1
|
Mao SJ, Chen QQ, Dai YL, Dong GP, Zou CC. The diagnosis and management of mucopolysaccharidosis type II. Ital J Pediatr 2024; 50:207. [PMID: 39380047 PMCID: PMC11463001 DOI: 10.1186/s13052-024-01769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
Mucopolysaccharidosis type II (MPS II) is a rare X-linked recessive inherited lysosomal storage disease. With pathogenic variants of the IDS gene, the activity of iduronate-2-sulfatase (IDS) is reduced or lost, causing the inability to degrade glycosaminoglycans (GAGs) in cells and influencing cell function, eventually resulting in multisystemic manifestations, such as a coarse face, dysostosis multiplex, recurrent respiratory tract infections, and hernias. Diagnosing MPS II requires a combination of clinical manifestations, imaging examinations, urinary GAGs screening, enzyme activity, and genetic testing. Currently, symptomatic treatment is the main therapeutic approach. Owing to economic and drug availability issues, only a minority of patients opt for enzyme replacement therapy or hematopoietic stem cell transplantation. The limited awareness of the disease, the lack of widespread detection technology, and uneven economic development contribute to the high rates of misdiagnosis and missed diagnosis in China.
Collapse
Affiliation(s)
- Shao-Jia Mao
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing-Qing Chen
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yang-Li Dai
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Guan-Ping Dong
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao-Chun Zou
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Seo JH, Kosuga M, Hamazaki T, Shintaku H, Okuyama T. Intracerebroventricular enzyme replacement therapy in patients with neuronopathic mucopolysaccharidosis type II: Final report of 5-year results from a Japanese open-label phase 1/2 study. Mol Genet Metab 2023; 140:107709. [PMID: 37922836 DOI: 10.1016/j.ymgme.2023.107709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Intravenous idursulfase is standard treatment for mucopolysaccharidosis II (MPS II) in Japan. In the interim analysis of this open-label, phase 1/2 study (Center for Clinical Trials, Japan Medical Association: JMA-IIA00350), intracerebroventricular (ICV) idursulfase beta was well tolerated, suppressed cerebrospinal fluid (CSF) heparan sulfate (HS) levels, and stabilized developmental decline over 100 weeks in Japanese children with MPS II. Here, we report the final study results, representing 5 years of ICV idursulfase beta treatment. Six male patients with MPS II and developmental delay were enrolled starting in June 2016 and followed until March 2021. Patients received up to 30 mg ICV idursulfase beta every 4 weeks. Outcomes included CSF HS levels, developmental age (DA) (assessed by the Kyoto Scale of Psychological Development), and safety (adverse events). Monitoring by laboratory biochemistry tests, urinary uronic tests, immunogenicity tests, and head computed tomography or magnetic resonance imaging were also conducted regularly. Following ICV idursulfase beta administration, mean CSF HS concentrations decreased from 7.75 μg/mL at baseline to 2.15 μg/mL at final injection (72.3% reduction). Mean DA increased from 23.2 months at screening to 36.0 months at final observation. In five patients with null mutations, mean DA at the final observation was higher than or did not regress compared with that of historical controls receiving intravenous idursulfase only, and the change in DA was greater in patients who started administration aged ≤3 years than in those aged >3 years (+28.7 vs -6.5 months). The difference in DA change versus historical controls in individual patients was +39.5, +40.8, +17.8, +10.5, +7.6 and - 4.5 (mean + 18.6). Common ICV idursulfase beta-related adverse events were vomiting, pyrexia, gastroenteritis, and upper respiratory tract infection (most mild/moderate). These results suggest that long-term ICV idursulfase beta treatment improved neurological symptoms in Japanese children with neuronopathic MPS II.
