1
|
Chin HL, Lai PS, Tay SKH. A clinical approach to diagnosis and management of mitochondrial myopathies. Neurotherapeutics 2024; 21:e00304. [PMID: 38241155 PMCID: PMC10903095 DOI: 10.1016/j.neurot.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/11/2023] [Indexed: 01/21/2024] Open
Abstract
This paper provides an overview of the different types of mitochondrial myopathies (MM), associated phenotypes, genotypes as well as a practical clinical approach towards disease diagnosis, surveillance, and management. nDNA-related MM are more common in pediatric-onset disease whilst mtDNA-related MMs are more frequent in adults. Genotype-phenotype correlation in MM is challenging due to clinical and genetic heterogeneity. The multisystemic nature of many MMs adds to the diagnostic challenge. Diagnostic approaches utilizing genetic sequencing with next generation sequencing approaches such as gene panel, exome and genome sequencing are available. This aids molecular diagnosis, heteroplasmy detection in MM patients and furthers knowledge of known mitochondrial genes. Precise disease diagnosis can end the diagnostic odyssey for patients, avoid unnecessary testing, provide prognosis, facilitate anticipatory management, and enable access to available therapies or clinical trials. Adjunctive tests such as functional and exercise testing could aid surveillance of MM patients. Management requires a multi-disciplinary approach, systemic screening for comorbidities, cofactor supplementation, avoidance of substances that inhibit the respiratory chain and exercise training. This update of the current understanding on MMs provides practical perspectives on current diagnostic and management approaches for this complex group of disorders.
Collapse
Affiliation(s)
- Hui-Lin Chin
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stacey Kiat Hong Tay
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Neurology, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore.
| |
Collapse
|
2
|
Bertini E, Gregg E, Bartlett C, Senthilnathan V, Arber M, Watkins D, Graziadio S, Tomazos I. The burden of mitochondrial disease with associated seizures: systematic literature reviews of health-related quality of life, utilities, costs and healthcare resource use data. Orphanet J Rare Dis 2023; 18:320. [PMID: 37821990 PMCID: PMC10568748 DOI: 10.1186/s13023-023-02945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Mitochondrial disease is a degenerative, progressive, heterogeneous group of genetic disorders affecting children and adults. Mitochondrial disease is associated with morbidity and mortality, with predominantly neurological and neuromuscular symptoms including dystonia, weakness, encephalopathy, developmental delay and seizures. Seizures are one of the most common and severe manifestations of mitochondrial disease. These seizures are typically refractory to common anti-seizure therapies. There are no approved disease-modifying treatments for mitochondrial disease. Our objective was to conduct two systematic literature reviews to identify health-related quality of life (HRQoL), utilities, costs and healthcare resource use data in mitochondrial disease with associated seizures. METHODS A range of databases and information sources were searched up to July 2022 to identify eligible studies. Search strategies included a range of variant terms for mitochondrial disease and HRQoL, utilities, cost and healthcare resource use outcomes. Two reviewers independently assessed articles against the eligibility criteria; studies were extracted by one reviewer and checked by a second. Risk of bias was assessed for studies reporting HRQoL data. Results were narratively assessed. RESULTS Seven studies were eligible for the HRQoL and utilities review. The studies used different tools to report data, and despite the variability in methods, HRQoL scores across the studies showed moderate/severe disease in patients with mitochondrial disease with associated seizures. Parents of patients with mitochondrial disease with associated seizures were characterised by high total parenting stress. No studies reported utilities data. Two case reports and one retrospective review of medical records of children who died in hospital were eligible for the costs and resource use review. These provided limited information on the duration of hospital stay, in an intensive care unit (ICU), on mechanical ventilation. No studies reported costs data. CONCLUSION These reviews highlight the limited HRQoL, utilities, costs and resource use data and the variability of instruments used in mitochondrial disease with associated seizures. However, the data available indicate that mitochondrial disease with associated seizures affects patients' and caregivers' HRQoL alike. No robust conclusion can be drawn on the impact of mitochondrial disease with associated seizures on hospital or ICU length of stay. Trial registration PROSPERO: CRD42022345005.
