1
|
Xu H, Zhang Y, Xie Z, Xie XF, Qiao WL, Wang M, Zhao BB, Hua T. Investigating PPT2's role in ovarian cancer prognosis and immunotherapy outcomes. J Ovarian Res 2024; 17:198. [PMID: 39394143 PMCID: PMC11468411 DOI: 10.1186/s13048-024-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Ovarian cancer (OC) remains the primary cause of mortality among gynecological malignancies, and the identification of reliable molecular biomarkers to prognosticate OC outcomes is yet to be achieved. The gene palmitoyl protein thioesterase 2 (PPT2), which has been sparsely studied in OC, was closely associated with metabolism. This study aimed to determine the association between PPT2 expression, prognosis, immune infiltration, and potential molecular mechanisms in OC. We obtained the RNA-seq and clinical data from The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx) and Gene Expression Omnibus (GEO) databases, then Kaplan-Meier analysis, univariate Cox regression, multivariate Cox regression, nomogram, and calibration were conducted to assess and verify the role of PPT2. Gene set enrichment analysis (GSEA) was used to figure out the closely correlated pathways with PPT2. Overexpression experiment was performed to explore the function of PPT2. Our findings showed that PPT2 mRNA expression was apparent down-regulation in OC tissue compared to normal ovarian tissues in TCGA, GTEx datasets, and GEO datasets. This differential expression was also confirmed in our in-house datasets at both the mRNA and protein levels. Decreased PPT2 expression correlated with lower survival rates in TCGA, several GEO datasets, and our in-house datasets. Multivariate analysis revealed that PPT2 was an independent factor in predicting better outcomes for OC patients in TCGA and GEO. A negative correlation was revealed between immune infiltration and PPT2 expression through Single-sample GSEA (ssGSEA). Additionally, PPT2 was negatively correlated with an up-regulated immune score, stromal score, and estimate score, suggesting that patients with low PPT2 expression might benefit more from immunotherapy. Numerous chemical agents showed lower IC50 in patients with high PPT2 expression. In single-cell RNA sequencing (scRNA-seq) analysis of several OC datasets, we found PPT2 was mainly expressed in endothelial cells. Furthermore, we found that PPT2 inhibited OC cell proliferation in vitro. Our results demonstrated that PPT2 was considered a favorable prognostic biomarker for OC and may be vital in predicting response to immunotherapy and chemotherapy. Further research was needed to fully understand the relationship between PPT2 and immunotherapy efficacy in OC patients.
Collapse
Affiliation(s)
- Hui Xu
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Yan Zhang
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Zhen Xie
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Xiao-Feng Xie
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Wen-Lan Qiao
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Miao Wang
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Bei-Bei Zhao
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Tian Hua
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China.
| |
Collapse
|
2
|
Yuan C, Xiong Z, Shi J, Peng J, Meng X, Wang C, Hu W, Ru Z, Xie K, Yang H, Chen K, Zhang X. Overexpression of PPT2 Represses the Clear Cell Renal Cell Carcinoma Progression by Reducing Epithelial-to-mesenchymal Transition. J Cancer 2020; 11:1151-1161. [PMID: 31956361 PMCID: PMC6959065 DOI: 10.7150/jca.36477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors of the urinary system and has a poor response to radiotherapy and chemotherapy. To date, it is urgent to find effective biomarkers for the prevention and treatment of ccRCC. The occurrence and development of ccRCC is closely related to metabolic disturbances. Palmitoyl protein thioesterase 2 (PPT2) is a lysosomal thioesterase which is highly associated with metabolism, and it has never been studied in ccRCC. In this study, we first revealed PPT2 is significantly downregulated in ccRCC, and its expression level is highly correlated with clinicopathological parameters of ccRCC patients. Our ROC curve analyses evaluated the potential of PPT2 as a novel diagnostic marker and prognostic factor. Functional experiment results showed overexpression of PPT2 represses the proliferation, migration and invasion of ccRCC cells in vitro. Mechanistic investigations demonstrated that overexpression of PPT2 represses the ccRCC progression by reducing epithelial-to-mesenchymal transition (EMT). In conclusion, PPT2 is downregulated in ccRCC. Decreased PPT2 expression may be considered as a novel diagnostic marker and prognostic factor and serve as a therapeutic target for ccRCC.
