1
|
Porta F, Spada M, Ponzone A. Early Screening for Tetrahydrobiopterin Responsiveness in Phenylketonuria. Pediatrics 2017; 140:e20161591. [PMID: 28679641 DOI: 10.1542/peds.2016-1591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 11/24/2022] Open
Abstract
Since 2007, synthetic tetrahydrobiopterin (BH4) has been approved as a therapeutic option in BH4-responsive phenylketonuria (PKU) and since 2015 extended to infants younger than 4 years in Europe. The current definition of BH4 responsiveness relies on the observation of a 20% to 30% blood phenylalanine (Phe) decrease after BH4 administration, under nonstandardized conditions. By this definition, however, patients with the same genotype or even the same patients were alternatively reported as responsive or nonresponsive to the cofactor. These inconsistencies are troubling, as frustrating patient expectations and impairing cost-effectiveness of BH4-therapy. Here we tried a quantitative procedure through the comparison of the outcome of a simple Phe and a combined Phe plus BH4 loading in a series of infants with PKU, most of them harboring genotypes already reported as BH4 responsive. Under these ideal conditions, blood Phe clearance did not significantly differ after the 2 types of loading, and a 20% to 30% decrease of blood Phe occurred irrespective of BH4 administration in milder forms of PKU. Such early screening for BH4 responsiveness, based on a quantitative assay, is essential for warranting an evidence-based and cost-effective therapy in those patients with PKU eventually but definitely diagnosed as responsive to the cofactor.
Collapse
Affiliation(s)
- Francesco Porta
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Marco Spada
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Alberto Ponzone
- Department of Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
2
|
Trefz F, Lichtenberger O, Blau N, Muntau AC, Feillet F, Bélanger-Quintana A, van Spronsen F, Munafo A. Tetrahydrobiopterin (BH4) responsiveness in neonates with hyperphenylalaninemia: a semi-mechanistically-based, nonlinear mixed-effect modeling. Mol Genet Metab 2015; 114:564-9. [PMID: 25726095 DOI: 10.1016/j.ymgme.2015.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 11/30/2022]
Abstract
Neonatal loading studies with tetrahydrobiopterin (BH4) are used to detect hyperphenylalaninemia due to BH4 deficiency by evaluating decreases in blood phenylalanine (Phe) concentrations post BH4 load. BH4 responsiveness in phenylalanine hydroxylase (PAH)-deficient patients introduced a new diagnostic aspect for this test. In older children, a broad spectrum of different levels of responsiveness has been described. The primary objective of this study was to develop a pharmacodynamic model to improve the description of individual sensitivity to BH4 in the neonatal period. Secondary objectives were to evaluate BH4 responsiveness in a large number of PAH-deficient patients from a neonatal screening program and in patients with various confirmed BH4 deficiencies from the BIODEF database. Descriptive statistics in patients with PAH deficiency with 0-24-h data available showed that 129 of 340 patients (37.9%) had a >30% decrease in Phe levels post load. Patients with dihydropteridine reductase deficiency (n = 53) could not be differentiated from BH4-responsive patients with PAH deficiency. The pharmacologic turnover model, "stimulation of loss" of Phe following BH4 load, fitted the data best. Using the model, 193 of 194 (99.5%) patients with a proven BH4 synthesis deficiency or recycling defect were classified as BH4 sensitive. Among patients with PAH deficiency, 216 of 375 (57.6%) patients showed sensitivity to BH4, albeit with a pronounced variability; PAH-deficient patients with blood Phe <1200 μmol/L at time 0 showed higher sensitivity than patients with blood Phe levels >1200 μmol/L. External validation showed good correlation between the present approach, using 0-24-h blood Phe data, and the published 48-h prognostic test. Pharmacodynamic modeling of Phe levels following a BH4 loading test is sufficiently powerful to detect a wide range of responsiveness, interpretable as a measure of sensitivity to BH4. However, the clinical relevance of small responses needs to be evaluated by further studies of their relationship to long-term response to BH4 treatment.
