1
|
Şoroğlu CV, Berkay EG. Old disease-New reflections: Gaucher, immunity, and inflammation. J Cell Mol Med 2024; 28:e70087. [PMID: 39463025 PMCID: PMC11513444 DOI: 10.1111/jcmm.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 10/29/2024] Open
Abstract
Gaucher disease (GD) is the most common lysosomal storage disease. It is a multisystemic metabolic disease caused by GBA pathogenic mutations. Although the general symptoms have been known for a long time, new treatment possibilities, the detection of different biomarkers, and innovations in diagnosis and follow-up have paved the way for further studies. Recent studies have shown that the immune system has become an essential factor associated with disease progression. The role of Gaucher cells in the disease is well characterized. In addition to phagocytic macrophage cells, lymphocytes, complement system, and inflammatory pathway elements are also implicated in GD as they were shown to be the underlying factors causing associated pathologies such as Parkinson's. In this article, the relationship between the GD and the immune system has been examined and reviewed in light of new findings.
Collapse
Affiliation(s)
- Can Veysel Şoroğlu
- Department of Medical BiotechnologyAcıbadem Mehmet Ali Aydınlar University, Institute of Health SciencesIstanbulTurkey
| | - Ezgi Gizem Berkay
- Department of Basic Sciences, Dentistry FacultyIstanbul Kent UniversityIstanbulTurkey
| |
Collapse
|
2
|
Leong M, Sathi B, Davis A, Hamid S, Wu S, Woods J, Kharbanda S, Li X, Hou J. Alpha-mannosidosis: a case with novel ultrastructural and light microscopy findings. J Pediatr Endocrinol Metab 2023; 36:1186-1190. [PMID: 37979187 DOI: 10.1515/jpem-2023-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/20/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVES Alpha-mannosidosis is a rare genetic lysosomal storage condition leading to the systemic buildup of oligomannoside. Clinical presentation and associated conditions, as well as the full extent of histopathologic changes associated with this disease process, are not fully understood. CASE PRESENTATION We present the case of an 8-year-1-month old patient with persistent anemia and who was initially diagnosed with Celiac disease before ultimately being diagnosed with alpha-mannosidosis. As part of his diagnostic work-up, duodenal and bone marrow biopsies were examined by pathology. Duodenal biopsies showed foamy plasma cells expanding the lamina propria which triggered a workup for a genetic storage disease; features suggestive of Celiac disease which resolved on gluten-free diet were also noted by pathology. Bone marrow analysis via electron microscopy showed cytoplasmic granules and inclusions in multiple immune cell lines. CONCLUSIONS Alpha-mannosidosis can occur with Celiac disease and milder forms may only be suspected from incidental pathology findings. The ultrastructural bone marrow findings from this case, the first to be reported from human, show numerous disease-associated changes in multiple immune cell lines whose contribution to disease-associated immunodeficiency is unclear.
Collapse
Affiliation(s)
- Matthew Leong
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bindu Sathi
- Pediatric Hematology Oncology, Valley Children's Hospital, Madera, CA, USA
| | - Amy Davis
- Department of Pathology, Valley Children's Hospital, Madera, CA, USA
| | - Syed Hamid
- Department of Gastroenterology, Valley Children's Hospital, Madera, CA, USA
| | - Sandy Wu
- Department of Pathology, Valley Children's Hospital, Madera, CA, USA
| | - Jeremy Woods
- Department of Pediatrics, Valley Children's Hospital, Madera, CA, USA
- Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Sandhya Kharbanda
- Department of Pediatric Bone Marrow Transplantation, UCSF Benioff Children's Hospitals, San Francisco, CA, USA
| | - Xiaomo Li
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean Hou
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
3
|
Hereditary Hyperferritinemia. Int J Mol Sci 2023; 24:ijms24032560. [PMID: 36768886 PMCID: PMC9917042 DOI: 10.3390/ijms24032560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Ferritin is a ubiquitous protein that is present in most tissues as a cytosolic protein. The major and common role of ferritin is to bind Fe2+, oxidize it and sequester it in a safe form in the cell, and to release iron according to cellular needs. Ferritin is also present at a considerably low proportion in normal mammalian sera and is relatively iron poor compared to tissues. Serum ferritin might provide a useful and convenient method of assessing the status of iron storage, and its measurement has become a routine laboratory test. However, many additional factors, including inflammation, infection, metabolic abnormalities, and malignancy-all of which may elevate serum ferritin-complicate interpretation of this value. Despite this long history of clinical use, fundamental aspects of the biology of serum ferritin are still unclear. According to the high number of factors involved in regulation of ferritin synthesis, secretion, and uptake, and in its central role in iron metabolism, hyperferritinemia is a relatively common finding in clinical practice and is found in a large spectrum of conditions, both genetic and acquired, associated or not with iron overload. The diagnostic strategy to reveal the cause of hyperferritinemia includes family and personal medical history, biochemical and genetic tests, and evaluation of liver iron by direct or indirect methods. This review is focused on the forms of inherited hyperferritinemia with or without iron overload presenting with normal transferrin saturation, as well as a step-by-step approach to distinguish these forms to the acquired forms, common and rare, of isolated hyperferritinemia.
