1
|
Vogeley AO, Livinski AA, Dabaghi Varnosfaderani S, Javaheripour N, Jamalabadi H, Kotoula V, Henter ID, Hejazi NS, Price RB, Yavi M, Walter M, Zarate CA, Kheirkhah M. Temporal dynamics of affective scene processing in the healthy adult human brain. Neurosci Biobehav Rev 2025; 169:106003. [PMID: 39755291 DOI: 10.1016/j.neubiorev.2025.106003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/06/2025]
Abstract
Understanding how the brain distinguishes emotional from neutral scenes is crucial for advancing brain-computer interfaces, enabling real-time emotion detection for faster, more effective responses, and improving treatments for emotional disorders like depression and anxiety. However, inconsistent research findings have arisen from differences in study settings, such as variations in the time windows, brain regions, and emotion categories examined across studies. This review sought to compile the existing literature on the timing at which the adult brain differentiates basic affective from neutral scenes in less than one second, as previous studies have consistently shown that the brain can begin recognizing emotions within just a few milliseconds. The review includes studies that used electroencephalography (EEG) or magnetoencephalography (MEG) in healthy adults to examine brain responses to emotional versus neutral images within one second. Articles of interest were limited to the English language but not to any publication year. Excluded studies involved only patients (of any diagnosis), participants under age 18 (since emotional processing can differ between adults and younger individuals), non-passive tasks, low temporal resolution techniques, time intervals over one second, and animals. Of the 3045 screened articles, 19 met these criteria. Despite the variations between studies, the earliest onset for heightened brain responses to basic affective scenes compared to neutral ones was most commonly observed within the 250-300 ms time window. To the best of our knowledge, this review is the first to synthesize data on the timing of brain differentiation between emotional and neutral scenes in healthy adults.
Collapse
Affiliation(s)
- Abigail O Vogeley
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Alicia A Livinski
- NIH Library, Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, MD, USA.
| | | | - Nooshin Javaheripour
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg, Germany.
| | - Vasileia Kotoula
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Institute of Psychiatry, Psychology, and Neuroscience, King's College London, England, UK.
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Nadia S Hejazi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Rebecca B Price
- Departments of Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mani Yavi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Mina Kheirkhah
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| |
Collapse
|
2
|
Frumento S, Preatoni G, Chee L, Gemignani A, Ciotti F, Menicucci D, Raspopovic S. Unconscious multisensory integration: behavioral and neural evidence from subliminal stimuli. Front Psychol 2024; 15:1396946. [PMID: 39091706 PMCID: PMC11291458 DOI: 10.3389/fpsyg.2024.1396946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction The prevailing theories of consciousness consider the integration of different sensory stimuli as a key component for this phenomenon to rise on the brain level. Despite many theories and models have been proposed for multisensory integration between supraliminal stimuli (e.g., the optimal integration model), we do not know if multisensory integration occurs also for subliminal stimuli and what psychophysical mechanisms it follows. Methods To investigate this, subjects were exposed to visual (Virtual Reality) and/or haptic stimuli (Electro-Cutaneous Stimulation) above or below their perceptual threshold. They had to discriminate, in a two-Alternative Forced Choice Task, the intensity of unimodal and/or bimodal stimuli. They were then asked to discriminate the sensory modality while recording their EEG responses. Results We found evidence of multisensory integration for supraliminal condition, following the classical optimal model. Importantly, even for subliminal trials participant's performances in the bimodal condition were significantly more accurate when discriminating the intensity of the stimulation. Moreover, significant differences emerged between unimodal and bimodal activity templates in parieto-temporal areas known for their integrative role. Discussion These converging evidences - even if preliminary and needing confirmation from the collection of further data - suggest that subliminal multimodal stimuli can be integrated, thus filling a meaningful gap in the debate about the relationship between consciousness and multisensory integration.
Collapse
Affiliation(s)
- Sergio Frumento
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Greta Preatoni
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Lauren Chee
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
- Clinical Psychology Branch, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Federico Ciotti
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Danilo Menicucci
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Menicucci D, Animali S, Malloggi E, Gemignani A, Bonanni E, Fornai F, Giorgi FS, Binda P. Correlated P300b and phasic pupil-dilation responses to motivationally significant stimuli. Psychophysiology 2024; 61:e14550. [PMID: 38433453 DOI: 10.1111/psyp.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Motivationally significant events like oddball stimuli elicit both a characteristic event-related potential (ERPs) known as P300 and a set of autonomic responses including a phasic pupil dilation. Although co-occurring, P300 and pupil-dilation responses to oddball events have been repeatedly found to be uncorrelated, suggesting separate origins. We re-examined their relationship in the context of a three-stimulus version of the auditory oddball task, independently manipulating the frequency (rare vs. repeated) and motivational significance (relevance for the participant's task) of the stimuli. We used independent component analysis to derive a P300b component from EEG traces and linear modeling to separate a stimulus-related pupil-dilation response from a potentially confounding action-related response. These steps revealed that, once the complexity of ERP and pupil-dilation responses to oddball targets is accounted for, the amplitude of phasic pupil dilations and P300b are tightly and positively correlated (across participants: r = .69 p = .002), supporting their coordinated generation.