Collapse
Affiliation(s)
- Friedrich Trefz
- Outpatient Medical Centre for Women, Children and Adolescents, Kreiskliniken Reutlingen GmbH, 72501 Gammertingen, Marktstrasse 4, Germany.
| | | | - Nenad Blau
- University Children's Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.
| | - Ania C Muntau
- University Children's Hospital, Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Francois Feillet
- Reference Centre for Inborn Metabolic Diseases, Pediatric Unit, Children's Hospital, CHU Brabois, Allée du Morvan, 54511 Vandoeuvre les Nancy, France.
| | - Amaya Bélanger-Quintana
- Unidad de Enfermedades Metabolicas, Servicio de Pediatria, Hospital Ramon y Cajal, Crta Colmenar km 9, 1 Madrid 28034, Spain.
| | - Francjan van Spronsen
- Beatrix Children's Hospital, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands.
| | - Alain Munafo
- Merck Institute for Pharmacometrics, Merck Serono S.A., EPFL Innovation Park - Building I, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
3
|
Walker V, Mills GA. 2-Pentanone production from hexanoic acid by Penicillium roqueforti from blue cheese: is this the pathway used in humans? ScientificWorldJournal 2014; 2014:215783. [PMID: 25143966 PMCID: PMC3985342 DOI: 10.1155/2014/215783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/06/2014] [Indexed: 11/18/2022] Open
Abstract
Production of 2-pentanone, a methylketone, is increased in fasting ketotic humans. Its origin is unknown. We hypothesised that it is formed via β -oxidation of hexanoic acid by the peroxisomal pathway proposed for methylketone-producing fungi and yeasts. We used Penicillium roqueforti cultured on fat (margarine) to investigate 2-pentanone production. Headspace gas of incubates of the mould with a range of substrates was analysed using solid-phase microextraction with gas chromatography-mass spectrometry. Consistent with the proposed pathway, 2-pentanone was formed from hexanoic acid, hexanoyl-CoA, hexanoylcarnitine, and ethyl-3-oxohexanoic acid but not from ethylhexanoic, 2-ethylhexanoic, octanoic, or myristic acids, octanoylcarnitine, or pentane. However, the products from deuterated (D) hexanoic-D11 acid and hexanoic-2, 2-D2 acid were 9D- and 2D-2-pentanone, respectively, and not 8D- and 1D-2-pentanone as predicted. When incubated under (18)O2/(14)N2, there was only a very small enrichment of [(16)O2]- with [(18)O2]-containing 2-pentanone. These are new observations. They could be explained if hydrogen ions removed from hexanoyl-CoA by acyl-CoA oxidase at the commencement of β -oxidation were cycled through hydrogen peroxide and reentered the pathway through hydration of hexenoyl-CoA. This would protect other proteins from oxidative damage. Formation of 2-pentanone through a β -oxidation cycle similar to Penicillium roqueforti would be consistent with observations in humans.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, Southampton General Hospital, C level, MP 6, South Block, Tremona Road, Southampton SO16 6YD, UK
| | - Graham A. Mills
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| |
Collapse
|
4
|
Stéphenne X, Debray FG, Smets F, Jazouli N, Sana G, Tondreau T, Menten R, Goffette P, Boemer F, Schoos R, Gersting SW, Najimi M, Muntau AC, Goyens P, Sokal EM. Hepatocyte Transplantation Using the Domino Concept in a Child with Tetrabiopterin Nonresponsive Phenylketonuria. Cell Transplant 2012; 21:2765-70. [DOI: 10.3727/096368912x653255] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Phenylketonuria is a metabolic disease caused by phenylalanine hydroxylase deficiency. Treatment is based on a strict natural protein-restricted diet that is associated with the risk of malnutrition and severe psychosocial burden. Oral administration of tetrahydrobiopterin can increase residual enzyme activity, but most patients with severe clinical phenotypes are nonresponders. We performed liver cell transplantation in a 6-year-old boy with severe tetrahydrobiopterin nonresponsive phenylketonuria who failed to comply with diet prescriptions. The transplanted hepatocytes were obtained in part from an explanted glycogen storage type 1b liver. Following two infusions, blood phenylalanine levels returned within the therapeutic target while the phenylalanine half-life assessed by loading tests decreased from 43 to 19 h. However, 3 months later, blood phenylalanine concentrations increased and the phenylalanine intake had to be reduced. Cell-based therapy is a promising therapeutic option in phenylketonuria, and the domino concept may solve the issue of cell sources for hepatocyte transplantation.