Collapse
|
4
|
Phagocytosis of Erythrocytes from Gaucher Patients Induces Phenotypic Modifications in Macrophages, Driving Them toward Gaucher Cells. Int J Mol Sci 2022; 23:ijms23147640. [PMID: 35886988 PMCID: PMC9319206 DOI: 10.3390/ijms23147640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Gaucher disease (GD) is caused by glucocerebrosidase deficiency leading to the accumulation of sphingolipids in macrophages named “Gaucher’s Cells”. These cells are characterized by deregulated expression of cell surface markers, abnormal secretion of inflammatory cytokines, and iron sequestration. These cells are known to infiltrate tissues resulting in hematological manifestations, splenomegaly, and bone diseases. We have already demonstrated that Gaucher red blood cells exhibit altered properties suggesting their key role in GD clinical manifestations. We hypothesized that Gaucher’s erythrocytes could be prone to premature destruction by macrophages contributing to the formation of altered macrophages and Gaucher-like cells. We conducted in vitro experiments of erythrophagocytosis using erythrocytes from Gaucher’s patients or healthy donors. Our results showed an enhanced erythrophagocytosis of Gaucher red blood cells compared to healthy red blood cells, which is related to erythrocyte sphingolipids overload and reduced deformability. Importantly, we showed elevated expression of the antigen-presenting molecules CD1d and MHC-II and of the iron-regulator hepcidin in macrophages, as well as enhanced secretion of the pro-inflammatory cytokine IL-1β after phagocytosis of GD erythrocytes. These results strongly suggested that erythrophagocytosis in GD contribute to phenotypic modifications in macrophages. This present study shows that erythrocytes-macrophages interactions may be crucial in GD pathophysiology and pathogenesis.
Collapse
|
5
|
Kannauje PK, Pandit V, Wasnik PN, Gupta AK, Venkatesan N. Gaucher's Disease in an Adult Female: A Rare Entity. Cureus 2021; 13:e17318. [PMID: 34557364 PMCID: PMC8449857 DOI: 10.7759/cureus.17318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 12/29/2022] Open
Abstract
Gaucher's disease is a rare inborn error of metabolism with an autosomal recessive pattern of inheritance. With over 26 million births occurring per annum, extrapolation of this figure would give us an estimated burden of 17,000 babies born with lysosomal storage disorder (LSD). Given the large population of India and the high rates of consanguineous marriage that takes place in the subcontinent, LSD might not be as rare as we perceive it to be. We report a rare occurrence of type-1 Gaucher's disease in an adult female patient born of a non-consanguineous marriage, belonging to the tropical area of Chhattisgarh, India where there is a predominance of malaria, thalassemia, and sickling. The diagnosis was challenging in this case since we needed to work out all the differential diagnoses of pancytopenia with hepatomegaly and massive splenomegaly. The key part was her medical history where there was documentation of her elder brother's death due to some mental illness of undiagnosed etiology. Being a difficult time due to coronavirus disease 2019 ( COVID-19), we were able to diagnose the patient with a bone marrow biopsy followed by glucocerebrosidase enzyme level suggestive of Gaucher's disease.
Collapse
Affiliation(s)
- Pankaj K Kannauje
- General Medicine, All India Institute of Medical Sciences, Raipur, IND
| | - Vinay Pandit
- General Medicine, All India Institute of Medical Sciences, Raipur, IND
| | - Preetam N Wasnik
- General Medicine, All India Institute of Medical Sciences, Raipur, IND
| | - Ashish K Gupta
- Pathology and Lab Medicine, All India Institute of Medical Sciences, Raipur, IND
| | | |
Collapse
|
6
|
Douek AM, Amiri Khabooshan M, Henry J, Stamatis SA, Kreuder F, Ramm G, Änkö ML, Wlodkowic D, Kaslin J. An Engineered sgsh Mutant Zebrafish Recapitulates Molecular and Behavioural Pathobiology of Sanfilippo Syndrome A/MPS IIIA. Int J Mol Sci 2021; 22:ijms22115948. [PMID: 34073041 PMCID: PMC8197930 DOI: 10.3390/ijms22115948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/29/2022] Open
Abstract
Mucopolysaccharidosis IIIA (MPS IIIA, Sanfilippo syndrome type A), a paediatric neurological lysosomal storage disease, is caused by impaired function of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH) resulting in impaired catabolism of heparan sulfate glycosaminoglycan (HS GAG) and its accumulation in tissues. MPS IIIA represents a significant proportion of childhood dementias. This condition generally leads to patient death in the teenage years, yet no effective therapy exists for MPS IIIA and a complete understanding of the mechanisms of MPS IIIA pathogenesis is lacking. Here, we employ targeted CRISPR/Cas9 mutagenesis to generate a model of MPS IIIA in the zebrafish, a model organism with strong genetic tractability and amenity for high-throughput screening. The sgshΔex5-6 zebrafish mutant exhibits a complete absence of Sgsh enzymatic activity, leading to progressive accumulation of HS degradation products with age. sgshΔex5-6 zebrafish faithfully recapitulate diverse CNS-specific features of MPS IIIA, including neuronal lysosomal overabundance, complex behavioural phenotypes, and profound, lifelong neuroinflammation. We further demonstrate that neuroinflammation in sgshΔex5-6 zebrafish is largely dependent on interleukin-1β and can be attenuated via the pharmacological inhibition of Caspase-1, which partially rescues behavioural abnormalities in sgshΔex5-6 mutant larvae in a context-dependent manner. We expect the sgshΔex5-6 zebrafish mutant to be a valuable resource in gaining a better understanding of MPS IIIA pathobiology towards the development of timely and effective therapeutic interventions.
Collapse
Affiliation(s)
- Alon M. Douek
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Mitra Amiri Khabooshan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Jason Henry
- Neurotoxicology Lab, School of Science (Biosciences), RMIT University, Bundoora, VIC 3083, Australia; (J.H.); (D.W.)
| | - Sebastian-Alexander Stamatis
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Florian Kreuder
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Georg Ramm
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Minna-Liisa Änkö
- Centre for Reproductive Health and Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Donald Wlodkowic
- Neurotoxicology Lab, School of Science (Biosciences), RMIT University, Bundoora, VIC 3083, Australia; (J.H.); (D.W.)