Collapse
Affiliation(s)
- ChangFei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - ZhiYong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - JingTao Peng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - XianGui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - WenJun Hu
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - ZeYuan Ru
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - KaiRu Xie
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - HongMei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - XiaoPing Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Abstract
In this issue of Chemistry & Biology, Cognetta et al. (2015) describe new pharmacological tools, including N-hydroxyhydantoin-containing carbamate inhibitors and an activity-based probe, for palmitoyl protein thioesterase 1 and alpha, beta-hydrolase domain-4 that expand the toolkit for the serine hydrolases.
Collapse
|
4
|
Kinarivala N, Trippier PC. Progress in the Development of Small Molecule Therapeutics for the Treatment of Neuronal Ceroid Lipofuscinoses (NCLs). J Med Chem 2015; 59:4415-27. [PMID: 26565590 DOI: 10.1021/acs.jmedchem.5b01020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited and incurable neurodegenerative disorders primarily afflicting the pediatric population. Current treatment regimens offer only symptomatic relief and do not target the underlying cause of the disease. Although the underlying pathophysiology that drives disease progression is unknown, several small molecules have been identified with diverse mechanisms of action that provide promise for the treatment of this devastating disease. This review aims to summarize the current cellular and animal models available for the identification of potential therapeutics and presents the current state of knowledge on small molecule compounds that demonstrate in vitro and/or in vivo efficacy across the NCLs with an emphasis on targets of action.
Collapse
Affiliation(s)
- Nihar Kinarivala
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas 79106, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas 79106, United States.,Center for Chemical Biology, Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| |
Collapse
|
5
|
Manna JD, Wepy JA, Hsu KL, Chang JW, Cravatt BF, Marnett LJ. Identification of the major prostaglandin glycerol ester hydrolase in human cancer cells. J Biol Chem 2014; 289:33741-53. [PMID: 25301951 DOI: 10.1074/jbc.m114.582353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prostaglandin glycerol esters (PG-Gs) are produced as a result of the oxygenation of the endocannabinoid, 2-arachidonoylglycerol, by cyclooxygenase 2. Understanding the role that PG-Gs play in a biological setting has been difficult because of their sensitivity to enzymatic hydrolysis. By comparing PG-G hydrolysis across human cancer cell lines to serine hydrolase activities determined by activity-based protein profiling, we identified lysophospholipase A2 (LYPLA2) as a major enzyme responsible for PG-G hydrolysis. The principal role played by LYPLA2 in PGE2-G hydrolysis was confirmed by siRNA knockdown. Purified recombinant LYPLA2 hydrolyzed PG-Gs in the following order of activity: PGE2-G > PGF2α-G > PGD2-G; LYPLA2 hydrolyzed 1- but not 2-arachidonoylglycerol or arachidonoylethanolamide. Chemical inhibition of LYPLA2 in the mouse macrophage-like cell line, RAW264.7, elicited an increase in PG-G production. Our data indicate that LYPLA2 serves as a major PG-G hydrolase in human cells. Perturbation of this enzyme should enable selective modulation of PG-Gs without alterations in endocannabinoids, thereby providing a means to decipher the unique functions of PG-Gs in biology and disease.