Collapse
Affiliation(s)
- Joo-Hyun Seo
- Department of Clinical Genomics, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1241, Japan
| | - Motomichi Kosuga
- Division of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Takashi Hamazaki
- Department of Pediatrics, Osaka Metropolitan University Hospital, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Haruo Shintaku
- Department of Pediatrics, Osaka Metropolitan University Hospital, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Torayuki Okuyama
- Department of Clinical Genomics, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1241, Japan; Division of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| |
Collapse
|
3
|
Yamazaki N, Ohira M, Takada S, Ohtake A, Onodera M, Nakanishi M, Okuyama T, Mashima R. Enhanced osteoblastic differentiation of parietal bone in a novel murine model of mucopolysaccharidosis type II. Mol Genet Metab Rep 2023; 37:101021. [PMID: 38053930 PMCID: PMC10694741 DOI: 10.1016/j.ymgmr.2023.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Mucopolysaccharidosis type II (MPS II, OMIM 309900) is an X-linked disorder caused by a deficiency of lysosomal enzyme iduronate-2-sulfatase (IDS). The clinical manifestations of MPS II involve cognitive decline, bone deformity, and visceral disorders. These manifestations are closely associated with IDS enzyme activity, which catalyzes the stepwise degradation of heparan sulfate and dermatan sulfate. In this study, we established a novel Ids-deficient mice and further assessed the enzyme's physiological role. Using DNA sequencing, we found a genomic modification of the Ids genome, which involved the deletion of a 138-bp fragment spanning from intron 2 to exon 3, along with the insertion of an adenine at the 5' end of exon 3 in the mutated allele. Consistent with previous data, our Ids-deficient mice showed an attenuated enzyme activity and an enhanced accumulation of glycosaminoglycans. Interestingly, we noticed a distinct enlargement of the calvarial bone in both neonatal and young adult mice. Our examination revealed that Ids deficiency led to an enhanced osteoblastogenesis in the parietal bone, a posterior part of the calvarial bone originating from the paraxial mesoderm and associated with an enhanced expression of osteoblastic makers, such as Col1a and Runx2. In sharp contrast, cell proliferation of the parietal bone in these mice appeared similar to that of wild-type controls. These results suggest that the deficiency of Ids could be involved in an augmented differentiation of calvarial bone, which is often noticed as an enlarged head circumference in MPS II-affected individuals.
Collapse
Affiliation(s)
- Narutoshi Yamazaki
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Department of Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Mari Ohira
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Akira Ohtake
- Department of Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama 350-0495, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mahito Nakanishi
- TOKIWA-Bio Inc., 2-1-6 Sengen, Tsukuba City, Ibaraki 305-0047, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Department of Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
4
|
Hunter JE, Molony CM, Bagel JH, O’Donnell PA, Kaler SG, Wolfe JH. Transduction characteristics of alternative adeno-associated virus serotypes in the cat brain by intracisternal delivery. Mol Ther Methods Clin Dev 2022; 26:384-393. [PMID: 36034772 PMCID: PMC9391516 DOI: 10.1016/j.omtm.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/12/2022] [Indexed: 11/18/2022]
Abstract
Multiple studies have examined the transduction characteristics of different AAV serotypes in the mouse brain, where they can exhibit significantly different patterns of transduction. The pattern of transduction also varies with the route of administration. Much less information exists for the transduction characteristics in large-brained animals. Large animal models have brains that are closer in size and organization to the human brain, such as being gyrencephalic compared to the lissencephalic rodent brains, pathway organization, and certain electrophysiologic properties. Large animal models are used as translational intermediates to develop gene therapies to treat human diseases. Various AAV serotypes and routes of delivery have been used to study the correction of pathology in the brain in lysosomal storage diseases. In this study, we evaluated the ability of selected AAV serotypes to transduce cells in the cat brain when delivered into the cerebrospinal fluid via the cisterna magna. We previously showed that AAV1 transduced significantly greater numbers of cells than AAV9 in the cat brain by this route. In the present study, we evaluated serotypes closely related to AAVs 1 and 9 (AAVs 6, AS, hu32) that may mediate more extensive transduction, as well as AAVs 4 and 5, which primarily transduce choroid plexus epithelial (CPE) and ependymal lining cells in the rodent brain. The related serotypes tended to have similar patterns of transduction but were divergent in some specific brain structures.
Collapse
Affiliation(s)
- Jacqueline E. Hunter
- Research Institute of Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Caitlyn M. Molony
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica H. Bagel
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia A. O’Donnell
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen G. Kaler
- Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - John H. Wolfe
- Research Institute of Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA,W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Corresponding author John H. Wolfe, Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104-4399, USA.
| |
Collapse
|
5
|
Gragnaniello V, Carraro S, Rubert L, Gueraldi D, Cazzorla C, Massa P, Zanconato S, Burlina AB. A new strategy of desensitization in mucopolysaccharidosis type II disease treated with idursulfase therapy: A case report and review of the literature. Mol Genet Metab Rep 2022; 31:100878. [PMID: 35782619 PMCID: PMC9248226 DOI: 10.1016/j.ymgmr.2022.100878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/02/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II) is a multisystemic lysosomal storage disorder caused by deficiency of the iduronate 2-sulfatase enzyme. Currently, enzyme replacement therapy (ERT) with recombinant idursulfase is the main treatment available to decrease morbidity and improve quality of life. However, infusion-associated reactions (IARs) are reported and may limit access to treatment. When premedication or infusion rate reductions are ineffective for preventing IARs, desensitization can be applied. To date, only two MPS II patients are reported to have undergone desensitization. We report a pediatric patient with recurrent IARs during infusion successfully managed with gradual desensitization. Our protocol started at 50% of the standard dosage infused at concentrations from 0.0006 to 0.06 mg/ml on weeks 1 and 2, followed by 75% of the standard dosage infused at concentrations from 0.0009 to 0.09 mg/ml on weeks 3 and 4, and full standard dosage thereafter, infused at progressively increasing concentrations until the standard infusion conditions were reached at 3 months. Our experience can be used in the management of MPS II patients presenting IARs to idursulfase infusion, even when general preventive measures are already administered.