Collapse
Affiliation(s)
- X. Stéphenne
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Banque D'hépatocytes, Bruxelles, Belgium
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratoire D'hépatologie Pédiatrique & Thérapie Cellulaire, Brussels, Belgium
| | - F. G. Debray
- CHU & Université de Liège, Centre de Génétique Humaine, Liège, Belgium
| | - F. Smets
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Banque D'hépatocytes, Bruxelles, Belgium
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratoire D'hépatologie Pédiatrique & Thérapie Cellulaire, Brussels, Belgium
| | - N. Jazouli
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Banque D'hépatocytes, Bruxelles, Belgium
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratoire D'hépatologie Pédiatrique & Thérapie Cellulaire, Brussels, Belgium
| | - G. Sana
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Banque D'hépatocytes, Bruxelles, Belgium
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratoire D'hépatologie Pédiatrique & Thérapie Cellulaire, Brussels, Belgium
| | - T. Tondreau
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Banque D'hépatocytes, Bruxelles, Belgium
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratoire D'hépatologie Pédiatrique & Thérapie Cellulaire, Brussels, Belgium
| | - R. Menten
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Unité de Radiologie Pédiatrique, Bruxelles, Belgium
| | - P. Goffette
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Unité de Radiologie Pédiatrique, Bruxelles, Belgium
| | - F. Boemer
- CHU & Université de Liège, Genetic Biochemistry Laboratory, Liège, Belgium
| | - R. Schoos
- CHU & Université de Liège, Genetic Biochemistry Laboratory, Liège, Belgium
| | - S. W. Gersting
- Dr. von Hauner Children's Hospital, Division of Molecular Pediatrics, Munich, Germany
| | - M. Najimi
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratoire D'hépatologie Pédiatrique & Thérapie Cellulaire, Brussels, Belgium
| | - A. C. Muntau
- Dr. von Hauner Children's Hospital, Division of Molecular Pediatrics, Munich, Germany
| | - P. Goyens
- Université Libre de Bruxelles, Unité de Nutrition et Métabolisme & Laboratoire de Pédiatrie, Bruxelles, Belgium
| | - E. M. Sokal
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Banque D'hépatocytes, Bruxelles, Belgium
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratoire D'hépatologie Pédiatrique & Thérapie Cellulaire, Brussels, Belgium
| |
Collapse
|
5
|
Sarkissian CN, Gamez A, Scott P, Dauvillier J, Dorenbaum A, Scriver CR, Stevens RC. Chaperone-like therapy with tetrahydrobiopterin in clinical trials for phenylketonuria: is genotype a predictor of response? JIMD Rep 2011; 5:59-70. [PMID: 23430918 DOI: 10.1007/8904_2011_96] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 08/04/2011] [Accepted: 09/20/2011] [Indexed: 12/24/2022] Open
Abstract
Prospectively enrolled phenylketonuria patients (n=485) participated in an international Phase II clinical trial to identify the prevalence of a therapeutic response to daily doses of sapropterin dihydrochloride (sapropterin, KUVAN(®)). Responsive patients were then enrolled in two subsequent Phase III clinical trials to examine safety, ability to reduce blood Phenylalanine levels, dosage (5-20 mg/kg/day) and response, and bioavailability of sapropterin. We combined phenotypic findings in the Phase II and III clinical trials to classify study-related responsiveness associated with specific alleles and genotypes identified in the patients. We found that 17% of patients showed a response to sapropterin. The patients harbored 245 different genotypes derived from 122 different alleles, among which ten alleles were newly discovered. Only 16.3% of the genotypes clearly conferred a sapropterin-responsive phenotype. Among the different PAH alleles, only 5% conferred a responsive phenotype. The responsive alleles were largely but not solely missense mutations known to or likely to cause misfolding of the PAH subunit. However, the metabolic response was not robustly predictable from the PAH genotypes, based on the study design adopted for these clinical trials, and accordingly it seems prudent to test each person for this phenotype with a standardized protocol.