Collapse
Affiliation(s)
- Joseph D Manna
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - James A Wepy
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Ku-Lung Hsu
- the Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Jae Won Chang
- the Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Benjamin F Cravatt
- the Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Lawrence J Marnett
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| |
Collapse
|
6
|
Levin SW, Baker EH, Zein WM, Zhang Z, Quezado ZMN, Miao N, Gropman A, Griffin KJ, Bianconi S, Chandra G, Khan OI, Caruso RC, Liu A, Mukherjee AB. Oral cysteamine bitartrate and N-acetylcysteine for patients with infantile neuronal ceroid lipofuscinosis: a pilot study. Lancet Neurol 2014; 13:777-87. [PMID: 24997880 DOI: 10.1016/s1474-4422(14)70142-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Infantile neuronal ceroid lipofuscinosis is a devastating neurodegenerative lysosomal storage disease caused by mutations in the gene (CLN1 or PPT1) encoding palmitoyl-protein thioesterase-1 (PPT1). We have previously reported that phosphocysteamine and N-acetylcysteine mediate ceroid depletion in cultured cells from patients with this disease. We aimed to assess whether combination of oral cysteamine bitartrate and N-acetylcysteine is beneficial for patients with neuronal ceroid lipofuscinosis. METHODS Children between 6 months and 3 years of age with infantile neuronal ceroid lipofuscinosis with any two of the seven most lethal PPT1 mutations were eligible for inclusion in this pilot study. All patients were recruited from physician referrals. Patients received oral cysteamine bitartrate (60 mg/kg per day) and N-acetylcysteine (60 mg/kg per day) and were assessed every 6-12 months until they had an isoelectric electroencephalogram (EEG, attesting to a vegetative state) or were too ill to travel. Patients were also assessed by electroretinography, brain MRI and magnetic resonance spectroscopy (MRS), and electron microscopic analyses of leukocytes for granular osmiophilic deposits (GRODs). Children also underwent physical and neurodevelopmental assessments on the Denver scale. Outcomes were compared with the reported natural history of infantile neuronal ceroid lipofuscinosis and that of affected older siblings. This trial is registered with ClinicalTrials.gov, number NCT00028262. FINDINGS Between March 14, 2001, and June 30, 2012, we recruited ten children with infantile neuronal ceroid lipofuscinosis; one child was lost to follow-up after the first visit and nine patients (five girls and four boys) were followed up for 8 to 75 months. MRI showed abnormalities similar to those in previous reports; brain volume and N-acetyl aspartic acid (NAA) decreased steadily, but no published quantitative MRI or MRS studies were available for comparison. None of the children acquired new developmental skills, and their retinal function decreased progressively. Average time to isoelectric EEG (52 months, SD 13) was longer than reported previously (36 months). At the first follow-up visit, peripheral leukocytes in all nine patients showed virtually complete depletion of GRODs. Parents and physicians reported less irritability, improved alertness, or both in seven patients. No treatment-related adverse events occurred apart from mild gastrointestinal discomfort in two patients, which disappeared when liquid cysteamine bitartrate was replaced with capsules. INTERPRETATION Our findings suggest that combination therapy with cysteamine bitartrate and N-acetylcysteine is associated with delay of isoelectric EEG, depletion of GRODs, and subjective benefits as reported by parents and physicians. Our systematic and quantitative report of the natural history of patients with infantile neuronal ceroid lipofuscinosis provides a guide for future assessment of experimental therapies. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- Sondra W Levin
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA; Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Eva H Baker
- Department of Radiology and Imaging Sciences, NIH Clinical Center, NIH, Bethesda, MD, USA
| | | | - Zhongjian Zhang
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Zenaide M N Quezado
- Department of Anesthesiology, NIH Clinical Center, NIH, Bethesda, MD, USA; Department of Anesthesiology, Children's National Medical Center, Washington, DC, USA
| | - Ning Miao
- Department of Anesthesiology, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Andrea Gropman
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA; Department of Neurology, Children's National Medical Center, Washington, DC, USA
| | - Kurt J Griffin
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA; Sanford Research/University of South Dakota Medical Center, Sioux Falls, SD, USA
| | - Simona Bianconi
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Goutam Chandra
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Omar I Khan
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Rafael C Caruso
- National Eye Institute, NIH, Bethesda, MD, USA; Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Aiyi Liu
- Biostatistics and Bioinformatics Branch, Eunice Kennedy-Shriver NICHD, NIH, Bethesda, MD, USA
| | - Anil B Mukherjee
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA.