Collapse
|
6
|
Tomita K, Okamoto S, Seto T, Hamazaki T, So S, Yamamoto T, Tanizawa K, Sonoda H, Sato Y. Divergent developmental trajectories in two siblings with neuropathic mucopolysaccharidosis type II (Hunter syndrome) receiving conventional and novel enzyme replacement therapies: A case report. JIMD Rep 2021; 62:9-14. [PMID: 34765392 PMCID: PMC8574176 DOI: 10.1002/jmd2.12239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023] Open
Abstract
Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is an X-linked recessive lysosomal storage disease caused by a mutation in the IDS gene and characterized by systemic accumulations of glycosaminoglycans. Its somatic symptoms can be relieved by enzyme replacement therapy (ERT) with idursulfase, but because the enzyme cannot cross the blood-brain-barrier (BBB), it does not address the progressive neurodegeneration and subsequent central nervous system (CNS) manifestations seen in patients with neuropathic MPS-II. However, pabinafusp alfa, a human iduronate-2-sulfatase (IDS) fused with a BBB-crossing anti-transferrin receptor antibody, has been shown to be efficacious against both the somatic and CNS symptoms of MPS II. We report two cases of MPS-II in Japanese siblings sharing the same G140V mutation in the IDS gene, who showed markedly contrasting developmental trajectories following enzyme replacement therapy (ERT). Sibling 1 was diagnosed at 2 years of age, started undergoing conventional ERT shortly afterward, and scored a developmental quotient (DQ) of 53 on the Kyoto Scale of Psychological Development (KSPD) at 4 years of age. Sibling 2 was diagnosed prenatally and received conventional ERT from the age of 1 month through 1 year and 11 months, when he switched to pabinafusp alpha. He attained a DQ of 104 at age 3 years and 11 months, along with significant declines in heparan sulfate concentrations in the cerebrospinal fluid. This marked difference in neurocognitive development highlights the importance of early initiation of ERT with a BBB-penetrating enzyme in patients with neuropathic MPS-II.
Collapse
Affiliation(s)
- Kazuyoshi Tomita
- Department of PediatricsOsaka City University Graduate School of MedicineJapan
| | - Shungo Okamoto
- Department of PediatricsOsaka City University Graduate School of MedicineJapan
| | - Toshiyuki Seto
- Department of PediatricsOsaka City University Graduate School of MedicineJapan
| | - Takashi Hamazaki
- Department of PediatricsOsaka City University Graduate School of MedicineJapan
| | | | | | | | | | | |
Collapse
|
7
|
Differences in MPS I and MPS II Disease Manifestations. Int J Mol Sci 2021; 22:ijms22157888. [PMID: 34360653 PMCID: PMC8345985 DOI: 10.3390/ijms22157888] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mucopolysaccharidosis (MPS) type I and II are two closely related lysosomal storage diseases associated with disrupted glycosaminoglycan catabolism. In MPS II, the first step of degradation of heparan sulfate (HS) and dermatan sulfate (DS) is blocked by a deficiency in the lysosomal enzyme iduronate 2-sulfatase (IDS), while, in MPS I, blockage of the second step is caused by a deficiency in iduronidase (IDUA). The subsequent accumulation of HS and DS causes lysosomal hypertrophy and an increase in the number of lysosomes in cells, and impacts cellular functions, like cell adhesion, endocytosis, intracellular trafficking of different molecules, intracellular ionic balance, and inflammation. Characteristic phenotypical manifestations of both MPS I and II include skeletal disease, reflected in short stature, inguinal and umbilical hernias, hydrocephalus, hearing loss, coarse facial features, protruded abdomen with hepatosplenomegaly, and neurological involvement with varying functional concerns. However, a few manifestations are disease-specific, including corneal clouding in MPS I, epidermal manifestations in MPS II, and differences in the severity and nature of behavioral concerns. These phenotypic differences appear to be related to different ratios between DS and HS, and their sulfation levels. MPS I is characterized by higher DS/HS levels and lower sulfation levels, while HS levels dominate over DS levels in MPS II and sulfation levels are higher. The high presence of DS in the cornea and its involvement in the arrangement of collagen fibrils potentially causes corneal clouding to be prevalent in MPS I, but not in MPS II. The differences in neurological involvement may be due to the increased HS levels in MPS II, because of the involvement of HS in neuronal development. Current treatment options for patients with MPS II are often restricted to enzyme replacement therapy (ERT). While ERT has beneficial effects on respiratory and cardiopulmonary function and extends the lifespan of the patients, it does not significantly affect CNS manifestations, probably because the enzyme cannot pass the blood-brain barrier at sufficient levels. Many experimental therapies, therefore, aim at delivery of IDS to the CNS in an attempt to prevent neurocognitive decline in the patients.
