1
|
Muenzer J, Amartino H, Burton BK, Scarpa M, Tylki-Szymańska A, Audi J, Botha J, Fertek D, Merberg D, Natarajan M, Whiteman DAH, Giugliani R. Genotype-phenotype findings in patients with mucopolysaccharidosis II from the Hunter Outcome Survey. Mol Genet Metab 2024; 143:108576. [PMID: 39303318 DOI: 10.1016/j.ymgme.2024.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE This study investigated the relationship between mucopolysaccharidosis II (MPS II) iduronate-2-sulfatase gene (IDS) variants and phenotypic characteristics, particularly cognitive impairment, using data from the Hunter Outcome Survey (HOS) registry. METHODS HOS data for male patients (n = 650) aged ≥5 years at latest cognitive assessment with available genetic data were analyzed. Predefined genotype categories were used to classify IDS variants and report phenotypic characteristics by genotype. RESULTS At their latest cognitive assessment, 411 (63.2%) of 650 patients had cognitive impairment. Missense variants were the most common MPS II genotype, with about equal frequency for patients with and patients without cognitive impairment. Complete deletions/large rearrangements were associated with cognitive impairment. Cognitive impairment and behavioral issues were most common, and height and weight abnormalities most apparent, in patients with large IDS structural changes. Broadly, missense variants NM-000202.8:c.998C>T p.(Ser333Leu), NM-000202.8:c.1402C>T p.(Arg468Trp), NM-000202.8:c.1403G>A p.(Arg468Gln) and NM-000202.8:c.262C>T p.(Arg88Cys), and splice site variant NM-000202.8:c.257C>T p.(Pro86Leu), were associated with cognitive impairment, and variants NM-000202.8:c.253G>A p.(Ala85Thr), NM-000202.8:c.187 A>G p.(Asn63Asp), NM-000202.8:c.1037C>T p.(Ala346Val), NM-000202.8:c.182C>T p.(Ser61Phe) and NM-000202.8:c.1122C>T were not. CONCLUSION This analysis contributes toward the understanding of MPS II genotype-phenotype relationships, confirming and expanding on existing findings in a large, geographically diverse population.
Collapse
Affiliation(s)
- Joseph Muenzer
- University of North Carolina at Chapel Hill, 101 Manning Drive CB# 7487, Medical School Wing E Room 117, Chapel Hill, NC 27599-7487, USA.
| | - Hernan Amartino
- Servicio de Neurología Infantil, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina.
| | - Barbara K Burton
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA.
| | - Maurizio Scarpa
- Regional Coordinating Center for Rare Diseases, Udine University Hospital, P.le S. Maria della Misericordia 15, Udine 33100, Italy.
| | - Anna Tylki-Szymańska
- Department of Metabolic Diseases, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland.
| | - Jennifer Audi
- Takeda Pharmaceuticals International AG, Thurgauerstrasse 130, 8152 Glattpark (Opfikon), Zurich, Switzerland.
| | - Jaco Botha
- Takeda Pharmaceuticals International AG, Thurgauerstrasse 130, 8152 Glattpark (Opfikon), Zurich, Switzerland.
| | - Daniel Fertek
- Takeda Pharmaceuticals International AG, Thurgauerstrasse 130, 8152 Glattpark (Opfikon), Zurich, Switzerland.
| | - David Merberg
- Takeda Development Center Americas, Inc., 500 Kendall Street, Cambridge, MA 02141, USA.
| | - Madhusudan Natarajan
- Takeda Development Center Americas, Inc., 500 Kendall Street, Cambridge, MA 02141, USA.
| | - David A H Whiteman
- Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA 02421, USA.
| | - Roberto Giugliani
- Department of Genetics/UFRGS, Medical Genetics Service/HCPA, INAGEMP, DASA and Casa dos Raros, Porto Alegre, Brazil.
| |
Collapse
|
2
|
Zhong L, Gao X, Wang Y, Qiu W, Han L, Gu X, Zhang H. Clinical characteristics and genotypes of 201 patients with mucopolysaccharidosis type II in China: A retrospective, observational study. Clin Genet 2023; 103:655-662. [PMID: 36945845 DOI: 10.1111/cge.14329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal storage disease caused by a disease-associated variant in the IDS gene, which encodes iduronate 2-sulfatase (IDS). We aimed to characterize the clinical characteristics and genotypes of the largest cohort of Chinese patients with MPS II and so gain a deeper understanding of natural disease progression. Patients with confirmed MPS II and without treatment were included. The disease was classified as severe in patients with neurological impairment, and as attenuated in patients aged >6 years without neurological impairment. Of the 201 male patients, 78.1% had severe MPS II. Cognitive regression occurred before age 6 years in 94.3% of patients. Of 122 IDS variants identified, 37 were novel. Among the large gene alteration types identified, only the frequency of IDS-IDS2 recombination was significantly higher in severe versus attenuated MPS II (P = 0.032). Some identified point variants could inform the understanding of genotype-phenotype correlations. In conclusion, this study showed that classification of the disease as attenuated should only be made in patients aged >6 years. Our findings expand the understanding of the genotype-phenotype relationship, inform the diagnostic process, and provide an indication of the likely prognosis.
Collapse
Affiliation(s)
- Lin Zhong
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Xiaolan Gao
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Yu Wang
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Wenjuan Qiu
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Lianshu Han
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Xuefan Gu
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Huiwen Zhang
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| |
Collapse
|
3
|
Effect of Anti-Iduronate 2-Sulfatase Antibodies in Patients with Mucopolysaccharidosis Type II Treated with Enzyme Replacement Therapy. J Pediatr 2022; 248:100-107.e3. [PMID: 35568060 DOI: 10.1016/j.jpeds.2022.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/23/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To assess the relationship between anti-Iduronate 2-sulfatase (IDS) antibodies, IDS genotypes, phenotypes and their impact in patients with enzyme replacement therapy (ERT)-treated Mucopolysaccharidosis type II. STUDY DESIGN Dutch patients treated with ERT were analyzed in this observational cohort study. Antibody titers were determined by enzyme-linked immunosorbent assay. Neutralizing effects were measured in fibroblasts. Pharmacokinetic analysis of ERT was combined with immunoprecipitation. Urinary glycosaminoglycans were measured using mass spectrometry and dimethylmethylene blue. RESULTS Eight of 17 patients (47%) developed anti-IDS antibodies. Three patients with the severe, neuronopathic phenotype, two of whom did not express IDS protein, showed sustained antibodies for up to 10 years of ERT. Titers of 1:5120 or greater inhibited cellular IDS uptake and/or intracellular activity in vitro. In 1 patient who was neuronopathic with a titer of 1:20 480, pharmacokinetic analysis showed that all plasma recombinant IDS was antibody bound. This finding was not the case in 2 patients who were not neuronopathic with a titer of 1:1280 or less. Patients with sustained antibody titers showed increased urinary glycosaminoglycan levels compared with patients with nonsustained or no-low titers. CONCLUSIONS Patients with the neuronopathic form and lack of IDS protein expression were most at risk to develop sustained anti-IDS antibody titers, which inhibited IDS uptake and/or activity in vitro, and the efficacy of ERT in patients by lowering urinary glycosaminoglycan levels.