Collapse
Affiliation(s)
- Christineh N Sarkissian
- Departments of Biology, Human Genetics and Pediatrics, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Nalin T, Perry IDS, Sitta A, Vargas CR, Saraiva-Pereira ML, Giugliani R, Blau N, Schwartz IVD. Optimized loading test to evaluate responsiveness to tetrahydrobiopterin (BH4) in Brazilian patients with phenylalanine hydroxylase deficiency. Mol Genet Metab 2011; 104 Suppl:S80-5. [PMID: 22014474 DOI: 10.1016/j.ymgme.2011.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Recent studies showed that phenylalanine (Phe) plasma concentrations may decrease in some patients with hyperphenylalaninemia (HPA) due to phenylalanine hydroxylase (PAH) deficiency, after the administration of tetrahydrobiopterin (BH(4)). OBJECTIVE To determine responsiveness to a single dose of BH(4) administered according to an innovative protocol using a combined Phe and BH(4) loading test in Brazilian phenylketonuria (PKU) patients. METHODS Patient age should be ≥ 4 years, and median Phe plasma concentration ≤ 600 μmol/L when following dietary restrictions. Participants received a simple Phe loading test using 100mg/kg L-Phe (Test 1) and a combined Phe+BH(4) loading test using 100mg/kg L-Phe and 20mg/kg/BH(4) (Test 2). Blood samples were collected at baseline and 3, 11 and 27 h after Phe ingestion (T0, T1, T2 and T3). Responsiveness was defined as: criterion A: plasma Phe reduction of ≥ 30% at T1 and T2 for Tests 1 and 2; criterion B: plasma Phe reduction of ≥ 30% at T1 and T3 for Tests 1 and 2; and criterion C: at least 30% difference of the areas under the Phe curve for Tests 1 and 2. RESULTS Eighteen patients (median age 12 yrs; 8 classical PKU; 10 mild PKU) participated in the study. Six patients (2 classical PKU; 4 mild PKU) were classified as responsive according to at least one of the criteria. Responsiveness was concordant when criteria A + B we compared with criterion C (kappa = 0.557; p = 0.017). Of the patients whose genotype was available (n = 16), six had data about BH(4)-responsiveness genotypes described in the literature, which were in agreement with our findings. CONCLUSION The comparison of simple Phe loading and combined Phe + BH(4) loading seems to be an optimal method to evaluate responsiveness to BH(4) in patients with good metabolic control.
Collapse
Affiliation(s)
- Tatiéle Nalin
- Post-Graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Harding CO. New era in treatment for phenylketonuria: Pharmacologic therapy with sapropterin dihydrochloride. Biologics 2010; 4:231-6. [PMID: 20714359 PMCID: PMC2921259 DOI: 10.2147/btt.s3015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Indexed: 12/03/2022]
Abstract
Oral administration of sapropterin hydrochloride, recently approved for use by the US Food and Drug Administration and the European Commission, is a novel approach for the treatment of phenylketonuria (PKU), one of the most common inborn errors of metabolism. PKU is caused by an inherited deficiency of the enzyme phenylalanine hydroxylase (PAH), and the pathophysiology of the disorder is related to chronic accumulation of the free amino acid phenylalanine in tissues. Contemporary therapy is based upon restriction of dietary protein intake, which leads to reduction of blood phenylalanine levels. This therapy is difficult to maintain throughout life, and dietary noncompliance is commonplace. Sapropterin dihydrochloride is a synthetic version of tetrahydrobiopterin, the naturally occurring pterin cofactor that is required for PAH-mediated phenylalanine hydroxylation. In a subset of individuals with PAH deficiency, sapropterin administration leads to reduction in blood phenylalanine levels independent of dietary protein. For these individuals, sapropterin is an effective novel therapy for PKU.