Collapse
|
8
|
Gene Therapy for Mucopolysaccharidosis Type II-A Review of the Current Possibilities. Int J Mol Sci 2021; 22:ijms22115490. [PMID: 34070997 PMCID: PMC8197095 DOI: 10.3390/ijms22115490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder based on a mutation in the IDS gene that encodes iduronate 2-sulphatase. As a result, there is an accumulation of glycosaminoglycans-heparan sulphate and dermatan sulphate-in almost all body tissues, which leads to their dysfunction. Currently, the primary treatment is enzyme replacement therapy, which improves the course of the disease by reducing somatic symptoms, including hepatomegaly and splenomegaly. The enzyme, however, does not cross the blood-brain barrier, and no improvement in the function of the central nervous system has been observed in patients with the severe form of the disease. An alternative method of treatment that solves typical problems of enzyme replacement therapy is gene therapy, i.e., delivery of the correct gene to target cells through an appropriate vector. Much progress has been made in applying gene therapy for MPS II, from cellular models to human clinical trials. In this article, we briefly present the history and basics of gene therapy and discuss the current state of knowledge about the methods of this therapy in mucopolysaccharidosis type II.
Collapse
|
9
|
Sheth J, Nair A. Treatment for Lysosomal Storage Disorders. Curr Pharm Des 2021; 26:5110-5118. [PMID: 33059565 DOI: 10.2174/1381612826666201015154932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/22/2020] [Indexed: 12/31/2022]
Abstract
Lysosomal storage disorders comprise a group of approximately 70 types of inherited diseases resulting due to lysosomal gene defects. The outcome of the defect is a deficiency in either of the three: namely, lysosomal enzymes, activator protein, or transmembrane protein, as a result of which there is an unwanted accumulation of biomolecules inside the lysosomes. The pathophysiology of these conditions is complex affecting several organ systems and nervous system involvement in a majority of cases. Several research studies have well elucidated the mechanism underlying the disease condition leading to the development in devising the treatment strategies for the same. Currently, these approaches aim to reduce the severity of symptoms or delay the disease progression but do not provide a complete cure. The main treatment methods include Enzyme replacement therapy, Bone marrow transplantation, Substrate reduction therapy, use of molecular chaperones, and Gene therapy. This review article presents an elaborate description of these strategies and discusses the ongoing studies for the same.
Collapse
Affiliation(s)
- Jayesh Sheth
- Foundation for Research in Genetics and Endocrinology, Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat, India
| | - Aadhira Nair
- Foundation for Research in Genetics and Endocrinology, Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat, India
| |
Collapse
|
10
|
Seo JH, Kosuga M, Hamazaki T, Shintaku H, Okuyama T. Impact of intracerebroventricular enzyme replacement therapy in patients with neuronopathic mucopolysaccharidosis type II. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:67-75. [PMID: 33768130 PMCID: PMC7957024 DOI: 10.1016/j.omtm.2021.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/23/2021] [Indexed: 11/26/2022]
Abstract
This open-label, phase 1/2 study (JMACCT CTR JMA-IIA00350) evaluated the efficacy and safety of intracerebroventricular idursulfase beta in patients with mucopolysaccharidosis II (MPS II). Herein, we report the 100-week results. Six patients with severe MPS II aged 23-65 months were enrolled. Idursulfase beta (increasing from 1 to 30 mg between weeks 0 and 24, followed by a 30-mg final dose) was administered intracerebroventricularly once every 4 weeks using an implanted cerebrospinal fluid (CSF) reservoir; intravenous administration of idursulfase was also continued throughout the study. Efficacy endpoints included developmental age by the Kyoto Scale of Psychological Development 2001 and heparan sulfate (HS) concentration in CSF (primary outcome). In all six patients, HS concentrations decreased (40%-80%) from baseline to week 100. For overall developmental age, the difference in change from baseline to week 100 in each patient compared with patients treated by intravenous idursulfase administration (n = 13) was +8.0, +14.5, +4.5, +3.7, +8.2, and -8.3 months (mean, +5.1 months). Idursulfase beta was well tolerated. The most common adverse events were pyrexia, upper respiratory tract infection, and vomiting. The results suggest that intracerebroventricular idursulfase beta is well tolerated and can be effective at preventing and stabilizing developmental decline in patients with neuronopathic MPS II.