Collapse
|
4
|
Hong J, Cheng YS, Yang S, Swaroop M, Xu M, Beers J, Zou J, Huang W, Marugan JJ, Cai X, Zheng W. iPS-derived neural stem cells for disease modeling and evaluation of therapeutics for mucopolysaccharidosis type II. Exp Cell Res 2022; 412:113007. [PMID: 34990619 PMCID: PMC8810712 DOI: 10.1016/j.yexcr.2021.113007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 11/04/2022]
Abstract
Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a rare, lysosomal disorder caused by mutations in a gene encoding iduronate-2-sulfatase (IDS). IDS deficiency results in an accumulation of glycosaminoglycans (GAGs) and secondary accumulations of other lipids in lysosomes. Symptoms of MPS II include a variety of soft and hard tissue problems, developmental delay, and deterioration of multiple organs. Enzyme replacement therapy is an approved treatment for MPS II, but fails to improve neuronal symptoms. Cell-based neuronal models of MPS II disease are needed for compound screening and drug development for the treatment of the neuronal symptoms in MPS II. In this study, three induced pluripotent stem cell (iPSC) lines were generated from three MPS II patient-derived dermal fibroblast cell lines that were differentiated into neural stem cells and neurons. The disease phenotypes were measured using immunofluorescence staining and Nile red dye staining. In addition, the therapeutic effects of recombinant human IDS enzyme, delta-tocopherol (DT), and hydroxypropyl-beta-cyclodextrin (HPBCD) were determined in the MPS II disease cells. Finally, the neural stem cells from two of the MPS II iPSC lines exhibited typical disease features including a deficiency of IDS activity, abnormal glycosaminoglycan storage, and secondary lipid accumulation. Enzyme replacement therapy partially rescued the disease phenotypes in these cells. DT showed a significant effect in reducing the secondary accumulation of lipids in the MPS II neural stem cells. In contrast, HPBCD displayed limited or no effect in these cells. Our data indicate that these MPS II cells can be used as a cell-based disease model to study disease pathogenesis, evaluate drug efficacy, and screen compounds for drug development.
Collapse
Affiliation(s)
- Junjie Hong
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA; Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yu-Shan Cheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Shu Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Manju Swaroop
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jeanette Beers
- iPSC Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jizhong Zou
- iPSC Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wenwei Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Juan J Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Xiujun Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Matsuhisa K, Imaizumi K. Loss of Function of Mutant IDS Due to Endoplasmic Reticulum-Associated Degradation: New Therapeutic Opportunities for Mucopolysaccharidosis Type II. Int J Mol Sci 2021; 22:ijms222212227. [PMID: 34830113 PMCID: PMC8618218 DOI: 10.3390/ijms222212227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II) results from the dysfunction of a lysosomal enzyme, iduronate-2-sulfatase (IDS). Dysfunction of IDS triggers the lysosomal accumulation of its substrates, glycosaminoglycans, leading to mental retardation and systemic symptoms including skeletal deformities and valvular heart disease. Most patients with severe types of MPS II die before the age of 20. The administration of recombinant IDS and transplantation of hematopoietic stem cells are performed as therapies for MPS II. However, these therapies either cannot improve functions of the central nervous system or cause severe side effects, respectively. To date, 729 pathogenetic variants in the IDS gene have been reported. Most of these potentially cause misfolding of the encoded IDS protein. The misfolded IDS mutants accumulate in the endoplasmic reticulum (ER), followed by degradation via ER-associated degradation (ERAD). Inhibition of the ERAD pathway or refolding of IDS mutants by a molecular chaperone enables recovery of the lysosomal localization and enzyme activity of IDS mutants. In this review, we explain the IDS structure and mechanism of activation, and current findings about the mechanism of degradation-dependent loss of function caused by pathogenetic IDS mutation. We also provide a potential therapeutic approach for MPS II based on this loss-of-function mechanism.
Collapse
Affiliation(s)
- Koji Matsuhisa
- Correspondence: (K.M.); (K.I.); Tel.: +81-82-257-5131 (K.M.); +81-82-257-5130 (K.I.)
| | - Kazunori Imaizumi
- Correspondence: (K.M.); (K.I.); Tel.: +81-82-257-5131 (K.M.); +81-82-257-5130 (K.I.)
| |
Collapse
|
6
|
Fuller M, Ketteridge D. Functional assessment of the genetic findings indicating mucopolysaccharidosis type II in the prenatal setting. JIMD Rep 2021; 60:10-14. [PMID: 34258136 PMCID: PMC8260476 DOI: 10.1002/jmd2.12214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 11/20/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II) is a multi-systemic disorder arising due to pathogenic variants in the gene located on chromosome Xq28 encoding the lysosomal enzyme, iduronate 2-sulfatase (IDS). The broad clinical heterogeneity of MPS II can be partly ascribed to the high level of molecular diversity in the gene locus with the majority of variants localised within one family. Here, we describe a case of fetal hepatomegaly that was causatively investigated for 151 genes associated with fetal hydrops and lysosomal diseases. Sequence analysis identified a novel hemizygous variant, pAsp532Gly, in exon 9 of the IDS gene. Determination of IDS activity in cultured amniotic fluid cells returned 8% of normal activity and analysis of a second sulfatase was normal, the latter virtually excluding multiple sulfatase deficiency. Together, these data supported a diagnosis of MPS II in the fetus. Additional measurement of a signature disaccharide in the amniotic fluid was normal, conflicting with enzymology indications. The baby was unremarkable at birth and 3 years later shows no clinical suspicion of MPS II, normal urinary disaccharide concentrations, and reduced IDS activity in leukocytes. His 5-year-old brother was subsequently shown to carry the same pAsp532Gly variant, with normal urinary disaccharide concentrations, reduced leukocyte IDS activity and normal phenotype. This case highlights the importance of thorough biochemical investigations, clinical and family correlation in determining the significance of genetic variants in IDS.