| |
Collapse
|
7
|
Wang R, Borazjani A, Matthews AT, Mangum LC, Edelmann MJ, Ross MK. Identification of palmitoyl protein thioesterase 1 in human THP1 monocytes and macrophages and characterization of unique biochemical activities for this enzyme. Biochemistry 2013; 52:7559-74. [PMID: 24083319 DOI: 10.1021/bi401138s] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The profiles of serine hydrolases in human and mouse macrophages are similar yet different. For instance, human macrophages express high levels of carboxylesterase 1 (CES1), whereas mouse macrophages have minimal amounts of the orthologous murine CES1. On the other hand, macrophages from both species exhibit limited expression of the canonical 2-arachidonoylglycerol (2-AG) hydrolytic enzyme, MAGL. Our previous study showed CES1 was partly responsible for the hydrolysis of 2-AG (50%) and prostaglandin glyceryl esters (PG-Gs) (80-95%) in human THP1 monocytes and macrophages. However, MAGL and other endocannabinoid hydrolases, FAAH, ABHD6, and ABHD12, did not have a role because of limited expression or no expression. Thus, another enzyme was hypothesized to be responsible for the remaining 2-AG hydrolysis activity following chemical inhibition and immunodepletion of CES1 (previous study) or CES1 gene knockdown (this study). Here we identified two candidate serine hydrolases in THP1 cell lysates by activity-based protein profiling (ABPP)-MUDPIT and Western blotting: cathepsin G and palmitoyl protein thioesterase 1 (PPT1). Both proteins exhibited electrophoretic properties similar to those of a serine hydrolase in THP1 cells detected by gel-based ABPP at 31-32 kDa; however, only PPT1 exhibited lipolytic activity and hydrolyzed 2-AG in vitro. Interestingly, PPT1 was strongly expressed in THP1 cells but was significantly less reactive than cathepsin G toward the activity-based probe, fluorophosphonate-biotin. KIAA1363, another serine hydrolase, was also identified in THP1 cells but did not have significant lipolytic activity. On the basis of chemoproteomic profiling, immunodepletion studies, and chemical inhibitor profiles, we estimated that PPT1 contributed 32-40% of 2-AG hydrolysis activity in the THP1 cell line. In addition, pure recombinant PPT1 catalyzed the hydrolysis of 2-AG, PGE2-G, and PGF2α-G, although the catalytic efficiency of hydrolysis of 2-AG by PPT1 was ~10-fold lower than that of CES1. PPT1 was also insensitive to several chemical inhibitors that potently inhibit CES1, such as organophosphate poisons and JZL184. This is the first report to document the expression of PPT1 in a human monocyte and macrophage cell line and to show PPT1 can hydrolyze the natural substrates 2-AG and PG-Gs. These findings suggest that PPT1 may participate in endocannabinoid metabolism within specific cellular contexts and highlights the functional redundancy often exhibited by enzymes involved in lipid metabolism.
Collapse
Affiliation(s)
- Ran Wang
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University , University, Mississippi 39762, United States
| | | | | | | | | | | |
Collapse
|
8
|
Hawkins-Salsbury JA, Cooper JD, Sands MS. Pathogenesis and therapies for infantile neuronal ceroid lipofuscinosis (infantile CLN1 disease). Biochim Biophys Acta Mol Basis Dis 2013; 1832:1906-9. [PMID: 23747979 DOI: 10.1016/j.bbadis.2013.05.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/17/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCL, Batten disease) are a group of inherited neurodegenerative diseases. Infantile neuronal ceroid lipofuscinosis (INCL, infantile Batten disease, or infantile CLN1 disease) is caused by a deficiency in the soluble lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1) and has the earliest onset and fastest progression of all the NCLs. Several therapeutic strategies including enzyme replacement, gene therapy, stem cell-mediated therapy, and small molecule drugs have resulted in minimal to modest improvements in the murine model of PPT1-deficiency. However, more recent studies using various combinations of these approaches have shown more promising results; in some instances more than doubling the lifespan of PPT1-deficient mice. These combination therapies that target different pathogenic mechanisms may offer the hope of treating this profoundly neurodegenerative disorder. Similar approaches may be useful when treating other forms of NCL caused by deficiencies in soluble lysosomal proteins. Different therapeutic targets will need to be identified and novel strategies developed in order to effectively treat forms of NCL caused by deficiencies in integral membrane proteins such as juvenile neuronal ceroid lipofuscinosis. Finally, the challenge with all of the NCLs will lie in early diagnosis, improving the efficacy of the treatments, and effectively translating them into the clinic. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
