., (+)Cu, (++)Cu, and (+++)Cu based on the metal amount) on the CBD were obtained, presenting nanostructured coatings with high surface homogeneity and increasing dimensions of aggregates from the CBD periphery to the centre. The coatings in (++)Cu and (+++)Cu were efficient against the planktonic growth of the four pathogens. This antibacterial effect decreased in (+)Cu but was still significant for most of the pathogens. The antibiofilm efficacy was significant for all the strains and on both coated and uncoated surfaces in (+++)Cu, whereas in (++)Cu the only biofilms forming on the coated surfaces were inhibited, suggesting that the decrease of the metal on the coatings was associated to a reduced metal ion release. In conclusion, this work demonstrates that Cu coatings deposited by IJD have antibacterial and antibiofilm activity against a broad range of pathogens indicating their possible application to functionalize biomedical devices.
Collapse
Affiliation(s)
- Daniele Ghezzi
- BST Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Enrico Sassoni
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Marco Boi
- BST Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Matteo Montesissa
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40128 Bologna, Italy
| | - Nicola Baldini
- BST Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40128 Bologna, Italy
| | - Gabriela Graziani
- BST Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| |
Collapse
|
7
|
Zhang X, Liu H, Li L, Huang C, Meng X, Liu J, Bai X, Ren L, Wang X, Yang K, Qin L. Promoting osteointegration effect of Cu alloyed titanium (TiCu) in ovariectomized rats. Regen Biomater 2022; 9:rbac011. [PMID: 35480856 PMCID: PMC9039496 DOI: 10.1093/rb/rbac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoporosis is a common skeletal disease making patients be prone to the osteoporotic fracture. However, the clinical implants made of titanium and its alloys with a poor osseointegration need a long time for healing and easily to loosening. Thus, a new class of Cu-alloyed titanium (TiCu) alloys with excellent mechanical properties and bio-functionalization has been developed. In this study, the osteoporosis modeled rats were used to study the osteointegration effect and underlying mechanism of TiCu. The results showed that after implantation for 4 weeks, TiCu alloy could promote the reconstruction of vascular network around the implant by up-regulating vascular endothelial growth factor expression. After 8 weeks, it could further promote the proliferation and differentiation of osteoblasts, mineralization and deposition of collagens, and then significantly increasing bone mineral density around the implant. In conclusion, TiCu alloy would enhance the fixation stability, accelerate the osteointegration, and thus reduce the risk of aseptic loosening during the long-term implantation in the osteoporosis environment. This study was the first to report the role and mechanism of a Cu-alloyed metal in promoting osteointegration in osteoporosis environment, which provides a new attractive support for the improvement of future clinical applications of Cu-alloyed antibacterial titanium alloys. ![]()
Collapse
Affiliation(s)
- Xiyue Zhang
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - Hui Liu
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - Ling Li
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Cuishan Huang
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Xiangbo Meng
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Junzuo Liu
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Xueling Bai
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Ling Ren
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - Xinluan Wang
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
- Musculoskeletal Research Laboratory of Department of Orthopaedis & Traumatology, the Chinese University of Hong Kong, HK SAR, PR China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - Ling Qin
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
- Musculoskeletal Research Laboratory of Department of Orthopaedis & Traumatology, the Chinese University of Hong Kong, HK SAR, PR China
| |
Collapse
|