Collapse
Affiliation(s)
- Maria Fuller
- Genetics and Molecular Pathology, SA PathologyWomen's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - David Ketteridge
- Metabolic UnitWomen's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| |
Collapse
|
7
|
Therapy-type related long-term outcomes in mucopolysaccaridosis type II (Hunter syndrome) - Case series. Mol Genet Metab Rep 2021; 28:100779. [PMID: 34258227 PMCID: PMC8251508 DOI: 10.1016/j.ymgmr.2021.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is a rare, X-linked recessive multisystem lysosomal storage disease due to iduronate-2-sulfatase enzyme deficiency. We presented three unrelated Slovenian patients with the severe form of MPS II that received three different management approaches: natural course of the disease without received specific treatment, enzyme replacement therapy (ERT), and hematopoietic stem cell transplantation (HSCT). The decision on the management depended on disease severity, degree of cognitive impairment, and parent's informed decision. The current benefits of MPS II treatments are limited. The lifelong costly intravenous ERT brings significant benefits but the patients with severe phenotypes and neurological involvement progress to cognitive decline and disability regardless of ERT, as demonstrated in published reviews and our case series. The patient after HSCT was the only one of the three cases reported to show a slowly progressing cognitive development. The type of information from the case series is insufficient for generalized conclusions, but with advanced myeloablative conditioning, HSCT may be a preferred treatment option in early diagnosed MPS II patients with the severe form of the disease and low disease burden at the time of presentation.
Collapse
|
8
|
D’Avanzo F, Rigon L, Zanetti A, Tomanin R. Mucopolysaccharidosis Type II: One Hundred Years of Research, Diagnosis, and Treatment. Int J Mol Sci 2020; 21:E1258. [PMID: 32070051 PMCID: PMC7072947 DOI: 10.3390/ijms21041258] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) was first described by Dr. Charles Hunter in 1917. Since then, about one hundred years have passed and Hunter syndrome, although at first neglected for a few decades and afterwards mistaken for a long time for the similar disorder Hurler syndrome, has been clearly distinguished as a specific disease since 1978, when the distinct genetic causes of the two disorders were finally identified. MPS II is a rare genetic disorder, recently described as presenting an incidence rate ranging from 0.38 to 1.09 per 100,000 live male births, and it is the only X-linked-inherited mucopolysaccharidosis. The complex disease is due to a deficit of the lysosomal hydrolase iduronate 2-sulphatase, which is a crucial enzyme in the stepwise degradation of heparan and dermatan sulphate. This contributes to a heavy clinical phenotype involving most organ-systems, including the brain, in at least two-thirds of cases. In this review, we will summarize the history of the disease during this century through clinical and laboratory evaluations that allowed its definition, its correct diagnosis, a partial comprehension of its pathogenesis, and the proposition of therapeutic protocols. We will also highlight the main open issues related to the possible inclusion of MPS II in newborn screenings, the comprehension of brain pathogenesis, and treatment of the neurological compartment.
Collapse
Affiliation(s)
- Francesca D’Avanzo
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (F.D.); (A.Z.)
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
| | - Laura Rigon
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
- Molecular Developmental Biology, Life & Medical Science Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Alessandra Zanetti
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (F.D.); (A.Z.)
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (F.D.); (A.Z.)
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
| |
Collapse
|
9
|
Mohamed S, He QQ, Singh AA, Ferro V. Mucopolysaccharidosis type II (Hunter syndrome): Clinical and biochemical aspects of the disease and approaches to its diagnosis and treatment. Adv Carbohydr Chem Biochem 2019; 77:71-117. [PMID: 33004112 DOI: 10.1016/bs.accb.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is a rare X-linked lysosomal storage disease caused by mutations of the gene encoding the lysosomal enzyme iduronate-2-sulfatase (IDS), the role of which is to hydrolytically remove O-linked sulfates from the two glycosaminoglycans (GAGs) heparan sulfate (HS) and dermatan sulfate (DS). HS and DS are linear, heterogeneous polysaccharides composed of repeating disaccharide subunits of l-iduronic acid (IdoA) or d-glucuronic acid, (1→4)-linked to d-glucosamine (for HS), or (1→3)-linked to 2-acetamido-2-deoxy-d-galactose (N-acetyl-d-galactosamine) (for DS). In healthy cells, IDS cleaves the sulfo group found at the C-2 position of terminal non-reducing end IdoA residues in HS and DS. The loss of IDS enzyme activity leads to progressive lysosomal storage of HS and DS in tissues and organs such as the brain, liver, spleen, heart, bone, joints and airways. Consequently, this leads to the phenotypic features characteristic of the disease. This review provides an overview of the disease profile and clinical manifestation, with a particular focus on the biochemical basis of the disease and chemical approaches to the development of new diagnostics, as well as discussing current treatment options and emerging new therapies.
Collapse
Affiliation(s)
- Shifaza Mohamed
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Qi Qi He
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Arti A Singh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
Osaki Y, Matsuhisa K, Che W, Kaneko M, Asada R, Masaki T, Imaizumi K, Saito A. Calnexin promotes the folding of mutant iduronate 2-sulfatase related to mucopolysaccharidosis type II. Biochem Biophys Res Commun 2019; 514:217-223. [PMID: 31029429 DOI: 10.1016/j.bbrc.2019.04.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 01/01/2023]
Abstract
Mucopolysaccharidosis type II (MPS II) is one of the most common mucopolysaccharidoses, which is caused by mutation of the gene encoding iduronate 2-sulfatase (IDS). The loss of function of IDS leads to the accumulation of heparan sulfate and dermatan sulfate of glycosaminoglycans throughout the body, resulting in skeletal deformities, mental retardation, rigid joints, and thick skin. Recently, enzyme replacement therapy has become a common strategy for treating this condition. However, its effectiveness on the central nervous system (CNS) is limited because intravenously administered recombinant IDS (rIDS) cannot pass through the blood brain barrier. Therefore, several methods for delivering rIDS to the CNS, using anti-human transferrin receptor antibody and adeno-associated virus 9, have been explored. To investigate additional approaches for treatment, more cognition about the intracellular dynamics of mutant IDS is essential. We have already found that mutant IDS accumulated in the endoplasmic reticulum (ER) and was degraded by ER-associated degradation (ERAD). Although the dynamics of degradation of mutant IDS was revealed, the molecular mechanism related to the folding of mutant IDS in the ER remained unclear. In this research, we confirmed that mutant IDS retained in the ER would be folded by binding with calnexin (CNX). Thus, knockdown of CNX reduced the translocation of mutant IDS from ER to lysosome and its enzyme activity, indicating that the correct folding of this protein via interaction with CNX ensures its functional activity. These findings reveal the possibility that modifying the interaction of mutant IDS and CNX could contribute to alternative therapeutic strategies for MPS II.