Affiliation(s)
- Jacqueline A Hawkins-Salsbury
- Washington University School of Medicine, Department of Internal Medicine, Box 8007, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
9
|
Substrate Reduction Therapy in Four Patients with Milder CLN1 Mutations and Juvenile-Onset Batten Disease Using Cysteamine Bitartrate. JIMD Rep 2013; 11:87-92. [PMID: 23588842 PMCID: PMC3755542 DOI: 10.1007/8904_2013_226] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/16/2013] [Accepted: 03/19/2013] [Indexed: 01/24/2023] Open
Abstract
Homozygous mutations in the gene CLN1 typically result in infantile-onset neuronal ceroid lipofuscinosis, a severe progressive neurological disorder with early death. The gene CLN1 encodes the enzyme palmitoyl protein thioesterase (PPT1), which is involved in lysosomal degradation of S-fatty acylated proteins. Cysteamine bitartrate (Cystagon) has been shown to reduce the storage material in PPT1 deficient cells. We report the results of a 7-year, open label, nonrandomized trial using Cystagon in four individuals with juvenile-onset NCL resulting from milder CLN1 mutations. The Cystagon doses were gradually increased with the goal of achieving 50 mg/kg bodyweight. The disease progression was monitored with parental questionnaires in four treated individuals and five untreated controls with the same CLN1 mutations. Mononuclear leukocytes from the treated individuals were examined for submicroscopic lysosomal storage inclusions. Cystagon treatment resulted in decreased storage material in peripheral leukocytes of the treated individuals. No severe side effects were noted. An allergic rash occurred in one of the individuals that required a dose reduction. The treatment did not result in overall attenuation of the disease progression. Slower progression of the disease was observed in two of the individuals when they were analyzed separately. However, slower progression in these individuals was also observed prior to starting the treatment. This effect may have been due to the higher Cystagon dose achieved in this group, but it could also have been coincidental. The apparent lack of toxicity of Cystagon may warrant further Cystagon trials in infantile NCL, possibly in conjunction with other developing therapies.
Collapse
|
10
|
van Gelder CM, Vollebregt AAM, Plug I, van der Ploeg AT, Reuser AJJ. Treatment options for lysosomal storage disorders: developing insights. Expert Opin Pharmacother 2012; 13:2281-99. [PMID: 23009070 DOI: 10.1517/14656566.2012.729039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysosomal storage disorders (LSDs) are clinically heterogeneous disorders that result primarily from lysosomal accumulation of macromolecules in various tissues. LSDs are always progressive, and often lead to severe symptoms and premature death. The identification of the underlying genetic and enzymatic defects has prompted the development of various treatment options. AREAS COVERED To describe the current treatment options for LSDs, the authors provide a focused overview of their pathophysiology. They discuss the current applications and challenges of enzyme-replacement therapy, stem-cell therapy, gene therapy, chaperone therapy and substrate-reduction therapy, as well as future therapeutic prospects. EXPERT OPINION Over recent decades, considerable progress has been made in the treatment of LSDs and in the outcome of patients. None of the current options are completely curative yet. They are complicated by the difficulty in efficiently targeting all affected tissues (particularly the central nervous system), in reaching sufficiently high enzyme levels in the target tissues, and by their high costs. The pathways leading from the genetic mutation to the clinical symptoms should be further elucidated, as they might prompt the development of new and ultimately curative therapies.