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
- Correspondence: ; Tel.: +61-3-9902-9613; Fax: +61-3-9902-9729
| |
Collapse
|
7
|
Safavi M, Nozarian Z, Kompani F. Post-Chemotherapy Foamy Histiocytes in Bone Marrow Aspiration of a Child with Acute Lymphoblastic Leukemia. Turk J Haematol 2021; 38:94-95. [PMID: 33442966 PMCID: PMC7927437 DOI: 10.4274/tjh.galenos.2021.2020.0677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
| | | | - Farzad Kompani
- Tehran University of Medical Sciences, Division of Hematology and Oncology, Children’s Medical Center, Pediatrics Center of Excellence, Tehran, Iran
| |
Collapse
|
8
|
Panicker LM, Srikanth MP, Castro-Gomes T, Miller D, Andrews NW, Feldman RA. Gaucher disease iPSC-derived osteoblasts have developmental and lysosomal defects that impair bone matrix deposition. Hum Mol Genet 2019; 27:811-822. [PMID: 29301038 DOI: 10.1093/hmg/ddx442] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/27/2017] [Indexed: 01/18/2023] Open
Abstract
Gaucher disease (GD) is caused by bi-allelic mutations in GBA1, the gene that encodes acid β-glucocerebrosidase (GCase). Individuals affected by GD have hematologic, visceral and bone abnormalities, and in severe cases there is also neurodegeneration. To shed light on the mechanisms by which mutant GBA1 causes bone disease, we examined the ability of human induced pluripotent stem cells (iPSC) derived from patients with Types 1, 2 and 3 GD, to differentiate to osteoblasts and carry out bone deposition. Differentiation of GD iPSC to osteoblasts revealed that these cells had developmental defects and lysosomal abnormalities that interfered with bone matrix deposition. Compared with controls, GD iPSC-derived osteoblasts exhibited reduced expression of osteoblast differentiation markers, and bone matrix protein and mineral deposition were defective. Concomitantly, canonical Wnt/β catenin signaling in the mutant osteoblasts was downregulated, whereas pharmacological Wnt activation with the GSK3β inhibitor CHIR99021 rescued GD osteoblast differentiation and bone matrix deposition. Importantly, incubation with recombinant GCase (rGCase) rescued the differentiation and bone-forming ability of GD osteoblasts, demonstrating that the abnormal GD phenotype was caused by GCase deficiency. GD osteoblasts were also defective in their ability to carry out Ca2+-dependent exocytosis, a lysosomal function that is necessary for bone matrix deposition. We conclude that normal GCase enzymatic activity is required for the differentiation and bone-forming activity of osteoblasts. Furthermore, the rescue of bone matrix deposition by pharmacological activation of Wnt/β catenin in GD osteoblasts uncovers a new therapeutic target for the treatment of bone abnormalities in GD.
Collapse
Affiliation(s)
- Leelamma M Panicker
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Manasa P Srikanth
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thiago Castro-Gomes
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742, USA
| | - Diana Miller
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742, USA
| | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Ferritinemia and serum inflammatory cytokines in Swedish adults with Gaucher disease type 1. Blood Cells Mol Dis 2018; 68:35-42. [DOI: 10.1016/j.bcmd.2016.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/19/2016] [Indexed: 01/08/2023]
|
10
|
Collins LM, Drouin-Ouellet J, Kuan WL, Cox T, Barker RA. Dermal fibroblasts from patients with Parkinson's disease have normal GCase activity and autophagy compared to patients with PD and GBA mutations. F1000Res 2017; 6:1751. [PMID: 29527290 PMCID: PMC5820594 DOI: 10.12688/f1000research.12090.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 01/29/2023] Open
Abstract
Background: Recently, the development of Parkinson's disease (PD) has been linked to a number of genetic risk factors, of which the most common is glucocerebrosidase (GBA) mutations. Methods: We investigated PD and Gaucher Disease (GD) patient derived skin fibroblasts using biochemistry assays. Results: PD patient derived skin fibroblasts have normal glucocerebrosidase (GCase) activity, whilst patients with PD and GBA mutations have a selective deficit in GCase enzyme activity and impaired autophagic flux. Conclusions: This data suggests that only PD patients with a GBA mutation have altered GCase activity and autophagy, which may explain their more rapid clinical progression.
Collapse
Affiliation(s)
- Lucy M Collins
- Cambridge Stem Cell Institute, University of Cambridge , Cambridge , UK
- John Van Geest Centre for Brain Repair, University of Cambridge , Cambridge , UK
| | - Janelle Drouin-Ouellet
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Wei-Li Kuan
- John Van Geest Centre for Brain Repair, University of Cambridge , Cambridge , UK
| | - Timothy Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- Cambridge Stem Cell Institute, University of Cambridge , Cambridge , UK
- John Van Geest Centre for Brain Repair, University of Cambridge , Cambridge , UK
| |
Collapse
|
11
|
Collins LM, Drouin-Ouellet J, Kuan WL, Cox T, Barker RA. Dermal fibroblasts from patients with Parkinson's disease have normal GCase activity and autophagy compared to patients with PD and GBA mutations. F1000Res 2017; 6:1751. [PMID: 29527290 PMCID: PMC5820594 DOI: 10.12688/f1000research.12090.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 07/28/2023] Open
Abstract
Background: Recently, the development of Parkinson's disease (PD) has been linked to a number of genetic risk factors, of which the most common is glucocerebrosidase (GBA) mutations. Methods: We investigated PD and Gaucher Disease (GD) patient derived skin fibroblasts using biochemistry assays. Results: PD patient derived skin fibroblasts have normal glucocerebrosidase (GCase) activity, whilst patients with PD and GBA mutations have a selective deficit in GCase enzyme activity and impaired autophagic flux. Conclusions: This data suggests that only PD patients with a GBA mutation have altered GCase activity and autophagy, which may explain their more rapid clinical progression.