Collapse
Affiliation(s)
- Yosuke Osaki
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Department of Stress Protein Processing, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Koji Matsuhisa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Wang Che
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Masayuki Kaneko
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Rie Asada
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Atsushi Saito
- Department of Stress Protein Processing, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
11
|
Genetic analysis of 63 Chinese patients with mucopolysaccharidosis type II: Functional characterization of seven novel IDS variants. Clin Chim Acta 2019; 491:114-120. [DOI: 10.1016/j.cca.2019.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/20/2022]
|
12
|
Shutdown of ER-associated degradation pathway rescues functions of mutant iduronate 2-sulfatase linked to mucopolysaccharidosis type II. Cell Death Dis 2018; 9:808. [PMID: 30042467 PMCID: PMC6057917 DOI: 10.1038/s41419-018-0871-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 01/04/2023]
Abstract
Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a devastating progressive disease caused by mutations in the iduronate 2-sulfatase (IDS) gene. IDS is one of the sulfatase enzymes required for lysosomal degradation of glycosaminoglycans. Mutant proteins linked to diseases are often prone to misfolding. These misfolded proteins accumulate in the endoplasmic reticulum (ER) and are degraded by the ubiquitin–proteasome pathway (ER-associated degradation (ERAD)). The decreased enzyme activities of IDS mutants may be due to accelerated degradation by ERAD. However, intracellular dynamics including degradation of IDS mutants is unexplored. In this report, we examined biochemical and biological characteristics of wild-type (WT) IDS and IDS mutants expressed in HeLa cells. IDS was shown to be glycosylated in the ER and Golgi apparatus and proteolytically cleaved to generate the mature forms in the Golgi apparatus. The mature WT IDS was translocated to the lysosome. In contrast, all IDS mutants we examined were found to accumulate in the ER and could not efficiently translocate to the lysosome. Accumulated IDS mutants in the ER were ubiquitinated by ERAD-related ubiquitin E3 ligase HRD1 followed by degradation via ERAD. Suppressed degradation of ‘attenuated’ mutant A85T IDS (the late-onset form of MPS II) by inhibiting ERAD components improved translocation to the lysosome and its activities. Our novel findings provide alternative targets to current principal therapies for MPS II. These perspectives provide a potenti al framework to develop fundamental therapeutic strategies and agents.
Collapse
|
13
|
Ou L, Przybilla MJ, Whitley CB. SAAMP 2.0: An algorithm to predict genotype-phenotype correlation of lysosomal storage diseases. Clin Genet 2018; 93:1008-1014. [PMID: 29396849 DOI: 10.1111/cge.13226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 01/28/2023]
Abstract
Lysosomal storage diseases (LSDs) are a group of genetic disorders, resulting from deficiencies of lysosomal enzyme. Genotype-phenotype correlation is essential for timely and proper treatment allocation. Recently, by integrating prediction outcomes of 7 bioinformatics tools, we developed a SAAMP algorithm to predict the impact of individual amino-acid substitution. To optimize this approach, we evaluated the performance of these bioinformatics tools in a broad array of genes. PolyPhen and PROVEAN had the best performances, while SNP&GOs, PANTHER and I-Mutant had the worst performances. Therefore, SAAMP 2.0 was developed by excluding 3 tools with worst performance, yielding a sensitivity of 94% and a specificity of 90%. To generalize the guideline to proteins without known structures, we built the three-dimensional model of iduronate-2-sulfatase by homology modeling. Further, we investigated the phenotype severity of known disease-causing mutations of the GLB1 gene, which lead to 2 LSDs (GM1 gangliosidosis and Morquio disease type B). Based on the previous literature and structural analysis, we associated these mutations with disease subtypes and proposed a theory to explain the complicated genotype-phenotype correlation. Collectively, an updated guideline for phenotype prediction with SAAMP 2.0 was proposed, which will provide essential information for early diagnosis and proper treatment allocation, and they may be generalized to many monogenic diseases.
Collapse
Affiliation(s)
- L Ou
- Department of Pediatrics, Gene Therapy Center, Minneapolis, Minnesota, USA
| | - M J Przybilla
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - C B Whitley
- Department of Pediatrics, Gene Therapy Center, Minneapolis, Minnesota, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
14
|
Hoshina H, Shimada Y, Higuchi T, Kobayashi H, Ida H, Ohashi T. Chaperone effect of sulfated disaccharide from heparin on mutant iduronate-2-sulfatase in mucopolysaccharidosis type II. Mol Genet Metab 2018; 123:118-122. [PMID: 29289480 DOI: 10.1016/j.ymgme.2017.12.428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/01/2017] [Accepted: 12/09/2017] [Indexed: 11/29/2022]
Abstract
Small molecules called pharmacological chaperones have been shown to improve the stability, intracellular localization, and function of mutated enzymes in several lysosomal storage diseases, and proposed as promising therapeutic agents for them. However, a chaperone compound for mucopolysaccharidosis type II (MPS II), which is an X-linked lysosomal storage disorder characterized by a deficiency of iduronate-2-sulfatase (IDS) and the accumulation of glycosaminoglycans (GAGs), has still not been developed. Here we focused on the Δ-unsaturated 2-sulfouronic acid-N-sulfoglucosamine (D2S0), which is a sulfated disaccharide derived from heparin, as a candidate compound for a pharmacological chaperone for MPS II, and analyzed the chaperone effect of the saccharide on IDS by using recombinant protein and cells expressing mutated enzyme. When D2S0 was incubated with recombinant human IDS (rhIDS) in vitro, the disaccharide attenuated the thermal degeneration of the enzyme. This effect of D2S0 on the thermal degeneration of rhIDS was enhanced in a dose-dependent manner. D2S0 also increased the residual activity of mutant IDS in patient fibroblasts. Furthermore, D2S0 improved the enzyme activity of IDS mutants derived from six out of seven different mutations in HEK293T cells transiently expressing them. These results indicate that D2S0 is a potential pharmacological chaperone for MPS II.