Collapse
Affiliation(s)
- Carin M van Gelder
- Erasmus MC University Medical Center, Center for Lysosomal and Metabolic Diseases, Department of Paediatrics, Dr. Molewaterplein 60, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Roberts MS, Macauley SL, Wong AM, Yilmas D, Hohm S, Cooper JD, Sands MS. Combination small molecule PPT1 mimetic and CNS-directed gene therapy as a treatment for infantile neuronal ceroid lipofuscinosis. J Inherit Metab Dis 2012; 35:847-57. [PMID: 22310926 PMCID: PMC4108163 DOI: 10.1007/s10545-011-9446-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/21/2011] [Accepted: 12/27/2011] [Indexed: 12/22/2022]
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL) is a profoundly neurodegenerative disease of children caused by a deficiency in the lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1). There is currently no effective therapy for this invariably fatal disease. To date, preclinical experiments using single treatments have resulted in incremental clinical improvements. Therefore, we determined the efficacy of CNS-directed AAV2/5-mediated gene therapy alone and in combination with the systemic delivery of the lysosomotropic PPT1 mimetic phosphocysteamine. Since CNS-directed gene therapy provides relatively high levels of PPT1 activity to specific regions of the brain, we hypothesized that phosphocysteamine would complement that activity in regions expressing subtherapeutic levels of the enzyme. Results indicate that CNS-directed gene therapy alone provided the greatest improvements in biochemical and histological measures as well as motor function and life span. Phosphocysteamine alone resulted in only minor improvements in motor function and no increase in lifespan. Interestingly, phosphocysteamine did not increase the biochemical and histological response when combined with AAV2/5-mediated gene therapy, but it did result in an additional improvement in motor function. These data suggest that a CNS-directed gene therapy approach provides significant clinical benefit, and the addition of the small molecule PPT1 mimetic can further increase that response.
Collapse
Affiliation(s)
- Marie S Roberts
- Department of Internal Medicine, Washington University School of Medicine, Campus Box 8007, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Tsikas D, Evans CE, Denton TT, Mitschke A, Gutzki FM, Pinto JT, Khomenko T, Szabo S, Cooper AJL. Stable isotope gas chromatography-tandem mass spectrometry determination of aminoethylcysteine ketimine decarboxylated dimer in biological samples. Anal Biochem 2012; 430:4-15. [PMID: 22858756 DOI: 10.1016/j.ab.2012.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 01/04/2023]
Abstract
Aminoethylcysteine ketimine decarboxylated dimer (AECK-DD; systematic name: 1,2-3,4-5,6-7,8-octahydro-1,8a-diaza-4,6-dithiafluoren-9(8aH)-one) is a previously described metabolite of cysteamine that has been reported to be present in mammalian brain, urine, plasma, and cells in culture and vegetables and to possess potent antioxidative properties. Here, we describe a stable isotope gas chromatography-tandem mass spectrometry (GC-MS/MS) method for specific and sensitive determination of AECK-DD in biological samples. (13)C(2)-labeled AECK-DD was synthesized and used as the internal standard. Derivatization was carried out by N-pentafluorobenzylation with pentafluorobenzyl bromide in acetonitrile. Quantification was performed by selected reaction monitoring of the mass transitions m/z 328 to 268 for AECK-DD and m/z 330 to 270 for [(13)C(2)]AECK-DD in the electron capture negative ion chemical ionization mode. The procedure was systematically validated for human plasma and urine samples. AECK-DD was not detectable in human plasma above approximately 4nM but was present in urine samples of healthy humans at a maximal concentration of 46nM. AECK-DD was detectable in rat brain at very low levels of approximately 8pmol/g wet weight. Higher levels of AECK-DD were detected in mouse brain (∼1nmol/g wet weight). Among nine dietary vegetables evaluated, only shallots were found to contain trace amounts of AECK-DD (∼6.8pmol/g fresh tissue).
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Carlucci F, Tabucchi A. Capillary electrophoresis in the evaluation of aminothiols in body fluids. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3347-57. [DOI: 10.1016/j.jchromb.2009.07.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 07/10/2009] [Accepted: 07/21/2009] [Indexed: 11/28/2022]
|
14
|
Kohlschütter A, Schulz A. Towards understanding the neuronal ceroid lipofuscinoses. Brain Dev 2009; 31:499-502. [PMID: 19195801 DOI: 10.1016/j.braindev.2008.12.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 12/10/2008] [Indexed: 10/21/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of genetic progressive brain diseases of children and young adults, characterized by a decline of mental and other capacities, epilepsy, and visual loss through retinal degeneration. The common pathology of NCLs is that of a storage disorder with accumulation of an autofluorescent material, ceroid lipofuscin, in combination with the degeneration of neuronal cells. At least 10 genetically distinct NCLs, designated CLN1 to CLN10, are presently known. Several NCLs exhibit a widely variable clinical picture, depending on the severity of the individual mutation. Some NCLs are not particularly rare. With increasing awareness of these disorders and better diagnostic techniques available, the number of recognized patients is rising. This overview briefly summarizes recent developments (or quotes corresponding literature) that are important to understand, diagnose, and manage patients suffering from one of these incurable disorders.
