1
|
Sahare T, Sahoo BN, Jaiswal S, Rana S, Joshi A. An account of the current status of point-of-care lateral flow tests for kidney biomarker detection. Analyst 2024. [PMID: 39221602 DOI: 10.1039/d4an00806e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Globally, the primary causes of mortality and morbidity related to kidney ailments can be classified as Acute Kidney Injury (AKI) and Chronic Kidney Disease (CKD). Biomarker detection can have great potential to improve survival, lower mortality, and reduce the cost of treatment of kidney diseases. Considering the chronic nature of CKD, non-invasive identification and monitoring have proven to be useful. Biosensors and more specifically lateral flow test strips (LFTs) are regarded as the most desirable point-of-care instruments which have shown promise in elevating the healthcare industry to a new level. The major aspects of an ideal point-of-care (POC) lateral flow test include its cost effectiveness, high sensitivity and specificity, ease of use, quick result delivery, and quality control. This review provides a detailed account of recent developments, challenges, and opportunities in renal biomarker detection using LFTs including various approaches for sensitivity enhancement along with potential future advancements in POC and LFT kits.
Collapse
Affiliation(s)
- Tileshwar Sahare
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Khandwa Road, Simrol, Indore - 453552, Madhya Pradesh, India.
| | - Badri Narayana Sahoo
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Khandwa Road, Simrol, Indore - 453552, Madhya Pradesh, India.
| | - Surbhi Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Khandwa Road, Simrol, Indore - 453552, Madhya Pradesh, India.
| | - Simran Rana
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Khandwa Road, Simrol, Indore - 453552, Madhya Pradesh, India.
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Khandwa Road, Simrol, Indore - 453552, Madhya Pradesh, India.
| |
Collapse
|
2
|
Ouyang M, Jia M, Chang Z, Wang Y, Wang K, Gao X, Tang B. Precise prostate cancer diagnosis using fluorescent nanoprobes for detecting PSA and PSMA in serum. Chem Commun (Camb) 2024; 60:5181-5184. [PMID: 38647078 DOI: 10.1039/d4cc00670d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Novel Au-Se bond-based nanoprobes were designed for concurrent detection of PSA and PSMA in serum samples, aiming to enhance the early diagnosis of prostate cancer. These probes demonstrate robust stability, specificity and accuracy, underscoring their potential as non-invasive tools for diagnosis.
Collapse
Affiliation(s)
- Mingyi Ouyang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Ming Jia
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, P. R. China
| | - Zixuan Chang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yinian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Keyi Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, 168 Wenhai Middle Rd, Aoshanwei Jimo, Qingdao 266237, P. R. China
| |
Collapse
|
3
|
Xia N, Liu G, Chen Y, Wu T, Liu L, Yang S, Li Y. Magnetically-assisted electrochemical immunoplatform for simultaneous detection of active and total prostate-specific antigen based on proteolytic reaction and sandwich affinity analysis. Talanta 2024; 270:125534. [PMID: 38091743 DOI: 10.1016/j.talanta.2023.125534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
Simultaneous detection of active and inactive proteases is clinically meaningful for improving diagnostic specificity. In this work, we reported an electrochemical method for simultaneous immunoassays of active and total proteases. Magnetic beads (MBs) were used as the solid supports for immobilization of capture antibodies and enrichment of targets. For the detection of active protease, the proteolytic-reaction-based analysis was carried out by the generation of Cu2+-binding peptide, in which a label-free peptide was used as the proteolytic substrate. The redox potential of the resulting peptide-Cu2+ complex was intrinsically distinguished from that of free Cu2+, thus allowing the "signal-on" detection of active protease. For the immunoassay of total protease in a sandwich-like format, electroactive metal-organic frameworks (Cu-MOFs) were used as the signal tags. The captured Cu-MOFs could directly produce a well-defined electrochemical signal from the reduction of Cu2+ ions. The analytical performances of the immunoplatform were evaluated by determining the model analytes of free and total prostate-specific antigen (fPSA and tPSA) in buffer and serum. The detection limits were found to be 0.3 pM for fPSA and 2 pM for tPSA. This work proposed a new strategy for simultaneous detection of active and total proteases, which should be evaluable for clinical diagnosis and treatment of protease-relative diseases.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China.
| | - Gang Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yonghong Chen
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Tong Wu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, People's Republic of China
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Suling Yang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Yuanyuan Li
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
4
|
Petrenko VA. Phage Display's Prospects for Early Diagnosis of Prostate Cancer. Viruses 2024; 16:277. [PMID: 38400052 PMCID: PMC10892688 DOI: 10.3390/v16020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Prostate cancer (PC) is the second most diagnosed cancer among men. It was observed that early diagnosis of disease is highly beneficial for the survival of cancer patients. Therefore, the extension and increasing quality of life of PC patients can be achieved by broadening the cancer screening programs that are aimed at the identification of cancer manifestation in patients at earlier stages, before they demonstrate well-understood signs of the disease. Therefore, there is an urgent need for standard, sensitive, robust, and commonly available screening and diagnosis tools for the identification of early signs of cancer pathologies. In this respect, the "Holy Grail" of cancer researchers and bioengineers for decades has been molecular sensing probes that would allow for the diagnosis, prognosis, and monitoring of cancer diseases via their interaction with cell-secreted and cell-associated PC biomarkers, e.g., PSA and PSMA, respectively. At present, most PSA tests are performed at centralized laboratories using high-throughput total PSA immune analyzers, which are suitable for dedicated laboratories and are not readily available for broad health screenings. Therefore, the current trend in the detection of PC is the development of portable biosensors for mobile laboratories and individual use. Phage display, since its conception by George Smith in 1985, has emerged as a premier tool in molecular biology with widespread application. This review describes the role of the molecular evolution and phage display paradigm in revolutionizing the methods for the early diagnosis and monitoring of PC.