Collapse
Affiliation(s)
- Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, Rome, Italy
| | | | | | | | - Mick Arber
- York Health Economics Consortium, York, UK
| | | | | | | |
Collapse
|
3
|
Diodato D, Schiff M, Cohen BH, Bertini E, Rahman S. 258th ENMC international workshop Leigh syndrome spectrum: genetic causes, natural history and preparing for clinical trials 25-27 March 2022, Hoofddorp, Amsterdam, The Netherlands. Neuromuscul Disord 2023; 33:700-709. [PMID: 37541860 DOI: 10.1016/j.nmd.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/06/2023]
Affiliation(s)
- Daria Diodato
- Unit of Neuromuscular and Neurodegenerative Disorders, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Manuel Schiff
- Reference Center for Mitochondrial Disease, CARAMMEL, Necker University Hospital, APHP and University of Paris Cité, Paris, France; INSERM UMRS_1163, Institut Imagine, Paris, France
| | - Bruce H Cohen
- Department of Pediatrics and Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, OH, United States
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Shamima Rahman
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK and Metabolic Unit, Great Ormond Street Hospital, London WC1N 3JH, United Kingdom.
| |
Collapse
|
4
|
Jacoby E, Bar-Yosef O, Gruber N, Lahav E, Varda-Bloom N, Bolkier Y, Bar D, Blumkin MBY, Barak S, Eisenstein E, Ahonniska-Assa J, Silberg T, Krasovsky T, Bar O, Erez N, Bielorai B, Golan H, Dekel B, Besser MJ, Pozner G, Khoury H, Jacobs A, Campbell J, Herskovitz E, Sher N, Yivgi-Ohana N, Anikster Y, Toren A. Mitochondrial augmentation of hematopoietic stem cells in children with single large-scale mitochondrial DNA deletion syndromes. Sci Transl Med 2022; 14:eabo3724. [PMID: 36542693 DOI: 10.1126/scitranslmed.abo3724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with single large-scale mitochondrial DNA (mtDNA) deletion syndromes (SLSMDs) usually present with multisystemic disease, either as Pearson syndrome in early childhood or as Kearns-Sayre syndrome later in life. No disease-modifying therapies exist for SLSMDs. We have developed a method to enrich hematopoietic cells with exogenous mitochondria, and we treated six patients with SLSMDs through a compassionate use program. Autologous CD34+ hematopoietic cells were augmented with maternally derived healthy mitochondria, a technology termed mitochondrial augmentation therapy (MAT). All patients had substantial multisystemic disease involvement at baseline, including neurologic, endocrine, or renal impairment. We first assessed safety, finding that the procedure was well tolerated and that all study-related severe adverse events were either leukapheresis-related or related to the baseline disorder. After MAT, heteroplasmy decreased in the peripheral blood in four of the six patients. An increase in mtDNA content of peripheral blood cells was measured in all six patients 6 to 12 months after MAT as compared baseline. We noted some clinical improvement in aerobic function, measured in patients 2 and 3 by sit-to-stand or 6-min walk testing, and an increase in the body weight of five of the six patients suffering from very low body weight before treatment. Quality-of-life measurements as per caregiver assessment and physical examination showed improvement in some parameters. Together, this work lays the ground for clinical trials of MAT for the treatment of patients with mtDNA disorders.