Collapse
Affiliation(s)
- Joo-Hyun Seo
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Motomichi Kosuga
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Takashi Hamazaki
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
11
|
Seker Yilmaz B, Davison J, Jones SA, Baruteau J. Novel therapies for mucopolysaccharidosis type III. J Inherit Metab Dis 2021; 44:129-147. [PMID: 32944950 PMCID: PMC8436764 DOI: 10.1002/jimd.12316] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Mucopolysaccharidosis type III (MPS III) or Sanfilippo disease is an orphan inherited lysosomal storage disease and one of the most common MPS subtypes. The classical presentation is an infantile-onset neurodegenerative disease characterised by intellectual regression, behavioural and sleep disturbances, loss of ambulation, and early death. Unlike other MPS, no disease-modifying therapy has yet been approved. Here, we review the numerous approaches of curative therapy developed for MPS III from historical ineffective haematopoietic stem cell transplantation and substrate reduction therapy to the promising ongoing clinical trials based on enzyme replacement therapy or adeno-associated or lentiviral vectors mediated gene therapy. Preclinical studies are presented alongside the most recent translational first-in-man trials. In addition, we present experimental research with preclinical mRNA and gene editing strategies. Lessons from animal studies and clinical trials have highlighted the importance of an early therapy before extensive neuronal loss. A disease-modifying therapy for MPS III will undoubtedly mandate development of new strategies for early diagnosis.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of Paediatric Metabolic MedicineMersin UniversityMersinTurkey
| | - James Davison
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Simon A. Jones
- Metabolic MedicineManchester University NHS Foundation TrustManchesterUK
| | - Julien Baruteau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- National Institute of Health Research Great Ormond Street Hospital Biomedical Research CentreLondonUK
| |
Collapse
|
12
|
Mucopolysaccharidoses I and II: Brief Review of Therapeutic Options and Supportive/Palliative Therapies. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2408402. [PMID: 33344633 PMCID: PMC7732385 DOI: 10.1155/2020/2408402] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/08/2020] [Accepted: 11/21/2020] [Indexed: 12/30/2022]
Abstract
Purpose. Mucopolysaccharidoses (MPS) are group of inherited lysosomal storage diseases caused by mutations of enzymes involved in catalyzing different glycosaminoglycans (GAGs). MPS I and MPS II exhibit both somatic and neurological symptoms with a relatively high disease incidence. Hematopoietic stem cell therapy (HSCT) and intravenous enzyme replacement therapy (ERT) have had a significant impact on the treatment and comprehension of disease. This review is aimed at providing a comprehensive evaluation of the pros and cons of HSCT and ERT, as well as an up-to-date knowledge of new drugs under development. In addition, multiple disease management strategies for the uncontrollable manifestations of MPS I and MPS II to improve patients' quality of life are presented. Findings. Natural history of MPS I and MPS II shows that somatic and neurological symptoms occur earlier in severe forms of MPS I than in MPS II. ERT increases life expectancy and alleviates some of the somatic symptoms, but musculoskeletal, ophthalmological, and central nervous system (CNS) manifestations are not controlled. Additionally, life-long treatment burdens and immunogenicity restriction are unintended consequences of ERT application. HSCT, another treatment method, is effective in controlling the CNS symptoms and hence has been adopted as the standard treatment for severe types of MPS I. However, it is ineffective in MPS II, which can be explained by the relatively late diagnosis. In addition, several factors such as transplant age limits or graft-versus-host disease in HSCT have limited its application for patients. Novel therapies, including BBB-penetrable-ERT, gene therapy, and substrate reduction therapy, are under development to control currently unmanageable manifestations. BBB-penetrable-ERT is being studied comprehensively in the hopes of being used in the near future as a method to effectively control CNS symptoms. Gene therapy has the potential to “cure” the disease with a one-time treatment rather than just alleviate symptoms, which makes it an attractive treatment strategy. Several clinical studies on gene therapy reveal that delivering genes directly into the brain achieves better results than intravenous administration in patients with neurological symptoms. Considering new drugs are still in clinical stage, disease management with close monitoring and supportive/palliative therapy is of great importance for the time being. Proper rehabilitation therapy, including physical and occupational therapy, surgical intervention, or medications, can benefit patients with uncontrolled musculoskeletal, respiratory, ophthalmological, and neurological manifestations.