Collapse
Affiliation(s)
- Hiroo Hoshina
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yohta Shimada
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Takashi Higuchi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hiroyuki Ida
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
15
|
Vollebregt AAM, Hoogeveen-Westerveld M, Kroos MA, Oussoren E, Plug I, Ruijter GJ, van der Ploeg AT, Pijnappel WWMP. Genotype-phenotype relationship in mucopolysaccharidosis II: predictive power of IDS variants for the neuronopathic phenotype. Dev Med Child Neurol 2017; 59:1063-1070. [PMID: 28543354 DOI: 10.1111/dmcn.13467] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2017] [Indexed: 01/27/2023]
Abstract
AIM Mucopolysaccharidosis type II (MPS II) is caused by variants in the iduronate-2-sulphatase gene (IDS). Patients can be either neuronopathic with intellectual disability, or non-neuronopathic. Few studies have reported on the IDS genotype-phenotype relationship and on the molecular effects involved. We addressed this in a cohort study of Dutch patients with MPS II. METHOD Intellectual performance was assessed for school performance, behaviour, and intelligence. Urinary glycosaminoglycans were quantified by mass spectrometry. IDS variants were analysed in expression studies for enzymatic activity and processing by immunoblotting. RESULTS Six patients had a non-neuronopathic phenotype and 11 a neuronopathic phenotype, three of whom had epilepsy. Total deletion of IDS invariably resulted in the neuronopathic phenotype. Phenotypes of seven known IDS variants were consistent with the literature. Expression studies of nine variants were novel and showed impaired IDS enzymatic activity, aberrant intracellular processing, and elevated urinary excretion of heparan sulphate and dermatan sulphate irrespective of the MPS II phenotype. INTERPRETATION We speculate that very low or cell-type-specific IDS residual activity is sufficient to prevent the neuronal phenotype of MPS II. Whereas the molecular effects of IDS variants do not distinguish between MPS II phenotypes, the IDS genotype is a strong predictor.
Collapse
Affiliation(s)
- Audrey A M Vollebregt
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Metabolic Diseases and Genetics, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marianne Hoogeveen-Westerveld
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands.,Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marian A Kroos
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands.,Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Esmee Oussoren
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Metabolic Diseases and Genetics, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Iris Plug
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Metabolic Diseases and Genetics, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - George J Ruijter
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Metabolic Diseases and Genetics, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - W W M Pim Pijnappel
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Metabolic Diseases and Genetics, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands.,Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Insights into Hunter syndrome from the structure of iduronate-2-sulfatase. Nat Commun 2017; 8:15786. [PMID: 28593992 PMCID: PMC5472762 DOI: 10.1038/ncomms15786] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/27/2017] [Indexed: 01/02/2023] Open
Abstract
Hunter syndrome is a rare but devastating childhood disease caused by mutations in the IDS gene encoding iduronate-2-sulfatase, a crucial enzyme in the lysosomal degradation pathway of dermatan sulfate and heparan sulfate. These complex glycosaminoglycans have important roles in cell adhesion, growth, proliferation and repair, and their degradation and recycling in the lysosome is essential for cellular maintenance. A variety of disease-causing mutations have been identified throughout the IDS gene. However, understanding the molecular basis of the disease has been impaired by the lack of structural data. Here, we present the crystal structure of human IDS with a covalently bound sulfate ion in the active site. This structure provides essential insight into multiple mechanisms by which pathogenic mutations interfere with enzyme function, and a compelling explanation for severe Hunter syndrome phenotypes. Understanding the structural consequences of disease-associated mutations will facilitate the identification of patients that may benefit from specific tailored therapies. Hunter syndrome is a lysosomal storage disease caused by mutations in the enzyme iduronate-2-sulfatase (IDS). Here, the authors present the IDS crystal structure and give mechanistic insights into mutations that cause Hunter syndrome.
Collapse
|
17
|
Saito S, Ohno K, Okuyama T, Sakuraba H. Structural Basis of Mucopolysaccharidosis Type II and Construction of a Database of Mutant Iduronate 2-Sulfatases. PLoS One 2016; 11:e0163964. [PMID: 27695081 PMCID: PMC5047593 DOI: 10.1371/journal.pone.0163964] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/16/2016] [Indexed: 11/20/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an X-linked genetic disorder caused by a deficiency of iduronate 2-sulfatase (IDS), and missense mutations comprising about 30% of the mutations responsible for MPS II result in heterogeneous phenotypes ranging from the severe to the attenuated form. To elucidate the basis of MPS II from the structural viewpoint, we built structural models of the wild type and mutant IDS proteins resulting from 131 missense mutations (phenotypes: 67 severe and 64 attenuated), and analyzed the influence of each amino acid substitution on the IDS structure by calculating the accessible surface area, the number of atoms affected and the root-mean-square distance. The results revealed that the amino acid substitutions causing MPS II were widely spread over the enzyme molecule and that the structural changes of the enzyme protein were generally larger in the severe group than in the attenuated one. Coloring of the atoms influenced by different amino acid substitutions at the same residue showed that the structural changes influenced the disease progression. Based on these data, we constructed a database of IDS mutations as to the structures of mutant IDS proteins.
Collapse
Affiliation(s)
- Seiji Saito
- Department of Medical Management and Informatics, Hokkaido Information University, 59–2 Nishinopporo, Ebetsu, Hokkaido 069–8585, Japan
| | - Kazuki Ohno
- Catalyst Inc., 1-5-6 Kudan-minami, Chiyoda-ku, Tokyo 102–0074, Japan
- Education Academy of Computational Life Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama Meguro-ku, Tokyo 152–8552, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157–8535, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204–8588, Japan
- * E-mail:
| |
Collapse
|
18
|
Hinderer C, Katz N, Louboutin JP, Bell P, Yu H, Nayal M, Kozarsky K, O'Brien WT, Goode T, Wilson JM. Delivery of an Adeno-Associated Virus Vector into Cerebrospinal Fluid Attenuates Central Nervous System Disease in Mucopolysaccharidosis Type II Mice. Hum Gene Ther 2016; 27:906-915. [PMID: 27510804 DOI: 10.1089/hum.2016.101] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mucopolysaccharidosis type II (MPS II) is a rare X-linked genetic disorder caused by deficiency of the lysosomal enzyme iduronate-2-sulfatase (IDS), leading to impaired catabolism of ubiquitous polysaccharides and abnormal accumulation of these undegraded substrates in the lysosome. Like many lysosomal storage diseases, MPS II is characterized by both somatic and central nervous system (CNS) involvement. Intravenous enzyme replacement therapy can improve somatic manifestations of MPS II, but systemic IDS does not cross the blood-brain barrier and therefore cannot address CNS disease. In this study, an adeno-associated virus serotype 9 vector carrying the IDS gene was injected into the cerebrospinal fluid (CSF) of IDS deficient mice, a model of MPS II. Treated mice exhibited dose-dependent IDS expression and resolution of brain storage lesions, as well as improvement in long-term memory in a novel object recognition test. These findings suggest that delivery of adeno-associated virus vectors into CSF could serve as a platform for efficient, long-term enzyme delivery to the CNS, potentially addressing this critical unmet need for patients with MPS II and many related lysosomal enzyme deficiencies.