Collapse
Affiliation(s)
- Lucy M Collins
- Cambridge Stem Cell Institute, University of Cambridge , Cambridge , UK
- John Van Geest Centre for Brain Repair, University of Cambridge , Cambridge , UK
| | - Janelle Drouin-Ouellet
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Wei-Li Kuan
- John Van Geest Centre for Brain Repair, University of Cambridge , Cambridge , UK
| | - Timothy Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- Cambridge Stem Cell Institute, University of Cambridge , Cambridge , UK
- John Van Geest Centre for Brain Repair, University of Cambridge , Cambridge , UK
| |
Collapse
|
12
|
Kallemeijn WW, Scheij S, Hoogendoorn S, Witte MD, Herrera Moro Chao D, van Roomen CPAA, Ottenhoff R, Overkleeft HS, Boot RG, Aerts JMFG. Investigations on therapeutic glucocerebrosidases through paired detection with fluorescent activity-based probes. PLoS One 2017; 12:e0170268. [PMID: 28207759 PMCID: PMC5313132 DOI: 10.1371/journal.pone.0170268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/30/2016] [Indexed: 01/14/2023] Open
Abstract
Deficiency of glucocerebrosidase (GBA) causes Gaucher disease (GD). In the common non-neuronopathic GD type I variant, glucosylceramide accumulates primarily in the lysosomes of visceral macrophages. Supplementing storage cells with lacking enzyme is accomplished via chronic intravenous administration of recombinant GBA containing mannose-terminated N-linked glycans, mediating the selective uptake by macrophages expressing mannose-binding lectin(s). Two recombinant GBA preparations with distinct N-linked glycans are registered in Europe for treatment of type I GD: imiglucerase (Genzyme), contains predominantly Man(3) glycans, and velaglucerase (Shire PLC) Man(9) glycans. Activity-based probes (ABPs) enable fluorescent labeling of recombinant GBA preparations through their covalent attachment to the catalytic nucleophile E340 of GBA. We comparatively studied binding and uptake of ABP-labeled imiglucerase and velaglucerase in isolated dendritic cells, cultured human macrophages and living mice, through simultaneous detection of different GBAs by paired measurements. Uptake of ABP-labeled rGBAs by dendritic cells was comparable, as well as the bio-distribution following equimolar intravenous administration to mice. ABP-labeled rGBAs were recovered largely in liver, white-blood cells, bone marrow and spleen. Lungs, brain and skin, affected tissues in severe GD types II and III, were only poorly supplemented. Small, but significant differences were noted in binding and uptake of rGBAs in cultured human macrophages, in the absence and presence of mannan. Mannan-competed binding and uptake were largest for velaglucerase, when determined with single enzymes or as equimolar mixtures of both enzymes. Vice versa, imiglucerase showed more prominent binding and uptake not competed by mannan. Uptake of recombinant GBAs by cultured macrophages seems to involve multiple receptors, including several mannose-binding lectins. Differences among cells from different donors (n = 12) were noted, but the same trends were always observed. Our study suggests that further insight in targeting and efficacy of enzyme therapy of individual Gaucher patients could be obtained by the use of recombinant GBA, trace-labeled with an ABP, preferably equipped with an infrared fluorophore or other reporter tag suitable for in vivo imaging.
Collapse
Affiliation(s)
- Wouter W. Kallemeijn
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia Scheij
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sascha Hoogendoorn
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Martin D. Witte
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Daniela Herrera Moro Chao
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cindy P. A. A. van Roomen
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Rolf G. Boot
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes M. F. G. Aerts
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Popko K, Jasińska J, Górska E, Demkow U, Balwierz W, Maciejka-Kembłowska L, Badowska W, Wachowiak J, Drabko K, Malinowska I. Impairment of Immune Function in Children with Familial Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 912:21-31. [PMID: 26987330 DOI: 10.1007/5584_2016_210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a severe systemic syndrome associated with hyperactivation of macrophages and impaired regulation of the immune system. Two forms of HLH are currently recognized: genetically determined or familial (FHLH), and secondarily developed in the course of primary diseases, like autoimmune disorders, rheumatoid disorders, cancers, or infections. In the Polish population, FHLH is rather rare. The aim of the present study was to assess the immune function in a group of children with clinical symptoms suggesting FHLH. Forty five children with suspected HLH of the median age of 4 years and 15 healthy children, taken as a control group, were enrolled into the study. All presented results were obtained with the use of flow cytometry. In the HLH group, there were only three cases identified with the UNC13D gene mutation responsible for the FHLH3 phenotype. Another four children, without known mutation, were classified as FHLH because of frequent recurrence of the disease. In all cases of FHLH, cell cytotoxicity was impaired compared with healthy children (p = 0.003). Perforin expression in FHLH was normal or higher than that observed in controls (p = 0.09). In case of patients with mutation in the Munc13 protein, degranulation was lower than that in healthy children (<5 %). The findings of this study demonstrate that children with known mutations responsible for the FHLH development are immunocompromised. However, it requires further elucidation whether the presence of currently unknown mutations could lead to a similar phenotype.