Collapse
|
13
|
Kubaski F, Vairo F, Baldo G, de Oliveira Poswar F, Corte AD, Giugliani R. Therapeutic Options for Mucopolysaccharidosis II (Hunter Disease). Curr Pharm Des 2020; 26:5100-5109. [PMID: 33138761 DOI: 10.2174/1381612826666200724161504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mucopolysaccharidosis type II (Hunter syndrome, or MPS II) is an X-linked lysosomal disorder caused by the deficiency of iduronate-2-sulfatase, which leads to the accumulation of glycosaminoglycans (GAGs) in a variety of tissues, resulting in a multisystemic disease that can also impair the central nervous system (CNS). OBJECTIVE This review focuses on providing the latest information and expert opinion about the therapies available and under development for MPS II. METHODS We have comprehensively revised the latest studies about hematopoietic stem cell transplantation (HSCT), enzyme replacement therapy (ERT - intravenous, intrathecal, intracerebroventricular, and intravenous with fusion proteins), small molecules, gene therapy/genome editing, and supportive management. RESULTS AND DISCUSSION Intravenous ERT is a well-established specific therapy, which ameliorates the somatic features but not the CNS manifestations. Intrathecal or intracerebroventricular ERT and intravenous ERT with fusion proteins, presently under development, seem to be able to reduce the levels of GAGs in the CNS and have the potential of reducing the impact of the neurological burden of the disease. Gene therapy and/or genome editing have shown promising results in preclinical studies, bringing hope for a "one-time therapy" soon. Results with HSCT in MPS II are controversial, and small molecules could potentially address some disease manifestations. In addition to the specific therapeutic options, supportive care plays a major role in the management of these patients. CONCLUSION At this time, the treatment of individuals with MPS II is mainly based on intravenous ERT, whereas HSCT can be a potential alternative in specific cases. In the coming years, several new therapy options that target the neurological phenotype of MPS II should be available.
Collapse
Affiliation(s)
- Francyne Kubaski
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| | - Filippo Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| | | | - Amauri Dalla Corte
- Postgraduation Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Brazil
| | - Roberto Giugliani
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
14
|
Favret JM, Weinstock NI, Feltri ML, Shin D. Pre-clinical Mouse Models of Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:57. [PMID: 32351971 PMCID: PMC7174556 DOI: 10.3389/fmolb.2020.00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
There are over 50 lysosomal hydrolase deficiencies, many of which cause neurodegeneration, cognitive decline and death. In recent years, a number of broad innovative therapies have been proposed and investigated for lysosomal storage diseases (LSDs), such as enzyme replacement, substrate reduction, pharmacologic chaperones, stem cell transplantation, and various forms of gene therapy. Murine models that accurately reflect the phenotypes observed in human LSDs are critical for the development, assessment and implementation of novel translational therapies. The goal of this review is to summarize the neurodegenerative murine LSD models available that recapitulate human disease, and the pre-clinical studies previously conducted. We also describe some limitations and difficulties in working with mouse models of neurodegenerative LSDs.
Collapse
Affiliation(s)
| | | | | | - Daesung Shin
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
15
|
D’Avanzo F, Rigon L, Zanetti A, Tomanin R. Mucopolysaccharidosis Type II: One Hundred Years of Research, Diagnosis, and Treatment. Int J Mol Sci 2020; 21:E1258. [PMID: 32070051 PMCID: PMC7072947 DOI: 10.3390/ijms21041258] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) was first described by Dr. Charles Hunter in 1917. Since then, about one hundred years have passed and Hunter syndrome, although at first neglected for a few decades and afterwards mistaken for a long time for the similar disorder Hurler syndrome, has been clearly distinguished as a specific disease since 1978, when the distinct genetic causes of the two disorders were finally identified. MPS II is a rare genetic disorder, recently described as presenting an incidence rate ranging from 0.38 to 1.09 per 100,000 live male births, and it is the only X-linked-inherited mucopolysaccharidosis. The complex disease is due to a deficit of the lysosomal hydrolase iduronate 2-sulphatase, which is a crucial enzyme in the stepwise degradation of heparan and dermatan sulphate. This contributes to a heavy clinical phenotype involving most organ-systems, including the brain, in at least two-thirds of cases. In this review, we will summarize the history of the disease during this century through clinical and laboratory evaluations that allowed its definition, its correct diagnosis, a partial comprehension of its pathogenesis, and the proposition of therapeutic protocols. We will also highlight the main open issues related to the possible inclusion of MPS II in newborn screenings, the comprehension of brain pathogenesis, and treatment of the neurological compartment.
Collapse
Affiliation(s)
- Francesca D’Avanzo
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (F.D.); (A.Z.)
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
| | - Laura Rigon
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
- Molecular Developmental Biology, Life & Medical Science Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Alessandra Zanetti
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (F.D.); (A.Z.)
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (F.D.); (A.Z.)