Collapse
Affiliation(s)
- Elad Jacoby
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Omer Bar-Yosef
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noah Gruber
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Einat Lahav
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nira Varda-Bloom
- Stem Cell Processing Laboratory, Sheba Medical Center, Tel Hashomer 5262000, Israel
| | - Yoav Bolkier
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Diana Bar
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
| | | | - Sharon Barak
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Department of Nursing, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel
| | - Etzyona Eisenstein
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
| | - Jaana Ahonniska-Assa
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,School of Behavioral Sciences, Academic College of Tel Aviv Yaffo, Tel Aviv 64044, Israel
| | - Tamar Silberg
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Department of Psychology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tal Krasovsky
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 34988, Israel
| | - Orly Bar
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
| | - Neta Erez
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
| | - Bella Bielorai
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hana Golan
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Benjamin Dekel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michal J Besser
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Ella Lemelbaum Institute of Immuno-oncology, Sheba Medical Center, Tel Hashomer 5262000, Israel
| | - Gat Pozner
- Minovia Therapeutics, Tirat HaCarmel 3902603, Israel
| | - Hanan Khoury
- Minovia Therapeutics, Tirat HaCarmel 3902603, Israel
| | - Alan Jacobs
- Minovia Therapeutics, Tirat HaCarmel 3902603, Israel
| | - John Campbell
- Minovia Therapeutics, Tirat HaCarmel 3902603, Israel
| | | | - Noa Sher
- Minovia Therapeutics, Tirat HaCarmel 3902603, Israel
| | | | - Yair Anikster
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amos Toren
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Mensah EA, Sarfo B, Yawson AE, Arthur J, Ocloo A. Knowledge and awareness of mitochondrial diseases among physicians in the tertiary hospitals in Ghana. PLoS One 2022; 17:e0276549. [PMID: 36264964 PMCID: PMC9584519 DOI: 10.1371/journal.pone.0276549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/08/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mitochondrial diseases/disorders (MDs), for decades, have been identified as a key underlying condition for many chronic diseases globally. However, data on the knowledge and prevalence of MDs in many countries in sub-Saharan Africa are lacking. This study assessed the knowledge, and awareness, of MDs among senior medical doctors in the five tertiary hospitals in Ghana. METHOD Data were collected from one hundred and twenty-eight (128) medical doctors in the five Tertiary Hospitals in Ghana using both closed and open-ended questionnaires and analysed using descriptive statistics. RESULTS Of the 128 respondents, 70.32% were senior medical officers and above, 87% of them indicated that they were aware of MDs and over 90% said physicians do not often diagnose MDs in Ghana. About 81% indicated that MDs are associated with chronic illnesses whilst 72% said the disease is diagnosed in both males and females. About 45% of the respondents alluded to the fact that MDs are difficult to diagnose, are associated with mutations in both the mitochondrial and the nuclear DNA, and are non-infectious diseases. Approximately 85% said nervous system dysfunction and muscle weakness are some of the symptoms associated with MDs whilst 77% said fatigue is also one of the symptoms. About 38% of the respondents specified that they encounter myopathies. A majority (70%) did not know about the availability of any consensus or standard diagnostic procedure and/or drugs for MDs. CONCLUSION There is a high level of knowledge and awareness of MDs among the respondents. However, there is a low disease encounter, which could be due to a lack of diagnostic protocols or a low disease prevalence. It is, therefore recommend that a patient perspective study, which looks at clinical records and laboratory data be conducted to fully ascertain the prevalence of MDs in Ghana and that appropriate educational strategies and interventions aimed at improving the diagnosis of mitochondrial diseases in Ghana be put in place.
Collapse
Affiliation(s)
- Eric A. Mensah
- Department of Biochemistry, Cell & Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- West African Centre for the Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Bismark Sarfo
- Department of Epidemiology and Disease Control, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Alfred E. Yawson
- Department of Community Health, University of Ghana Medical School, College of Health Sciences, University of Ghana Korle Bu, Accra, Ghana
| | - Joshua Arthur
- Public Health Unit, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Augustine Ocloo
- Department of Biochemistry, Cell & Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- * E-mail:
| |
Collapse
|
6
|
Chiu ATG, Wong SSN, Wong NWT, Wong WHS, Tso WWY, Fung CW. Quality of life and symptom burden in children with neurodegenerative diseases: using PedsQL and SProND, a new symptom-based scale. Orphanet J Rare Dis 2022; 17:334. [PMID: 36056400 PMCID: PMC9437405 DOI: 10.1186/s13023-022-02485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Children with neurodegenerative conditions (CNDC) often suffer from severe neurodisability and high symptom burden with multisystemic involvement. However, their symptom burden and health-related quality of life (HRQOL) is not systematically documented in the literature, and there is no existing tool for such purposes. We designed our own tool for scoring of symptom burden amongst CNDCs and adopted the PedsQL generic score 4.0 to quantify the impact of overall symptom burden on children’s overall HRQOL.
Methods The Symptom Profile for children with neurodegnerative condition (SProND) questionnaire was developed, which consisted of 14 questions grouped according to 5 categories, namely epilepsy, neurobehavioural, movement and mobility related, breathing and swallowing, and other daily activities. CNDCs were recruited during visits to the Comprehensive Neurometabolic / Neurodegenerative Program of the Duchess of Kent Children’s Hospital and Hong Kong Children’s Hospital between November 2019 and March 2020. The SProND and PedsQL 4.0 Generic Core Scales were distributed to consenting parents of CNDCs.