Collapse
Affiliation(s)
- Valery A Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
5
|
Khanam A, Singh G, Narwal S, Chopra B, Dhingra AK. A Review on Novel Applications of Nanotechnology in the Management of Prostate Cancer. Curr Drug Deliv 2024; 21:1161-1179. [PMID: 37888818 DOI: 10.2174/0115672018180695230925113521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Prostate cancer continues to be a serious danger to men's health, despite advances in the field of cancer nanotechnology. Although different types of cancer have been studied using nanomaterials and theranostic systems derived from nanomaterials, they have not yet reached their full potential for prostate cancer due to issues with in vivo biologic compatibility, immune reaction responses, accurate targetability, as well as a therapeutic outcome related to the nano-structured mechanism. METHOD The ultimate motive of this article is to understand the theranostic nanotechnology-based scheme for treating prostate cancer. The categorization of diverse nanomaterials in accordance with biofunctionalization tactics and biomolecule sources has been emphasized in this review so that they might potentially be used in clinical contexts and future advances. These opportunities can enhance the direct visualization of prostate tumors, early identification of prostate cancer-associated biomarkers at extremely low detection limits, and finally, the therapy for prostate cancer. RESULT In December 2022, a thorough examination of the scientific literature was carried out utilizing the Web of Science, PubMed, and Medline databases. The goal was to analyze novel applications of nanotechnology in the treatment of prostate cancer, together with their structural layouts and functionalities. CONCLUSION The various treatments and the reported revolutionary nanotechnology-based systems appear to be precise, safe, and generally successful; as a result, this might open up a new avenue for the detection and eradication of prostate cancer.
Collapse
Affiliation(s)
- Arshi Khanam
- Institute of Pharmaceutical Sciences, Kurukshetra University Kurukshetra-136119, Haryana, India
| | - Gurvirender Singh
- Institute of Pharmaceutical Sciences, Kurukshetra University Kurukshetra-136119, Haryana, India
| | - Smita Narwal
- Global Research Institute of Pharmacy, Radaur, Yamunanagar-135133, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Ashwani K Dhingra
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| |
Collapse
|
6
|
Wang H, Wang H, Huang Y, Zhang H, Fu Y, Yang Z, Chen Y, Qiu X, Yu D, Zhang L. Multi-parameter surface plasmon resonance instrument for multiple nucleic acid quantitative detection. Biomed Microdevices 2023; 25:24. [PMID: 37418065 DOI: 10.1007/s10544-023-00664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
Multiplex nucleic acid assays can simultaneously detect the characteristics of different target nucleic acids in complex mixtures and are used in disease diagnosis, environmental monitoring, and food safety. However, traditional nucleic acid amplification assays have limitations such as complicated operation, long detection time, unstable fluorescent labeling, and mutual interference of multiplex nucleic acids. We developed a real-time, rapid, and label-free surface plasmon resonance (SPR) instrument for multiplex nucleic acid detection. The multiparametric optical system based on total internal reflection solves the multiplex detection problem by cooperating with linear light source, prism, photodetector, and mechanical transmission system. An adaptive threshold consistency correction algorithm is proposed to solve the problem of inconsistent responsiveness of different detection channels and the inability of quantitative comparison. The instrument achieves label-free and amplification-free rapid detection of these biomarkers for miRNA-21 and miRNA-141, which are widely expressed in breast cancer and prostate cancer. The multiplex nucleic acid detection takes 30 min and the biosensor has good repeatability and specificity. The instrument has a limit of detection (LODs) of 50 nM for target oligonucleotides, and the smallest absolute amount of sample that can be detected is about 4 pmol. It provides a simple and efficient point-of-care testing (POCT) detection platform for small molecules such as DNA and miRNA.
Collapse
Affiliation(s)
- Huixiang Wang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Honggang Wang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yafeng Huang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Zhang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongdong Fu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenwei Yang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Chen
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianbo Qiu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Duli Yu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lulu Zhang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
7
|
Beeram R, Vepa KR, Soma VR. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. BIOSENSORS 2023; 13:328. [PMID: 36979540 PMCID: PMC10046859 DOI: 10.3390/bios13030328] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy/scattering (SERS) has evolved into a popular tool for applications in biology and medicine owing to its ease-of-use, non-destructive, and label-free approach. Advances in plasmonics and instrumentation have enabled the realization of SERS's full potential for the trace detection of biomolecules, disease diagnostics, and monitoring. We provide a brief review on the recent developments in the SERS technique for biosensing applications, with a particular focus on machine learning techniques used for the same. Initially, the article discusses the need for plasmonic sensors in biology and the advantage of SERS over existing techniques. In the later sections, the applications are organized as SERS-based biosensing for disease diagnosis focusing on cancer identification and respiratory diseases, including the recent SARS-CoV-2 detection. We then discuss progress in sensing microorganisms, such as bacteria, with a particular focus on plasmonic sensors for detecting biohazardous materials in view of homeland security. At the end of the article, we focus on machine learning techniques for the (a) identification, (b) classification, and (c) quantification in SERS for biology applications. The review covers the work from 2010 onwards, and the language is simplified to suit the needs of the interdisciplinary audience.
Collapse
Affiliation(s)
| | | | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia—Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|