Collapse
Affiliation(s)
- K Popko
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Warsaw Medical University, Warsaw, Poland
| | - J Jasińska
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - E Górska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Warsaw Medical University, Warsaw, Poland
| | - U Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Warsaw Medical University, Warsaw, Poland
| | - W Balwierz
- Department of Pediatrics, Oncology and Hematology, Jagiellonian University Medical College, Cracow, Poland
| | - L Maciejka-Kembłowska
- Department of Pediatrics, Hematology, Oncology and Endocrinology, Gdansk Medical University, Gdansk, Poland
| | - W Badowska
- Department of Pediatric Hematology and Oncology, Regional Children's Hospital, Olsztyn, Poland
| | - J Wachowiak
- Department of Pediatric Oncology and Hematology, Poznan Medical University, Poznan, Poland
| | - K Drabko
- Department of Pediatrics, Hematology, Oncology and Transplantology, Children's Hospital, Lublin, Poland
| | - I Malinowska
- Department of Pediatrics, Hematology and Oncology, Warsaw Medical University, 63A Żwirki i Wigury St., 02-091, Warsaw, Poland.
| |
Collapse
|
14
|
Aflaki E, Borger DK, Grey RJ, Kirby M, Anderson S, Lopez G, Sidransky E. Efferocytosis is impaired in Gaucher macrophages. Haematologica 2016; 102:656-665. [PMID: 28011901 PMCID: PMC5395106 DOI: 10.3324/haematol.2016.155093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/16/2016] [Indexed: 11/09/2022] Open
Abstract
Gaucher disease, the inherited deficiency of lysosomal glucocerebrosidase, is characterized by the presence of glucosylceramide-laden macrophages resulting from impaired digestion of aged erythrocytes or apoptotic leukocytes. Studies of macrophages from patients with type 1 Gaucher disease with genotypes N370S/N370S, N370S/L444P or N370S/c.84dupG revealed that Gaucher macrophages have impaired efferocytosis resulting from reduced levels of p67phox and Rab7. The decreased Rab7 expression leads to impaired fusion of phagosomes with lysosomes. Moreover, there is defective translocation of p67phox to phagosomes, resulting in reduced intracellular production of reactive oxygen species. These factors contribute to defective deposition and clearance of apoptotic cells in phagolysosomes, which may have an impact on the inflammatory response and contribute to the organomegaly and inflammation seen in patients with Gaucher disease.
Collapse
Affiliation(s)
- Elma Aflaki
- Section of Molecular Neurogenetics, Medical Genetics Branch, National Institutes of Health, Bethesda, MD, USA
| | - Daniel K Borger
- Section of Molecular Neurogenetics, Medical Genetics Branch, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Grey
- Section of Molecular Neurogenetics, Medical Genetics Branch, National Institutes of Health, Bethesda, MD, USA
| | - Martha Kirby
- Flow Cytometry Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stacie Anderson
- Flow Cytometry Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grisel Lopez
- Section of Molecular Neurogenetics, Medical Genetics Branch, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Section of Molecular Neurogenetics, Medical Genetics Branch, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Sawicka-Gutaj N, Machaczka M, Kulińska-Niedziela I, Bernardczyk-Meller J, Gutaj P, Sowiński J, Ruchała M. The appearance of newly identified intraocular lesions in Gaucher disease type 3 despite long-term glucocerebrosidase replacement therapy. Ups J Med Sci 2016; 121:192-5. [PMID: 27064303 PMCID: PMC4967266 DOI: 10.3109/03009734.2016.1158756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Gaucher disease (GD) is an autosomal recessive lipid storage disorder caused by the deficient activity of the lysosomal enzyme glucocerebrosidase. The presence of central nervous system disease is a hallmark of the neuronopathic forms of GD (types 2 and 3). Intraocular lesions (e.g. corneal clouding, retinal lesions, and vitreous opacities) have been infrequently reported in GD type 3 (GD3). Moreover, there are virtually no published data on the occurrence and natural course of intraocular lesions in GD3 patients treated with enzyme replacement therapy (ERT). Case presentation We describe the case of a 26-year-old Polish male with L444P homozygous GD3 (mutation c.1448T > C in the GBA1 gene) who developed fundus lesions despite 10 years of ERT. At the age of 23 years, a spectral domain optical coherence tomography (OCT) examination was performed which disclosed the presence of discrete lesions located preretinally, intraretinally in the nerve fiber layer, and in the vitreous body. A 3-year follow-up OCT examination has not shown any significant progression of the fundus lesions. Conclusions To the best of our knowledge, this is the first published report describing the occurrence of newly identified retinal and preretinal lesions occurring during long-term ERT in GD3. We recommend that a careful ophthalmic assessment, including a dilated fundus examination, should be included as part of annual follow-up in patients with GD3. Further studies are needed to understand the nature and clinical course of these changes and whether or not these intraocular findings have any predictive value in the context of neurologic and skeletal progression in GD3.
Collapse
Affiliation(s)
- Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Machaczka
- Hematology Center Karolinska and Department of Medicine at Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- CONTACT Maciej Machaczka, Associate Professor Hematology Center Karolinska, M54, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Izabela Kulińska-Niedziela
- Heliodor Swiecicki Clinical Hospital, Ophthalmology Outpatient Clinic, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Paweł Gutaj
- Department of Obstetrics and Women’s Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Jerzy Sowiński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
16
|
Reihani N, Arlet JB, Dussiot M, de Villemeur TB, Belmatoug N, Rose C, Colin-Aronovicz Y, Hermine O, Le Van Kim C, Franco M. Unexpected macrophage-independent dyserythropoiesis in Gaucher disease. Haematologica 2016; 101:1489-1498. [PMID: 27470603 DOI: 10.3324/haematol.2016.147546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023] Open
Abstract
Gaucher disease is a rare inherited disease caused by a deficiency in glucocerebrosidase leading to lipid accumulation in cells of mononuclear-macrophage lineage known as Gaucher cells. Visceral enlargement, bone involvement, mild anemia and thrombocytopenia are the major manifestations of Gaucher disease. We have previously demonstrated that the red blood cells from patients exhibit abnormal properties, which indicates a new role in Gaucher disease pathophysiology. To investigate whether erythroid progenitors are affected, we examined the in vitro erythropoiesis from the peripheral CD34+ cells of patients and controls. CD34- cells were differentiated into macrophages and co-cultivated with erythroblasts. We showed an accelerated differentiation of erythroid progenitors without maturation arrest from patients compared to controls. This abnormal differentiation persisted in the patients when the same experiments were performed without macrophages, which strongly suggested that dyserythropoiesis in Gaucher disease is secondary to an inherent defect in the erythroid progenitors. The accelerated differentiation was associated with reduced cell proliferation. As a result, less mature erythroid cells were generated in vitro in the Gaucher disease cultures compared to the control. We then compared the biological characteristics of untreated patients according to their anemic status. Compared to the non-anemic group, the anemic patients exhibit higher plasma levels of growth differentiation factor-15, a marker of ineffective erythropoiesis, but they had no indicators of hemolysis and similar reticulocyte counts. Taken together, these results demonstrated an unsuspected dyserythropoiesis that was independent of the macrophages and could participate, at least in part, to the basis of anemia in Gaucher disease.