Results 36 CNDCs were recruited and matched with community controls. The response rate of subject and control were 99.5% and 98.7% respectively. The Cronbach alpha was 0.61 for the neurobehavioural domain and > = 0.7 for other domains. The greater number of symptoms each subject experiences, the worse his/ her PedsQL scores. Subjects displaying hypersalivation and swallowing difficulties had average physical health summary scores of less than 30% compared with subjects without these symptoms. On the other hand, average psychosocial health summary scores of subjects with involuntary movements, joint stiffness, hypersalivation, sleep problem and anorexia were approximately 70% compared to subjects without these symptoms. Discussion and conclusion This is one of the first studies to look at CNDCs as a group. We propose the SProND questionnaire for evaluation of symptom profile amongst CNDCs with satisfactory internal and external validity. It demonstrates how physical symptoms impact both physical and psychosocial HRQOL, and the cumulative effect of individual symptoms on the overall HRQOL. As such, CNDCs should be systematically screened for multi-systemic symptoms as a routine part of their clinical care, and care plans should be individually catered to individual patients’ symptom burden and specific needs.
Collapse
Affiliation(s)
- Annie Ting Gee Chiu
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Sheila Suet Na Wong
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Naomi Wing Tung Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Wilfred Hing Sang Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Winnie Wan Yee Tso
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China.
| | - Cheuk Wing Fung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong SAR, China.
| |
Collapse
|
7
|
Smeitink J, van Maanen R, de Boer L, Ruiterkamp G, Renkema H. A randomised placebo-controlled, double-blind phase II study to explore the safety, efficacy, and pharmacokinetics of sonlicromanol in children with genetically confirmed mitochondrial disease and motor symptoms ("KHENERGYC"). BMC Neurol 2022; 22:158. [PMID: 35477351 PMCID: PMC9044835 DOI: 10.1186/s12883-022-02685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
Background Methods The KHENERGYC trial will be a phase II, randomised, double-blinded, placebo-controlled (DBPC), parallel-group study in the paediatric population (birth up to and including 17 years). The study will be recruiting 24 patients suffering from motor symptoms due to genetically confirmed PMD. The trial will be divided into two phases. The first phase of the study will be an adaptive pharmacokinetic (PK) study with four days of treatment, while the second phase will include randomisation of the participants and evaluating the efficacy and safety of sonlicromanol over 6 months. Discussion Effective novel therapies for treating PMDs in children are an unmet need. This study will assess the pharmacokinetics, efficacy, and safety of sonlicromanol in children with genetically confirmed PMDs, suffering from motor symptoms. Trial registration clinicaltrials.gov: NCT04846036, registered April 15, 2021. European Union Clinical Trial Register (EUDRACT number: 2020–003124-16), registered October 20, 2020. CCMO registration: NL75221.091.20, registered on October 7, 2020.
Collapse
Affiliation(s)
- Jan Smeitink
- Khondrion BV, Transistorweg 5C, M Building, 6534, AT, Nijmegen, The Netherlands.
| | - Rob van Maanen
- Khondrion BV, Transistorweg 5C, M Building, 6534, AT, Nijmegen, The Netherlands
| | - Lonneke de Boer
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - Gerrit Ruiterkamp
- Khondrion BV, Transistorweg 5C, M Building, 6534, AT, Nijmegen, The Netherlands
| | - Herma Renkema
- Khondrion BV, Transistorweg 5C, M Building, 6534, AT, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Wesół-Kucharska D, Rokicki D, Greczan M, Kaczor M, Czkuć-Kryśkiewicz E, Piekutowska-Abramczuk D, Halat-Wolska P, Ciara E, Jaworski M, Jezela-Stanek A. The fibroblast growth factor 21 concentration in children with mitochondrial disease does not depend on the disease stage, but rather on the disease genotype. Pediatr Endocrinol Diabetes Metab 2022; 28:141-151. [PMID: 35620925 PMCID: PMC10214940 DOI: 10.5114/pedm.2022.116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/13/2022] [Indexed: 06/07/2023]
Abstract
ABSTRACT The fibroblast growth factor 21 (FGF21) is a new biomarker of mitochondrial diseases (MD). FGF21 concentration may be used to define the severity of mitochondrial disease. AIM OF THE STUDY The study objective was to verify if the FGF21 concentration in paediatric patients with MD was correlated with the disease severity and stage and to assess the correlation between FGF21 levels and the genetic background of MD. MATERIAL AND METHODS The disease stage in MD subjects was determined on the basis of the International Paediatric Mitochondrial Disease Scale (IPMDS) and the concentrations of FGF21, lactic and pyruvic acids, alanine and creatine kinase in serum were assessed in those patients. RESULTS The median age of children with MD (n = 32) was 33 months (range: 2-213), in the control group (n = 21) the median age was 42 months (range: 8-202). The concentrations of FGF21, lactic acid and pyruvic acid were higher in MD patients than in the control group. No correlation between the disease severity (IPMDS) and serum FGF21 concentration was found. The FGF21 concentration was higher in patients whose MD resulted from nuclear gene damage (nDNA), median FGF21 = 1022 (84-8873) pg/ml, than in patients with MD resulting from mitochondrial damage (mtDNA), median FGF21 = 736 (188-2906) pg/ml, or with an abnormal variant in the PDHA1 gene, median FGF21 = 58 (25-637) pg/ml. CONCLUSIONS There is no correlation between the stage of MD and FGF21 level. Higher FGF21 values are seen in patients whose MD results from an abnormal nDNA variant rather than mtDNA damage.