Collapse
Affiliation(s)
- Cary O Harding
- Departments of Molecular and Medical Genetics and Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
8
|
Ponzone A, Porta F, Mussa A, Alluto A, Ferraris S, Spada M. Unresponsiveness to tetrahydrobiopterin of phenylalanine hydroxylase deficiency. Metabolism 2010; 59:645-52. [PMID: 19913839 DOI: 10.1016/j.metabol.2009.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 08/02/2009] [Accepted: 09/09/2009] [Indexed: 11/28/2022]
Abstract
Conflicting results have been reported concerning the efficacy of tetrahydrobiopterin (BH4), the cofactor of phenylalanine hydroxylase, for reducing phenylalanine (Phe) concentration in phenylketonuria (PKU). We aimed to test quantitatively the effects of BH4 in PKU patients. Seven fully characterized patients were selected among a population of 130 PKU subjects as harboring PKU mutations predicted as BH4 responsive and previously considered responsive to a cofactor challenge. They received a simple Phe (100 mg/kg) and 2 combined Phe (100 mg/kg) and BH4 (20 mg/kg) oral loading tests. Cofactor was administered either before or after the amino acid. The concentrations of Phe, tyrosine (Tyr), and biopterin were measured over 24 hours after loading. The comparative analysis of the loading tests showed that in all patients plasma Phe concentrations peaked within 3 hours, and fell within 24 hours by about 50% in benign, 20% in mild, and 15% in severe phenylalanine hydroxylase deficiency regardless of BH4 administration. A consistent or moderate increase of plasma Tyr, again independent of the cofactor challenge, was observed only in the less severe forms of PAH deficiency. Mean blood biopterin concentration increased 6 times after simple Phe and 34 to 39 times after combined loading tests. The administration of BH4 does not alter Phe and Tyr metabolism in PKU patients. The clearance of plasma Phe after oral loading and, as well as Tyr production, is not related to cofactor challenge but to patient's phenotype. The assessment of BH4 responsiveness by the methods so far used is not reliable, and the occurrence of BH4-responsive forms of PKU still has to be definitely proven.
Collapse
Affiliation(s)
- Alberto Ponzone
- Department of Pediatrics, University of Torino, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Lindner M, Gramer G, Garbade SF, Burgard P. Blood phenylalanine concentrations in patients with PAH-deficient hyperphenylalaninaemia off diet without and with three different single oral doses of tetrahydrobiopterin: assessing responsiveness in a model of statistical process control. J Inherit Metab Dis 2009; 32:514-22. [PMID: 19513811 DOI: 10.1007/s10545-009-1070-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 04/03/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
Tetrahydrobiopterin (BH(4)) cofactor loading is a standard procedure to differentiate defects of BH(4) metabolism from phenylalanine hydroxylase (PAH) deficiency. BH(4) responsiveness also exists in PAH-deficient patients with high residual PAH activity. Unexpectedly, single cases with presumed nil residual PAH activity have been reported to be BH(4) responsive, too. BH(4) responsiveness has been defined either by a >or=30% reduction of blood Phe concentration after a single BH(4) dose or by a decline greater than the individual circadian Phe level variation. Since both methods have methodological disadvantages, we present a model of statistical process control (SPC) to assess BH(4) responsiveness. Phe levels in 17 adult PKU patients of three phenotypic groups off diet were compared without and with three different single oral dosages of BH(4) applied in a double-blind randomized cross-over design. Results are compared for >or=30% reduction and SPC. The effect of BH(4) by >or=30% reduction was significant for groups (p < 0.01) but not for dose (p = 0.064), with no interaction of group with dose (p = 0.24). SPC revealed significant effects for group (p < 0.01) and the interaction for group with dose (p < 0.05) but not for dose alone (p = 0.87). After one or more loadings, seven patients would be judged to be BH(4) responsive either by the 30% criterion or by the SPC model, but only three by both. Results for patients with identical PAH genotype were not very consistent within (for different BH(4) doses) and between the two models. We conclude that a comparison of protein loadings without and with BH(4) combined with a standardized procedure for data analysis and decision would increase the reliability of diagnostic results.