Collapse
Affiliation(s)
- Nelly Reihani
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, Paris
| | - Jean-Benoit Arlet
- Sorbonne Paris-Cité, Université Paris Descartes, Service de Médecine Interne, Assistance publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Inserm UMR 1163, CNRS ERL 8254, Hôpital Necker, Institut Imagine, Laboratoire d'excellence GR-Ex, Paris
| | - Michael Dussiot
- Sorbonne Paris-Cité, Université Paris Descartes, Inserm UMR 1163, CNRS ERL 8254, Institut Imagine, Hôpital Necker, Laboratoire d'excellence GR-Ex, Paris
| | - Thierry Billette de Villemeur
- Sorbonne Université, Université Pierre et Marie Curie, Service de Neuropédiatrie Hôpital Trousseau, Assistance publique-Hôpitaux de Paris, Hôpital et GRC ConCer-LD, Paris
| | - Nadia Belmatoug
- Hôpitaux universitaires Paris Nord Val de Seine, Assistance publique-Hôpitaux de Paris, Hôpital Beaujon, Service de Médecine Interne, Centre de Référence des Maladies Lysosomales, Clichy, France
| | - Christian Rose
- Université Catholique de Lille, Hôpital Saint Vincent de Paul, Service d'Hématologie, Lille, France
| | - Yves Colin-Aronovicz
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, Paris
| | - Olivier Hermine
- Sorbonne Paris-Cité, Université Paris Descartes, Assistance publique-Hôpitaux de Paris, Hôpital Necker, Service d'Hématologie, Inserm UMR 1163, CNRS ERL 8254, Institut Imagine, Laboratoire d'excellence GR-Ex, Paris, Inserm UMR 1163, CNRS, France
| | - Caroline Le Van Kim
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, Paris
| | - Melanie Franco
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, Paris
| |
Collapse
|
17
|
Aflaki E, Moaven N, Borger DK, Lopez G, Westbroek W, Chae JJ, Marugan J, Patnaik S, Maniwang E, Gonzalez AN, Sidransky E. Lysosomal storage and impaired autophagy lead to inflammasome activation in Gaucher macrophages. Aging Cell 2016; 15:77-88. [PMID: 26486234 PMCID: PMC4717273 DOI: 10.1111/acel.12409] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2015] [Indexed: 12/20/2022] Open
Abstract
Gaucher disease, the inherited deficiency of lysosomal glucocerebrosidase, is characterized by the presence of glucosylcer‐amide macrophages, the accumulation of glucosylceramide in lysosomes and the secretion of inflammatory cytokines. However, the connection between this lysosomal storage and inflammation is not clear. Studying macrophages derived from peripheral monocytes from patients with type 1 Gaucher disease with genotype N370S/N370S, we confirmed an increased secretion of interleukins IL‐1β and IL‐6. In addition, we found that activation of the inflammasome, a multiprotein complex that activates caspase‐1, led to the maturation of IL‐1β in Gaucher macrophages. We show that inflammasome activation in these cells is the result of impaired autophagy. Treatment with the small‐molecule glucocerebrosidase chaperone NCGC758 reversed these defects, inducing autophagy and reducing IL‐1β secretion, confirming the role of the deficiency of lysosomal glucocerebrosidase in these processes. We found that in Gaucher macrophages elevated levels of the autophagic adaptor p62 prevented the delivery of inflammasomes to autophagosomes. This increase in p62 led to activation of p65‐NF‐kB in the nucleus, promoting the expression of inflammatory cytokines and the secretion of IL‐1β. This newly elucidated mechanism ties lysosomal dysfunction to inflammasome activation, and may contribute to the massive organomegaly, bone involvement and increased susceptibility to certain malignancies seen in Gaucher disease. Moreover, this link between lysosomal storage, impaired autophagy, and inflammation may have implications relevant to both Parkinson disease and the aging process. Defects in these basic cellular processes may also provide new therapeutic targets.