Collapse
Affiliation(s)
- Dorota Wesół-Kucharska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Milena Greczan
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Magdalena Kaczor
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Edyta Czkuć-Kryśkiewicz
- Laboratory of Radioimmunology and Experimental Medicine, Department of Biochemistry, Radioimmunology and Experimental Medicine; The Children’s Memorial Health Institute, Warsaw, Poland
| | | | - Paulina Halat-Wolska
- Department of Medical Genetics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Maciej Jaworski
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
9
|
Li Y, Li S, Qiu Y, Zhou M, Chen M, Hu Y, Hong S, Jiang L, Guo Y. Circulating FGF21 and GDF15 as Biomarkers for Screening, Diagnosis, and Severity Assessment of Primary Mitochondrial Disorders in Children. Front Pediatr 2022; 10:851534. [PMID: 35498801 PMCID: PMC9047692 DOI: 10.3389/fped.2022.851534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Primary mitochondrial disorders (PMDs) are a diagnostic challenge for paediatricians, and identification of reliable and easily measurable biomarkers has become a high priority. This study aimed to investigate the role of serum fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) in children with PMDs. METHODS We analysed serum FGF21 and GDF15 concentrations by enzyme-linked immunosorbent assay (ELISA) in children with PMDs, patients with non-mitochondrial neuromuscular disorders (NMDs), and aged-matched healthy children, and compared them with serum lactate and ratio of lactate and pyruvate (L/P). We also evaluated correlations between these biomarkers and the phenotype, genotype, and severity of PMDs. RESULTS The median serum GDF15 and FGF21 concentrations were significantly elevated in fifty-one patients with PMDs (919.46 pg/ml and 281.3 pg/ml) compared with those of thirty patients with NMDs (294.86 pg/ml and 140.51 pg/ml, both P < 0.05) and fifty healthy controls (221.21 pg/ml and 85.02 pg/ml, both P < 0.05). The area under the curve of GDF15 for the diagnosis of PMDs was 0.891, which was higher than that of the other biomarkers, including FGF21 (0.814), lactate (0.863) and L/P ratio (0.671). Calculated by the maximum Youden index, the critical value of GDF15 was 606.369 pg/ml, and corresponding sensitivity and specificity were 74.5and 100%. In the PMD group, FGF21 was significantly correlated with International Paediatric Mitochondrial Disease Scale (IPMDS) score. The levels of GDF15 and FGF21 were positively correlated with age, critical illness condition, and multisystem involvement but were not correlated with syndromic/non-syndromic PMDs, different mitochondrial syndromes, nuclear DNA/mitochondrial DNA pathogenic variants, gene functions, or different organ/system involvement. CONCLUSION Regardless of clinical phenotype and genotype, circulating GDF15 and FGF21 are reliable biomarkers for children with PMDs. GDF15 can serve as a screening biomarker for diagnosis, and FGF21 can serve as a severity biomarker for monitoring.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Shengrui Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yinfeng Qiu
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Maobin Zhou
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Min Chen
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yue Hu
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Siqi Hong
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yi Guo
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
10
|
Goldstein A, Rahman S. Seeking impact: Global perspectives on outcome measure selection for translational and clinical research for primary mitochondrial disorders. J Inherit Metab Dis 2021; 44:343-357. [PMID: 33016339 DOI: 10.1002/jimd.12320] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022]
Abstract