Collapse
Affiliation(s)
- Christian Hinderer
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Nathan Katz
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Jean-Pierre Louboutin
- 2 Section of Anatomy, Department of Basic Medical Sciences, University of West Indies , Kingston, Jamaica
| | - Peter Bell
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Hongwei Yu
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Mohamad Nayal
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | - W Timothy O'Brien
- 4 Department of Neuroscience, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Tamara Goode
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - James M Wilson
- 1 Gene Therapy Program, Department of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Abstract
BACKGROUND Mucopolysaccharidosis type II (MPSII), also known as Hunter syndrome, is an X-linked disorder caused by mutations in the iduronate 2 sulfatase (IDS) gene. This enzyme catalyzes the initial step in the catabolism of heparan sulfate and dermatan sulfate; thus, its deficiency leads to the accumulation of these glycosaminoglycans. MPS II has significant allelic heterogeneity, making the establishment of genotype-phenotype correlations difficult. This study assessed clinical features in combination with deep genotyping of a group of Colombian patients with MPS II and attempted to establish a degree of genotype-phenotype correlation by employing bioinformatic tools. METHODS Eighteen patients were included in this study, 11% of whom were non-neuronopathic, and the other 89% were neuronopathic. Samples were all analyzed using three molecular methodologies: MLPA, direct exon sequencing, and RFLP analysis. RESULTS A total of 13 mutations were identified, 6 of which were novel (c.548_564dup16, c.477insT, c.595_607del12, c. 549_562del13, c.182delC, and a complete deletion of exon 7). The frequency of common mutations (R468Q, Q465X, K347Q, K236N, S71N, R88H, and a conversion phenomenon) was 53.85%. The S71N mutation was frequent among the attenuated phenotype, while private frameshift mutations and rearrangements were seen in patients with severe phenotypes. Molecular docking was performed on the wild-type and mutant IDS proteins, which revealed changes in the enzyme-substrate interaction for the mutant IDS. CONCLUSION The frequency of novel mutations (46.15%) is similar to what has been reported elsewhere. The use of bioinformatic tools showed differences in enzyme-substrate interactions. Studies with larger groups of patients are needed.
Collapse
|
20
|
Chistiakov DA, Kuzenkova LM, Savost'anov KV, Gevorkyan AK, Pushkov AA, Nikitin AG, Vashakmadze ND, Zhurkova NV, Podkletnova TV, Namazova-Baranova LS, Baranov AA. Genetic analysis of 17 children with Hunter syndrome: identification and functional characterization of four novel mutations in the iduronate-2-sulfatase gene. J Genet Genomics 2014; 41:197-203. [PMID: 24780617 DOI: 10.1016/j.jgg.2014.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
Abstract
Mucopolysaccharidosis type II (MPS II) is a rare X-linked disorder caused by alterations in the iduronate-2-sulfatase (IDS) gene. In this study, IDS activity in peripheral mononuclear blood monocytes (PMBCs) was measured with a fluorimetric enzyme assay. Urinary glycosaminoglycans (GAGs) were quantified using a colorimetric assay. All IDS exons and intronic flanks were bidirectionally sequenced. A total of 15 mutations (all exonic region) were found in 17 MPS II patients. In this cohort of MPS II patients, all alterations in the IDS gene were caused by point nucleotide substitutions or small deletions. Mutations p.Arg88His and p.Arg172* occurred twice. All mutations were inherited except for p.Gly489Alafs*7, a germline mutation. We found four new mutations (p.Ser142Phe, p.Arg233Gly, p.Glu430*, and p.Ile360Tyrfs*31). In Epstein-Barr virus (EBV)-immortalized PMBCs derived from the MPS II patients, no IDS protein was detected in case of the p.Ser142Phe and p.Ile360Tyrfs*31 mutants. For p.Arg233Gly and p.Glu430*, we observed a residual expression of IDS. The p.Arg233Gly and p.Glu430* mutants had a residuary enzymatic activity that was lowered by 14.3 and 76-fold, respectively, compared with healthy controls. This observation may help explain the mild disease phenotype in MPS II patients who had these two mutations whereas the p.Ser142Phe and p.Ile360Tyrfs*31 mutations caused the severe disease manifestation.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical University, Moscow 117997, Russia; Department of Molecular and Genetic Diagnostics, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, Moscow 119991, Russia.