Collapse
Affiliation(s)
- Elma Aflaki
- Section of Molecular Neurogenetics National Human Genome Research Institute Bethesda MD 20892 USA
| | - Nima Moaven
- Section of Molecular Neurogenetics National Human Genome Research Institute Bethesda MD 20892 USA
| | - Daniel K. Borger
- Section of Molecular Neurogenetics National Human Genome Research Institute Bethesda MD 20892 USA
| | - Grisel Lopez
- Section of Molecular Neurogenetics National Human Genome Research Institute Bethesda MD 20892 USA
| | - Wendy Westbroek
- Section of Molecular Neurogenetics National Human Genome Research Institute Bethesda MD 20892 USA
| | - Jae Jin Chae
- Inflammatory Disease Section National Human Genome Research Institute Bethesda MD 20892 USA
| | - Juan Marugan
- National Center for Advancing Translational Science National Institutes of Health Bethesda MD 20892 USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Science National Institutes of Health Bethesda MD 20892 USA
| | - Emerson Maniwang
- Section of Molecular Neurogenetics National Human Genome Research Institute Bethesda MD 20892 USA
| | - Ashley N. Gonzalez
- Section of Molecular Neurogenetics National Human Genome Research Institute Bethesda MD 20892 USA
| | - Ellen Sidransky
- Section of Molecular Neurogenetics National Human Genome Research Institute Bethesda MD 20892 USA
| |
Collapse
|
18
|
Panicker LM, Miller D, Awad O, Bose V, Lun Y, Park TS, Zambidis ET, Sgambato JA, Feldman RA. Gaucher iPSC-derived macrophages produce elevated levels of inflammatory mediators and serve as a new platform for therapeutic development. Stem Cells 2015; 32:2338-49. [PMID: 24801745 DOI: 10.1002/stem.1732] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/09/2014] [Indexed: 12/21/2022]
Abstract
Gaucher disease (GD) is an autosomal recessive disorder caused by mutations in the acid β-glucocerebrosidase (GCase; GBA) gene. The hallmark of GD is the presence of lipid-laden Gaucher macrophages, which infiltrate bone marrow and other organs. These pathological macrophages are believed to be the sources of elevated levels of inflammatory mediators present in the serum of GD patients. The alteration in the immune environment caused by GD is believed to play a role in the increased risk of developing multiple myeloma and other malignancies in GD patients. To determine directly whether Gaucher macrophages are abnormally activated and whether their functional defects can be reversed by pharmacological intervention, we generated GD macrophages by directed differentiation of human induced pluripotent stem cells (hiPSC) derived from patients with types 1, 2, and 3 GD. GD hiPSC-derived macrophages expressed higher levels of tumor necrosis factor α, IL-6, and IL-1β than control cells, and this phenotype was exacerbated by treatment with lipopolysaccharide. In addition, GD hiPSC macrophages exhibited a striking delay in clearance of phagocytosed red blood cells, recapitulating the presence of red blood cell remnants in Gaucher macrophages from bone marrow aspirates. Incubation of GD hiPSC macrophages with recombinant GCase, or with the chaperones isofagomine and ambroxol, corrected the abnormal phenotypes of GD macrophages to an extent that reflected their known clinical efficacies. We conclude that Gaucher macrophages are the likely source of the elevated levels of inflammatory mediators in the serum of GD patients and that GD hiPSC are valuable new tools for studying disease mechanisms and drug discovery.
Collapse
Affiliation(s)
- Leelamma M Panicker
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gholamreza B, Ghasem MA. Hemophagocytic lymphohistiocytosis syndrome associated with Gaucher disease type 2. Turk J Haematol 2015; 31:307-8. [PMID: 25330526 PMCID: PMC4287034 DOI: 10.4274/tjh.2014.0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Bahoush Gholamreza
- Zahedan University of Medical Sciences, Children and Adolescent Health Research Center, Department of Pediatric Hematology-Oncology, Zahedan, Iran. E-ma-il:
| | | |
Collapse
|
20
|
Sgambato JA, Park TS, Miller D, Panicker LM, Sidransky E, Lun Y, Awad O, Bentzen SM, Zambidis ET, Feldman RA. Gaucher Disease-Induced Pluripotent Stem Cells Display Decreased Erythroid Potential and Aberrant Myelopoiesis. Stem Cells Transl Med 2015; 4:878-86. [PMID: 26062980 DOI: 10.5966/sctm.2014-0213] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/13/2015] [Indexed: 12/15/2022] Open
Abstract
Gaucher disease (GD) is the most common lysosomal storage disease resulting from mutations in the lysosomal enzyme glucocerebrosidase (GCase). The hematopoietic abnormalities in GD include the presence of characteristic Gaucher macrophages that infiltrate patient tissues and cytopenias. At present, it is not clear whether these cytopenias are secondary to the pathological activity of Gaucher cells or a direct effect of GCase deficiency on hematopoietic development. To address this question, we differentiated induced pluripotent stem cells (iPSCs) derived from patients with types 1, 2, and 3 GD to CD34(+)/CD45(+)/CD43(+)/CD143(+) hematopoietic progenitor cells (HPCs) and examined their developmental potential. The formation of GD-HPCs was unaffected. However, these progenitors demonstrated a skewed lineage commitment, with increased myeloid differentiation and decreased erythroid differentiation and maturation. Interestingly, myeloid colony-formation assays revealed that GD-HPCs, but not control-HPCs, gave rise to adherent, macrophage-like cells, another indication of abnormal myelopoiesis. The extent of these hematologic abnormalities correlated with the severity of the GCase mutations. All the phenotypic abnormalities of GD-HPCs observed were reversed by incubation with recombinant GCase, indicating that these developmental defects were caused by the mutated GCase. Our results show that GCase deficiency directly impairs hematopoietic development. Additionally, our results suggest that aberrant myelopoiesis might contribute to the pathological properties of Gaucher macrophages, which are central to GD manifestations. The hematopoietic developmental defects we observed reflect hematologic abnormalities in patients with GD, demonstrating the utility of GD-iPSCs for modeling this disease.