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
| |
Collapse
|
16
|
Assessment of Activity of Daily Life in Mucopolysaccharidosis Type II Patients with Hematopoietic Stem Cell Transplantation. Diagnostics (Basel) 2020; 10:diagnostics10010046. [PMID: 31963134 PMCID: PMC7168225 DOI: 10.3390/diagnostics10010046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/04/2022] Open
Abstract
The effectiveness of hematopoietic stem cell transplantation (HSCT) for mucopolysaccharidosis type II (MPS II, Hunter disease) remains controversial although recent studies have shown HSCT provides more clinical impact. This study aims to evaluate the long-term effectiveness of HSCT using the activity of daily living (ADL) scores in patients with MPS II. Sixty-nine severely affected MPS II patients (19 patients who received HSCT and 50 untreated patients) and 40 attenuated affected patients (five with HSCT and 35 untreated) were investigated by a simplified ADL questionnaire. The frequency of clinical findings and the scores of ADL (verbal, gross motor, and the level of care) were analyzed statistically. The mean age of onset of 19 severely affected patients who received HSCT was 1.40 years ± 1.06, which is not statistically different from that of 50 untreated patients (p = 0.11). Macroglossia, frequent airway infection, hepatosplenomegaly, joint contracture, and sleep apnea were less frequent in the HSCT-treated group of severe MPS II patients. The severe phenotype HSCT treated group reported a statistically significant higher score of verbal function and gross motor function between the ages of 10 and 15 years and a higher level of care score between 10 and 20 years. Patients with the attenuated phenotype showed high ADL scores, and all of five HSCT treated patients reported a lower frequency of frequent airway infection, coarse skin, umbilical/inguinal hernia, hepatosplenomegaly, heart valve disorders, and carpal tunnel. In conclusion, HSCT is effective, resulting in improvements in clinical features and ADL in patients with MPS II. HSCT should be re-reviewed as a therapeutic option for MPS II patients.
Collapse
|
17
|
Sato Y, Okuyama T. Novel Enzyme Replacement Therapies for Neuropathic Mucopolysaccharidoses. Int J Mol Sci 2020; 21:ijms21020400. [PMID: 31936354 PMCID: PMC7014430 DOI: 10.3390/ijms21020400] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Although the advent of enzyme replacement therapy (ERT) for mucopolysaccharidoses (MPS) has paved the way for the treatment for these hereditary disorders, the blood brain barrier (BBB) has prevented patients with MPS involving the central nervous system (CNS) from benefitting from ERT. Therefore, finding ways to increase drug delivery into the brain across the BBB remains a crucial challenge for researchers and clinicians in the field. Attempts have been made to boost brain uptake of enzymes by targeting various receptors (e.g., insulin and transferrin), and several other administration routes have also been tested. This review summarizes the available information on clinical trials (completed, ongoing, and planned) of novel therapeutic agents with efficacy against CNS symptoms in neuropathic MPS and also discusses the common associated challenges and pitfalls, some of which may help elucidate the pathogenesis of the neurodegeneration leading to the manifold CNS symptoms. A summary of current knowledge pertaining to the neuropathological progression and resultant neuropsychiatric manifestations is also provided, because it should be useful to ERT researchers looking for better approaches to treating CNS lesions in MPS.
Collapse
Affiliation(s)
- Yuji Sato
- Research and Development, JCR Pharmaceuticals, Hyogo 659-0021, Japan
- Correspondence:
| | - Torayuki Okuyama
- Centre for Lysosomal Storage Diseases, National Centre for Child Health and Development, Tokyo 157-8535, Japan;
| |
Collapse
|
18
|
Enzyme replacement therapy for mucopolysaccharidoses; past, present, and future. J Hum Genet 2019; 64:1153-1171. [PMID: 31455839 DOI: 10.1038/s10038-019-0662-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/08/2022]
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders, which lack an enzyme corresponding to the specific type of MPS. Enzyme replacement therapy (ERT) has been the standard therapeutic option for some types of MPS because of the ability to start immediate treatment with feasibility and safety and to improve prognosis. There are several disadvantages for current ERT, such as limited impact to the brain and avascular cartilage, weekly or biweekly infusions lasting 4-5 h, the immune response against the infused enzyme, a short half-life, and the high cost. Clinical studies of ERT have shown limited efficacy in preventing or resolving progression in neurological, cardiovascular, and skeletal diseases. One focus is to penetrate the avascular cartilage area to at least stabilize, if not reverse, musculoskeletal diseases. Although early intervention in some types of MPS has shown improvements in the severity of skeletal dysplasia and stunted growth, this limits the desired effect of ameliorating musculoskeletal disease progression to young MPS patients. Novel ERT strategies are under development to reach the brain: (1) utilizing a fusion protein with monoclonal antibody to target a receptor on the BBB, (2) using a protein complex from plant lectin, glycan, or insulin-like growth factor 2, and (3) direct infusion across the BBB. As for MPS IVA and VI, bone-targeting ERT will be an alternative to improve therapeutic efficacy in bone and cartilage. This review summarizes the effect and limitations on current ERT for MPS and describes the new technology to overcome the obstacles of conventional ERT.