| | - Lyudmila M Kuzenkova
- Department of Psychoneurology and Psychosomatic Pathology, Institute of Pediatrics, Research Center for Children's Health, Moscow 119991, Russia
| | - Kirill V Savost'anov
- Department of Molecular and Genetic Diagnostics, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, Moscow 119991, Russia
| | - Anait K Gevorkyan
- Institute of Preventive Pediatrics and Rehabilitation, Research Center for Children's Health, Moscow 119991, Russia
| | - Alexander A Pushkov
- Department of Molecular and Genetic Diagnostics, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, Moscow 119991, Russia
| | - Alexey G Nikitin
- Department of Molecular and Genetic Diagnostics, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, Moscow 119991, Russia
| | - Nato D Vashakmadze
- Department of Psychoneurology and Psychosomatic Pathology, Institute of Pediatrics, Research Center for Children's Health, Moscow 119991, Russia
| | - Natalia V Zhurkova
- Department of Molecular and Genetic Diagnostics, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, Moscow 119991, Russia
| | - Tatiana V Podkletnova
- Department of Psychoneurology and Psychosomatic Pathology, Institute of Pediatrics, Research Center for Children's Health, Moscow 119991, Russia
| | - Leila S Namazova-Baranova
- Institute of Preventive Pediatrics and Rehabilitation, Research Center for Children's Health, Moscow 119991, Russia
| | | |
Collapse
|
21
|
Galvis J, González J, Torrente D, Velasco H, Barreto GE. In silico Analysis of Iduronate 2 Sulfatase Mutations in Colombian Patients with Hunter Syndrome (MPSII). ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-01568-2_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
22
|
Decreasing activity and altered protein processing of human iduronate-2-sulfatase mutations demonstrated by expression in COS7 cells. Biochem Genet 2012; 50:990-7. [PMID: 22990955 DOI: 10.1007/s10528-012-9538-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 06/13/2012] [Indexed: 10/27/2022]
|
23
|
Lee OJ, Kim SJ, Sohn YB, Park HD, Lee SY, Kim CH, Ko AR, Yook YJ, Lee SJ, Park SW, Kim SH, Cho SY, Kwon EK, Han SJ, Jin DK. A study of the relationship between clinical phenotypes and plasma iduronate-2-sulfatase enzyme activities in Hunter syndrome patients. KOREAN JOURNAL OF PEDIATRICS 2012; 55:88-92. [PMID: 22474463 PMCID: PMC3315624 DOI: 10.3345/kjp.2012.55.3.88] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/11/2011] [Accepted: 11/25/2011] [Indexed: 11/27/2022]
Abstract
Purpose Mucopolysaccharidosis type II (MPS II or Hunter syndrome) is a rare lysosomal storage disorder caused by iduronate-2-sulfatase (IDS) deficiency. MPS II causes a wide phenotypic spectrum of symptoms ranging from mild to severe. IDS activity, which is measured in leukocyte pellets or fibroblasts, was reported to be related to clinical phenotype by Sukegawa-Hayasaka et al. Measurement of residual plasma IDS activity using a fluorometric assay is simpler than conventional measurements using skin fibroblasts or peripheral blood mononuclear cells. This is the first study to describe the relationship between plasma IDS activity and clinical phenotype of MPS II. Methods We hypothesized that residual plasma IDS activity is related to clinical phenotype. We classified 43 Hunter syndrome patients as having attenuated or severe disease types based on clinical characteristics, especially intellectual and cognitive status. There were 27 patients with the severe type and 16 with the attenuated type. Plasma IDS activity was measured by a fluorometric enzyme assay using 4-methylumbelliferyl-α-iduronate 2-sulphate. Results Plasma IDS activity in patients with the severe type was significantly lower than that in patients with the attenuated type (P=0.006). The optimal cut-off value of plasma IDS activity for distinguishing the severe type from the attenuated type was 0.63 nmol·4 hr-1·mL-1. This value had 88.2% sensitivity, 65.4% specificity, and an area under receiver-operator characteristics (ROC) curve of 0.768 (ROC curve analysis; P=0.003). Conclusion These results show that the mild phenotype may be related to residual lysosomal enzyme activity.
Collapse
Affiliation(s)
- Ok Jeong Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hoffmann B, Schulze-Frenking G, Al-Sawaf S, Beck M, Mayatepek E. Hunter disease before and during enzyme replacement therapy. Pediatr Neurol 2011; 45:181-4. [PMID: 21824567 DOI: 10.1016/j.pediatrneurol.2011.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/23/2011] [Indexed: 10/17/2022]
Abstract
Mucopolysaccharidosis type II (Hunter disease) is a lysosomal storage disease attributable to X-linked deficiency of the enzyme α-L-iduronate-sulfatase. Because of this deficiency, glycosaminoglycanes accumulate in various tissues and body fluids. We describe three patients representing the broad spectrum of Hunter disease and their response to enzyme replacement therapy. Patient 1 did not manifest central nervous system involvement, patient 2 manifested moderate neurologic disease, and patient 3 had already manifested a severe neurologic course during early infancy. In all patients, improvements in visceral organ size, physical capacity, and gastrointestinal functioning were reported. Moreover, all three patients demonstrated a gain in height, improved functioning of the upper limb, and a reduced need for antibiotics to treat upper airway infections. The response to enzyme replacement therapy occurred independent of type of genetic mutation (missense or frame shift), and we observed only mild infusion-related reactions. We conclude that all patients with mucopolysaccharidosis type II (those with and without clinical central nervous system involvement) may benefit from enzyme replacement therapy.
Collapse
Affiliation(s)
- Björn Hoffmann
- Department of General Pediatrics, University Children's Hospital, Heinrich-Heine University, Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
25
|
Zhang H, Li J, Zhang X, Wang Y, Qiu W, Ye J, Han L, Gao X, Gu X. Analysis of the IDS gene in 38 patients with Hunter syndrome: the c.879G>A (p.Gln293Gln) synonymous variation in a female create exonic splicing. PLoS One 2011; 6:e22951. [PMID: 21829674 PMCID: PMC3150403 DOI: 10.1371/journal.pone.0022951] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 07/01/2011] [Indexed: 11/18/2022] Open
Abstract
Background Hunter syndrome (mucopolysaccharidosis type II, MPS II) is a rare disease inherited in an X-linked autosomal recessive pattern. It is the prevailing form of the mucopolysaccharidoses in China. Here we investigated mutations of IDS (iduronate 2-sulfatase) gene in 38 unrelated Chinese patients, one of which is a female. Methods Peripheral leucocytes were collected from the patients and the IDS gene was amplified to looking for the variations. For a female patient, the X chromosome status was analyzed by androgen receptor X-inactivation assay and the mutation impact on RNA level was further performed by reverse transcription polymerase chain reaction. Results We discovered that point mutations constituted the major form while mutations in codon p.R468 defined the largest number of patients in our cohort. Consistent with data from other ethnic groups, exons 9 and 3 had comparatively more mutations, while exon 2 had quite a few mutations unique to Chinese patients. Of the 30 different mutations identified, only 9 were novel: one was a premature termination mutation, i.e., c.196C>T (p.Gln66X); three were missense mutations, i.e., c.200T>C (p.Leu67Pro), c.215T>C (p.Leu72Pro), c.389C>T (p.Thr130Ile); one was a small deletion, i.e., c.1104_1122del19 (p.Ser369ArgfsX16); and one was a deletion that spanned both exons 8 and 9 deletion leading to gross structural changes in the IDS gene. In addition, a synonymous mutation c.879G>A (p.Gln293Gln) was identified in a female Hunter disease patient, which resulted in loss of the original splicing site, activated a cryptic splicing site upstream, leading to a 28 bp deletion and a premature termination at p. Tyr285GlufsX47. Together with concurrent skewed X-inactivation this was believed to facilitate the development of Hunter disease in this girl. Conclusions In conclusion, the molecular analysis of IDS gene in Chinese patients confirmed the Hunter disease diagnosis and expanded the mutation and clinical spectrum of this devastating disorder.