Collapse
|
15
|
|
16
|
Sulzer D, Mosharov E, Talloczy Z, Zucca FA, Simon JD, Zecca L. Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. J Neurochem 2008; 106:24-36. [PMID: 18384642 DOI: 10.1111/j.1471-4159.2008.05385.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The most striking morphologic change in neurons during normal aging is the accumulation of autophagic vacuoles filled with lipofuscin or neuromelanin pigments. These organelles are similar to those containing the ceroid pigments associated with neurologic disorders, particularly in diseases caused by lysosomal dysfunction. The pigments arise from incompletely degraded proteins and lipids principally derived from the breakdown of mitochondria or products of oxidized catecholamines. Pigmented autophagic vacuoles may eventually occupy a major portion of the neuronal cell body volume because of resistance of the pigments to lysosomal degradation and/or inadequate fusion of the vacuoles with lysosomes. Although the formation of autophagic vacuoles via macroautophagy protects the neuron from cellular stress, accumulation of pigmented autophagic vacuoles may eventually interfere with normal degradative pathways and endocytic/secretory tasks such as appropriate response to growth factors.
Collapse
Affiliation(s)
- David Sulzer
- Department of Neurology, Columbia University, New York, NY 10036, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Kyttälä A, Lahtinen U, Braulke T, Hofmann SL. Functional biology of the neuronal ceroid lipofuscinoses (NCL) proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1762:920-33. [PMID: 16839750 DOI: 10.1016/j.bbadis.2006.05.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/19/2006] [Accepted: 05/23/2006] [Indexed: 11/28/2022]
Abstract
Neuronal ceroid lipofucinoses (NCLs) are a group of severe neurodegenerative disorders characterized by accumulation of autofluorescent ceroid lipopigment in patients' cells. The different forms of NCL share many similar pathological features but result from mutations in different genes. The genes affected in NCLs encode both soluble and transmembrane proteins and are localized to ER or to the endosomes/lysosomes. Due to selective vulnerability of the central nervous system in the NCL disorders, the corresponding proteins are proposed to have important, tissue specific roles in the brain. The pathological similarities of the different NCLs have led not only to the grouping of these disorders but also to suggestion that the NCL proteins function in the same biological pathway. Despite extensive research, including the development of several model organisms for NCLs and establishment of high-throughput techniques, the precise biological function of many of the NCL proteins has remained elusive. The aim of this review is to summarize the current knowledge of the functions, or proposed functions, of the different NCL proteins.
Collapse
Affiliation(s)
- Aija Kyttälä
- National Public Health Institute, Department of Molecular Medicine, Biomedicum Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
18
|
Hobert JA, Dawson G. Neuronal ceroid lipofuscinoses therapeutic strategies: Past, present and future. Biochim Biophys Acta Mol Basis Dis 2006; 1762:945-53. [PMID: 17049436 DOI: 10.1016/j.bbadis.2006.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 08/02/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
Historically, many different therapies have been assessed for their ability to alter disease progression of the Neuronal Ceroid Lipofuscinoses (NCLs). While some treatments have lead to minor improvements, none have been able to arrest disease progression or improve the quality or duration of life. Presently, many new therapeutic strategies, such as chaperone therapy, enzyme replacement therapy, gene therapy, and stem cell therapy, are being investigated for their ability to alter the disease course of the NCLs. This review summarizes previous studied therapies, discusses those currently being evaluated and examines possibilities for future therapies for the treatment of patients with NCL.
Collapse
Affiliation(s)
- Judith A Hobert
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|