Collapse
|
19
|
Abstract
Mucopolysaccharidoses (MPS) are inborn errors of metabolism produced by a deficiency of one of the enzymes involved in the degradation of glycosaminoglycans (GAGs). Although taken separately, each type is rare. As a group, MPS are relatively frequent, with an overall estimated incidence of around 1 in 20,000-25,000 births. Development of therapeutic options for MPS, including hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT), has modified the natural history of many MPS types. In spite of the improvement in some tissues and organs, significant challenges remain unsolved, including blood-brain barrier (BBB) penetration and treatment of lesions in avascular cartilage, heart valves, and corneas. Newer approaches, such as intrathecal ERT, ERT with fusion proteins to cross the BBB, gene therapy, substrate reduction therapy (SRT), chaperone therapy, and some combination of these strategies may provide better outcomes for MPS patients in the near future. As early diagnosis and early treatment are imperative to improve therapeutic efficacy, the inclusion of MPS in newborn screening programs should enhance the potential impact of treatment in reducing the morbidity associated with MPS diseases. In this review, we evaluate available treatments, including ERT and HSCT, and future treatments, such as gene therapy, SRT, and chaperone therapy, and describe the advantages and disadvantages. We also assess the current clinical endpoints and biomarkers used in clinical trials.
Collapse
|
20
|
Safary A, Akbarzadeh Khiavi M, Omidi Y, Rafi MA. Targeted enzyme delivery systems in lysosomal disorders: an innovative form of therapy for mucopolysaccharidosis. Cell Mol Life Sci 2019; 76:3363-3381. [PMID: 31101939 PMCID: PMC11105648 DOI: 10.1007/s00018-019-03135-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 12/27/2022]
Abstract
Mucopolysaccharidoses (MPSs), which are inherited lysosomal storage disorders caused by the accumulation of undegraded glycosaminoglycans, can affect the central nervous system (CNS) and elicit cognitive and behavioral issues. Currently used enzyme replacement therapy methodologies often fail to adequately treat the manifestations of the disease in the CNS and other organs such as bone, cartilage, cornea, and heart. Targeted enzyme delivery systems (EDSs) can efficiently cross biological barriers such as blood-brain barrier and provide maximal therapeutic effects with minimal side effects, and hence, offer great clinical benefits over the currently used conventional enzyme replacement therapies. In this review, we provide comprehensive insights into MPSs and explore the clinical impacts of multimodal targeted EDSs.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mostafa Akbarzadeh Khiavi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
21
|
Osaki Y, Matsuhisa K, Che W, Kaneko M, Asada R, Masaki T, Imaizumi K, Saito A. Calnexin promotes the folding of mutant iduronate 2-sulfatase related to mucopolysaccharidosis type II. Biochem Biophys Res Commun 2019; 514:217-223. [PMID: 31029429 DOI: 10.1016/j.bbrc.2019.04.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 01/01/2023]
Abstract
Mucopolysaccharidosis type II (MPS II) is one of the most common mucopolysaccharidoses, which is caused by mutation of the gene encoding iduronate 2-sulfatase (IDS). The loss of function of IDS leads to the accumulation of heparan sulfate and dermatan sulfate of glycosaminoglycans throughout the body, resulting in skeletal deformities, mental retardation, rigid joints, and thick skin. Recently, enzyme replacement therapy has become a common strategy for treating this condition. However, its effectiveness on the central nervous system (CNS) is limited because intravenously administered recombinant IDS (rIDS) cannot pass through the blood brain barrier. Therefore, several methods for delivering rIDS to the CNS, using anti-human transferrin receptor antibody and adeno-associated virus 9, have been explored. To investigate additional approaches for treatment, more cognition about the intracellular dynamics of mutant IDS is essential. We have already found that mutant IDS accumulated in the endoplasmic reticulum (ER) and was degraded by ER-associated degradation (ERAD). Although the dynamics of degradation of mutant IDS was revealed, the molecular mechanism related to the folding of mutant IDS in the ER remained unclear. In this research, we confirmed that mutant IDS retained in the ER would be folded by binding with calnexin (CNX). Thus, knockdown of CNX reduced the translocation of mutant IDS from ER to lysosome and its enzyme activity, indicating that the correct folding of this protein via interaction with CNX ensures its functional activity. These findings reveal the possibility that modifying the interaction of mutant IDS and CNX could contribute to alternative therapeutic strategies for MPS II.
Collapse
Affiliation(s)
- Yosuke Osaki
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Department of Stress Protein Processing, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Koji Matsuhisa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Wang Che
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Masayuki Kaneko
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Rie Asada
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Atsushi Saito
- Department of Stress Protein Processing, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|