Collapse
Affiliation(s)
- Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (HZ); (XG)
| | - Jing Li
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinshun Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ye
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolan Gao
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (HZ); (XG)
| |
Collapse
|
26
|
Kang TS, Stevens RC. Structural aspects of therapeutic enzymes to treat metabolic disorders. Hum Mutat 2010; 30:1591-610. [PMID: 19790257 DOI: 10.1002/humu.21111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein therapeutics represents a niche subset of pharmacological agents that is rapidly gaining importance in medicine. In addition to the exceptional specificity that is characteristic of protein therapeutics, several classes of proteins have also been effectively utilized for treatment of conditions that would otherwise lack effective pharmacotherapeutic options. A particularly striking class of protein therapeutics is exogenous enzymes administered for replacement therapy in patients afflicted with metabolic disorders. To date, at least 11 enzymes have either been approved for use, or are in clinical trials for the treatment of selected inherited metabolic disorders. With the recent advancement in structural biology, a significantly larger amount of structural information for several of these enzymes is now available. This article is an overview of the correlation between structural perturbations of these enzymes with the clinical presentation of the respective metabolic conditions, as well as a discussion of the relevant structural modification strategies engaged in improving these enzymes for replacement therapies.
Collapse
Affiliation(s)
- Tse Siang Kang
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
27
|
Keeratichamroen S, Cairns JRK, Wattanasirichaigoon D, Wasant P, Ngiwsara L, Suwannarat P, Pangkanon S, Kuptanon J, Tanpaiboon P, Rujirawat T, Liammongkolkul S, Svasti J. Molecular analysis of the iduronate-2-sulfatase gene in Thai patients with Hunter syndrome. J Inherit Metab Dis 2008; 31 Suppl 2:S303-11. [PMID: 18500569 DOI: 10.1007/s10545-008-0876-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/29/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
Abstract
Molecular defects in the gene encoding the enzyme iduronate-2-sulfatase (IDS) result in Hunter disease (mucopolysaccharidosis type II, MPS II). To determine the molecular basis of MPS II in Thailand, the IDS gene was analysed in 20 Thai patients with Hunter syndrome from 18 unrelated families. A total of 19 different mutations, including 9 missense mutations, 3 nonsense mutations, 3 splice site alterations, 1 deletion, 2 indels, and 1 rearrangement were identified, 8 of which were novel (p.R101C, p.D148V, p.G224A, p.K227E, p.E254X, p.W337X, c.440_442delinsTT and c.720_731delinsTTTCAGATGTTCTCCCCAG). Evaluation of the IDS activity of two hemizygous variants identified in the same patient, p.R101C and p.R468Q, by expression of IDS with the individual mutations in COS 7 cells indicated that only the p.R468Q mutation affected IDS protein activity. Two exonic mutations, c.257C>T (p.P86L) and c.418G>A, were found to activate multiple cryptic splice sites, resulting in aberrantly spliced transcripts. Thus, MPS II in Thailand is caused by a diverse set of defects affecting both IDS protein production and activity.
Collapse
Affiliation(s)
- S Keeratichamroen
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lau KC, Lam CW. Molecular investigations of a novel iduronate-2-sulfatase mutant in a Chinese patient. Clin Chim Acta 2008; 392:8-10. [PMID: 18331837 DOI: 10.1016/j.cca.2008.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 01/17/2008] [Accepted: 02/08/2008] [Indexed: 11/25/2022]
Abstract
BACKGROUND Molecular investigations of iduronate-2-sulfatase (IDS) mutants for the X-linked lysosomal storage disease mucopolysaccharidosis type II (MPS II, Hunter disease), commonly depends on transient expression studies to verify a single nucleotide change to be pathogenic. In 2 severely affected patients, IDS missense mutations, c.1016T>C (novel) and c.1016T>G (known) were identified predicting the substitution of an ambivalent cyclic proline and a hydrophilic arginine respectively for the hydrophobic leucine at residue 339. We hypothesized that residue Leu339 may be functionally critical. METHODS We performed a study for the 2 mutations by in-situ mutagenesis, in vitro expression, and functional analysis. RESULTS Transient expression revealed that both the missense variants had stable mRNA but their residual enzyme activities remained <2.5% of normal level. The effect of the missense mutations on protein expression was detected by Western blot analysis. Both the missense mutations synthesized the precursor form but had reduced mature form of IDS. CONCLUSION The novel mutation p.L339P is a disease-causing mutation affecting maturation of the protein.
Collapse
Affiliation(s)
- Kin-Chong Lau
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | | |
Collapse
|
29
|
Montaño AM, Sukegawa K, Kato Z, Carrozzo R, Di Natale P, Christensen E, Orii KO, Orii T, Kondo N, Tomatsu S. Effect of 'attenuated' mutations in mucopolysaccharidosis IVA on molecular phenotypes of N-acetylgalactosamine-6-sulfate sulfatase. J Inherit Metab Dis 2007; 30:758-67. [PMID: 17876718 DOI: 10.1007/s10545-007-0702-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 10/22/2022]
Abstract
Mucopolysaccharidosis IVA is an autosomal recessive disease caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Mutation screening of the GALNS gene was performed for seven MPS IVA patients with attenuated phenotypes from three unrelated families. Four of 5 missense mutations identified in this study (p.F167V, p.R253W, p.R380S, p.P484S) and two reported (p.F97V, p.N204K), associated with attenuated phenotypes, were characterized using in vitro stable expression experiments, enzyme kinetic study, protein processing and structural analysis. The stably expressed mutant enzymes defining the attenuated phenotype exhibited a considerable residual activity (1.2-36.7% of the wild-type GALNS activity) except for p.R380S. Enzyme kinetic studies showed that p.F97V, p.F167V and p.N204K have lower affinity to the substrate compared with other mutants. The p.F97V enzyme was the most thermolabile at 55 degrees C. Immunoblot analyses indicated a rapid degradation and/or an insufficiency in processing in the mutant proteins. Tertiary structure analysis revealed that although there was a tendency for 'attenuated' mutant residues to be located on the surface of GALNS, they have a different effect on the protein including modification of the hydrophobic core and salt-bridge formation and different potential energy. This study demonstrates that 'attenuated' mutant enzymes are heterogeneous in molecular phenotypes, including biochemical properties and tertiary structure.
Collapse
Affiliation(s)
- A M Montaño
- Department of Pediatrics, Saint Louis University, Pediatric Research Institute, 3662 Park Ave., St. Louis, MO 63110-2586, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chang JH, Lee-Chen GJ, Lin SP, Chuang CK. Characterization of a novel p.S305P and a known c.1006+5G>C splice site mutation in human iduronate-2-sulfatase associated with mucopolysaccharidosis type II. Clin Chim Acta 2007; 384:167-70. [PMID: 17655837 DOI: 10.1016/j.cca.2007.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 06/14/2007] [Accepted: 06/14/2007] [Indexed: 11/26/2022]
|