Primary mitochondrial disorders (PMDs) are challenging due to overall poor outcomes, no proven treatments, and a history of failed clinical trials, leading to a critical need to design future trials that can prove efficacy of an intervention. Selection of outcome measures for PMDs is complicated by extreme clinical, biochemical and genetic heterogeneity; PMDs are effectively a collection of nearly 400 individually ultrarare diseases. In clinical trials, outcome measures aim to evaluate, and ideally quantitate, the efficacy of an intervention in ameliorating clinical phenotype(s). The heterogeneity and multisystemic nature of PMDs makes it unlikely that a universal outcome measure will be applicable to all PMDs. Instead, a composite score of the individual's most worrisome symptoms may be a preferable endpoint. A further challenge arises from the tension between finding outcomes suitable for use in clinical trials (able to produce a measurable change in a relatively short period of time, namely the duration of a clinical trial) vs measures that are clinically meaningful to individual patients. A number of clinical rating scales and proposed biomarkers have emerged to capture the features of PMDs for natural history and interventional trials. Here we review our collective experiences with clinical rating scales, patient-reported outcome measures, and physiological, imaging, biochemical and muscle phenotypes as outcome measures in paediatric and adult PMDs in natural history studies and recent clinical trials. There is a pressing need to agree on a set of validated, robust, clinically meaningful outcome measures internationally, to facilitate the multicentre international clinical trials needed for optimal evaluation of novel therapies for these ultrarare diseases.
Collapse
Affiliation(s)
- Amy Goldstein
- Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shamima Rahman
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
11
|
Thompson PW. Developing new treatments in partnership for primary mitochondrial disease: What does industry need from academics, and what do academics need from industry? J Inherit Metab Dis 2021; 44:301-311. [PMID: 33141457 DOI: 10.1002/jimd.12326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Developing novel therapeutics for primary mitochondrial disease is likely to require significant academia-industry collaboration. Translational assessments, a tool often used in industry at target validation stage, can highlight disease specific development challenges which requires focused collaborative effort. For PMD, definition of pivotal trial populations and primary endpoints is challenging given lack of clinical precedence, high numbers of subgroups with overlapping symptoms despite common genetics. Disease pathophysiology has not been systematically assessed simultaneously with outcomes in available natural history studies, resulting in a lack of pathophysiology biomarker utilization in clinical trials. Preclinical model systems are available to assist drug development efforts, although these may require better standardization and access. Multistakeholder precompetitive efforts have been used to progress disease pathophysiology biomarker and confirmatory clinical trial endpoint readiness in neurological disease with limited treatment options, such as rare familial Parkinson's disease. This type of approach may be beneficial for PMD therapeutic development, although requires significant funding and time, supported by industry and other funding bodies. Industry expertise on chemistry, data quality and drug development know-how is available to support academic drug development efforts. A combination of industry mindset-reduction of uncertainty to provide an indication statement supportable by evidence-together with academic approach-question-based studies to understand disease mechanisms and patients-has great potential to deliver novel PMD therapeutics.
Collapse
Affiliation(s)
- Paul W Thompson
- Mission Therapeutics, Babraham Research Campus, Cambridge, UK
| |
Collapse
|
12
|
Mancuso M, McFarland R, Klopstock T, Hirano M. International Workshop:: Outcome measures and clinical trial readiness in primary mitochondrial myopathies in children and adults. Consensus recommendations. 16-18 November 2016, Rome, Italy. Neuromuscul Disord 2017; 27:1126-1137. [PMID: 29074296 PMCID: PMC6094160 DOI: 10.1016/j.nmd.2017.08.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Michelangelo Mancuso
- Department of Experimental and Clinical Medicine, Neurological Institute, University of Pisa, Italy.
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Department of Physiology and Functional Genomics NE1 3BZ, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas Klopstock
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, LMU München, Ziemssenstr. 1a, 80336 München, Federal Republic of Germany
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Metabolomics of mitochondrial disease. Mitochondrion 2017; 35:97-110. [DOI: 10.1016/j.mito.2017.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 05/08/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022]
|