Collapse
Affiliation(s)
- Judi A Sgambato
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Tea Soon Park
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Diana Miller
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Leelamma M Panicker
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Ellen Sidransky
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Yu Lun
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Ola Awad
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Søren M Bentzen
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Elias T Zambidis
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Ricardo A Feldman
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Malinowska I, Machaczka M, Popko K, Siwicka A, Salamonowicz M, Nasiłowska-Adamska B. Hemophagocytic syndrome in children and adults. Arch Immunol Ther Exp (Warsz) 2014; 62:385-94. [PMID: 24509696 PMCID: PMC4164855 DOI: 10.1007/s00005-014-0274-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/07/2014] [Indexed: 11/22/2022]
Abstract
Hemophagocytic syndrome, also known as hemophagocytic lymphohistiocytosis (HLH), is a heterogenic syndrome, which leads to an acute, life-threatening inflammatory reaction. HLH occurs both in children and adults, and can be triggered by various inherited as well as acquired factors. Depending on the etiology, HLH can be divided into genetic (i.e., primary) and acquired (i.e., secondary) forms. Among genetic HLH forms, one can distinguish between familial HLH and other genetically conditioned forms of HLH. Acquired HLH can be typically triggered by infections, autoimmune diseases, and malignancies. The most common symptoms of HLH are unremitting fever, splenomegaly, and peripheral blood cytopenia. Some severely ill patients present with central nervous system involvement. Laboratory tests reveal hyperferritinemia (often >10,000 μg/L), increased serum concentration of soluble receptor α for interleukin-2 (>2,400 U/L), hypertriglyceridemia, hypofibrinogenemia, coagulopathy, hyponatremia, hypoproteinemia, and elevated liver transaminases and bilirubin. Prognosis in HLH is very serious. Genetic HLH is always lethal if adequate therapy is not administered. Similarly, severe acquired cases often lead to death without appropriate treatment. Since HLH can be encountered by various specialists in the medical field, basic knowledge of this entity such as diagnostic criteria and treatment should be familiar to all physicians.
Collapse
Affiliation(s)
- Iwona Malinowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, 00-576 Warsaw, Poland
| | - Maciej Machaczka
- Division of Hematology, Department of Medicine at Huddinge, Karolinska Institutet, M54, SE-141 86 Stockholm, Sweden
- Medical Faculty, University of Rzeszow, Rzeszow, Poland
| | - Katarzyna Popko
- Department of Laboratory Medicine and Pediatric Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Siwicka
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, 00-576 Warsaw, Poland
| | - Małgorzata Salamonowicz
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, 00-576 Warsaw, Poland
| | | |
Collapse
|
22
|
Impact of imiglucerase supply shortage on clinical and laboratory parameters in Norrbottnian patients with Gaucher disease type 3. Arch Immunol Ther Exp (Warsz) 2014; 63:65-71. [PMID: 25205209 PMCID: PMC4289531 DOI: 10.1007/s00005-014-0308-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 08/07/2014] [Indexed: 11/04/2022]
Abstract
A viral contamination of the production plant producing imiglucerase (Cerezyme™) resulted in an unpredicted worldwide shortage of global supplies during 2009–2010. The aim of the study was to describe the effects of dose reduction of enzyme replacement therapy (ERT) in adults with Norrbottnian form of Gaucher disease type 3 (N-GD3). There were ten adults with N-GD3 treated with imiglucerase in the county of Norrbotten in June 2009. Analyzed variables included plasma chitotriosidase activity and concentration of CCL18/PARC, whole blood hemoglobin concentration (Hb) and platelet count (PLT), as well as patients’ body weight, subjective complaints and health status measured by the EuroQoL-5D questionnaire. The median duration of ERT shortage lasted for 14 months (10–20 months). The median percentage reduction of imiglucerase dose was 36 % (26–59 %). Hb decreased in four patients, PLT decreased in three patients, chitotriosidase increased in three patients (max. +22 % of baseline), and CCL18/PARC increased in six patients (+14 % to +57 %). The body weight was moderately decreased in one patient. No new bone events were noted. Self-assessment of individual patient’s health status was stable in all but one patient. Our results suggest that moderate reduction of ERT dosage lasting for relatively short period of time can lead to worsening in biomarkers of adults with N-GD3. However, this worsening is infrequently translated to clinical worsening of patients. It is possible that CCL18/PARC has a higher sensitivity than chitotriosidase in monitoring of ERT dosing in GD3.
Collapse
|
23
|
Markuszewska-Kuczyńska A, Kämpe Björkvall C, Lorenz F, Kleinotiene G, Klimkowska M, Machaczka M. Długotrwała pancytopenia po chemioterapii jako objaw demaskujący chorobę Gauchera u pacjentki z rakiem płuca. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.achaem.2014.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
|
25
|
Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease. Proc Natl Acad Sci U S A 2012; 109:18054-9. [PMID: 23071332 DOI: 10.1073/pnas.1207889109] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gaucher disease (GD) is an autosomal recessive disorder caused by mutations in the acid β-glucocerebrosidase gene. To model GD, we generated human induced pluripotent stem cells (hiPSC), by reprogramming skin fibroblasts from patients with type 1 (N370S/N370S), type 2 (L444P/RecNciI), and type 3 (L444P/L444P) GD. Pluripotency was demonstrated by the ability of GD hiPSC to differentiate to all three germ layers and to form teratomas in vivo. GD hiPSC differentiated efficiently to the cell types most affected in GD, i.e., macrophages and neuronal cells. GD hiPSC-macrophages expressed macrophage-specific markers, were phagocytic, and were capable of releasing inflammatory mediators in response to LPS. Moreover, GD hiPSC-macrophages recapitulated the phenotypic hallmarks of the disease. They exhibited low glucocerebrosidase (GC) enzymatic activity and accumulated sphingolipids, and their lysosomal functions were severely compromised. GD hiPSC-macrophages had a defect in their ability to clear phagocytosed RBC, a phenotype of tissue-infiltrating GD macrophages. The kinetics of RBC clearance by types 1, 2, and 3 GD hiPSC-macrophages correlated with the severity of the mutations. Incubation with recombinant GC completely reversed the delay in RBC clearance from all three types of GD hiPSC-macrophages, indicating that their functional defects were indeed caused by GC deficiency. However, treatment of induced macrophages with the chaperone isofagomine restored phagocytosed RBC clearance only partially, regardless of genotype. These findings are consistent with the known clinical efficacies of recombinant GC and isofagomine. We conclude that cell types derived from GD hiPSC can effectively recapitulate pathologic hallmarks of the disease.
Collapse
|