Collapse
Affiliation(s)
- M Lindner
- Division of Metabolic Disorders, Department of General Paediatrics, University Children's Hospital, Heidelberg, Germany.
| | | | | | | |
Collapse
|
10
|
Langenbeck U, Burgard P, Wendel U, Lindner M, Zschocke J. Metabolic phenotypes of phenylketonuria. Kinetic and molecular evaluation of the Blaskovics protein loading test. J Inherit Metab Dis 2009; 32:506-13. [PMID: 19609714 DOI: 10.1007/s10545-009-1152-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/30/2009] [Accepted: 05/19/2009] [Indexed: 11/28/2022]
Abstract
BACKGROUND As part of the German Collaborative Study of Children Treated for Phenylketonuria (PKU), a three-day protein loading test was applied to children at 6 months of age. This load elicits three principal types of blood phenylalanine (Phe) response, with types I and III clinically corresponding to classic PKU and mild hyperphenylalaninaemia not requiring diet (MHP), respectively. An intermediate type II, clinically corresponding to mild PKU, is characterized by early decline of blood Phe from above 1200 micromol/L down to levels between 600 and 1200 micromol/L at 72 h. AIMS Unbiased classification and kinetic and molecular characterization of the intermediate Phe response; estimation of phenotypic variability of Phe disposal. METHOD A kinetic model with zero-order protein synthesis and first-order rate of metabolic disposal of Phe is applied to 157 tests. RESULTS A model of exponentially saturated activation describes the acceleration of Phe disposal from day 1 to 3 in the intermediate type of response. Eleven of 14 p.Y414C functional hemizygotes and two of three p.R261Q homozygotes manifested this kinetic type. The rate estimates of Phe metabolic disposal differ widely in patients with identical PAH genotype, yet are highly correlated with the Phe level at 72 h.
Collapse
Affiliation(s)
- U Langenbeck
- Institute of Human Genetics, Frankfurt University Hospital, Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|
11
|
Blau N, Bélanger-Quintana A, Demirkol M, Feillet F, Giovannini M, MacDonald A, Trefz FK, van Spronsen FJ. Optimizing the use of sapropterin (BH(4)) in the management of phenylketonuria. Mol Genet Metab 2009; 96:158-63. [PMID: 19208488 DOI: 10.1016/j.ymgme.2009.01.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/09/2009] [Accepted: 01/09/2009] [Indexed: 11/26/2022]
Abstract
Phenylketonuria (PKU) is caused by mutations in the phenylalanine hydroxylase (PAH) gene, leading to deficient conversion of phenylalanine (Phe) to tyrosine and accumulation of toxic levels of Phe. A Phe-restricted diet is essential to reduce blood Phe levels and prevent long-term neurological impairment and other adverse sequelae. This diet is commenced within the first few weeks of life and current recommendations favor lifelong diet therapy. The observation of clinically significant reductions in blood Phe levels in a subset of patients with PKU following oral administration of 6R-tetrahydrobiopterin dihydrochloride (BH(4)), a cofactor of PAH, raises the prospect of oral pharmacotherapy for PKU. An orally active formulation of BH(4) (sapropterin dihydrochloride; Kuvan is now commercially available. Clinical studies suggest that treatment with sapropterin provides better Phe control and increases dietary Phe tolerance, allowing significant relaxation, or even discontinuation, of dietary Phe restriction. Firstly, patients who may respond to this treatment need to be identified. We propose an initial 48-h loading test, followed by a 1-4-week trial of sapropterin and subsequent adjustment of the sapropterin dosage and dietary Phe intake to optimize blood Phe control. Overall, sapropterin represents a major advance in the management of PKU.
Collapse
Affiliation(s)
- Nenad Blau
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Steinwiesstrasse 75, CH-8032 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|