Collapse
Affiliation(s)
- Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Silvia Animali
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Malloggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Enrica Bonanni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paola Binda
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Ribeiro LDJA, Bastos VHDV, Coertjens M. Breath-holding as model for the evaluation of EEG signal during respiratory distress. Eur J Appl Physiol 2024; 124:753-760. [PMID: 38105311 DOI: 10.1007/s00421-023-05379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE Research describes the existence of a relationship between cortical activity and the regulation of bulbar respiratory centers through the evaluation of the electroencephalographic (EEG) signal during respiratory challenges. For example, we found evidences of a reduction in the frequency of the EEG (alpha band) in both divers and non-divers during apnea tests. For instance, this reduction was more prominent in divers due to the greater physiological disturbance resulting from longer apnea time. However, little is known about EEG adaptations during tests of maximal apnea, a test that voluntarily stops breathing and induces dyspnea. RESULTS Through this mini-review, we verified that a protocol of successive apneas triggers a significant increase in the maximum apnea time and we hypothesized that successive maximal apnea test could be a powerful model for the study of cortical activity during respiratory distress. CONCLUSION Dyspnea is a multifactorial symptom and we believe that performing a successive maximal apnea protocol is possible to understand some factors that determine the sensation of dyspnea through the EEG signal, especially in people not trained in apnea.
Collapse
Affiliation(s)
- Lucas de Jesus Alves Ribeiro
- Physiotherapy Department, Universidade Federal do Delta do Parnaíba, Av. São Sebastião, CEP: 64.202-020, Parnaíba, PI, 2819, Brazil
- Brain Mapping and Functionality Laboratory, Universidade Federal do Delta do Parnaíba, Piauí, Brazil
| | - Victor Hugo do Vale Bastos
- Physiotherapy Department, Universidade Federal do Delta do Parnaíba, Av. São Sebastião, CEP: 64.202-020, Parnaíba, PI, 2819, Brazil
- Postgraduate Program in Biomedical Sciences, Universidade Federal do Delta do Parnaíba, Piauí, Brazil
- Brain Mapping and Functionality Laboratory, Universidade Federal do Delta do Parnaíba, Piauí, Brazil
| | - Marcelo Coertjens
- Physiotherapy Department, Universidade Federal do Delta do Parnaíba, Av. São Sebastião, CEP: 64.202-020, Parnaíba, PI, 2819, Brazil.
- Postgraduate Program in Biomedical Sciences, Universidade Federal do Delta do Parnaíba, Piauí, Brazil.
| |
Collapse
|
5
|
Artoni F, Cometa A, Dalise S, Azzollini V, Micera S, Chisari C. Cortico-muscular connectivity is modulated by passive and active Lokomat-assisted Gait. Sci Rep 2023; 13:21618. [PMID: 38062035 PMCID: PMC10703891 DOI: 10.1038/s41598-023-48072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The effects of robotic-assisted gait (RAG) training, besides conventional therapy, on neuroplasticity mechanisms and cortical integration in locomotion are still uncertain. To advance our knowledge on the matter, we determined the involvement of motor cortical areas in the control of muscle activity in healthy subjects, during RAG with Lokomat, both with maximal guidance force (100 GF-passive RAG) and without guidance force (0 GF-active RAG) as customary in rehabilitation treatments. We applied a novel cortico-muscular connectivity estimation procedure, based on Partial Directed Coherence, to jointly study source localized EEG and EMG activity during rest (standing) and active/passive RAG. We found greater cortico-cortical connectivity, with higher path length and tendency toward segregation during rest than in both RAG conditions, for all frequency bands except for delta. We also found higher cortico-muscular connectivity in distal muscles during swing (0 GF), and stance (100 GF), highlighting the importance of direct supraspinal control to maintain balance, even when gait is supported by a robotic exoskeleton. Source-localized connectivity shows that this control is driven mainly by the parietal and frontal lobes. The involvement of many cortical areas also in passive RAG (100 GF) justifies the use of the 100 GF RAG training for neurorehabilitation, with the aim of enhancing cortical-muscle connections and driving neural plasticity in neurological patients.
Collapse
Affiliation(s)
- Fiorenzo Artoni
- Department of Clinical Neurosciences, University of Genève, Faculty of Medicine, 1211, Geneva, Switzerland.
- Ago Neurotechnologies Sàrl, 1201, Geneva, Switzerland.
| | - Andrea Cometa
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
- University School for Advanced Studies IUSS Pavia, 27100, Pavia, Italy
| | - Stefania Dalise
- Unit of Neurorehabilitation, Pisa University Hospital, Pisa, Italy
| | - Valentina Azzollini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
- Translational Neural Engineering Laboratory (TNE), École Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland
| | - Carmelo Chisari
- Unit of Neurorehabilitation, Pisa University Hospital, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Fanciullacci C, Panarese A, Spina V, Lassi M, Mazzoni A, Artoni F, Micera S, Chisari C. Connectivity Measures Differentiate Cortical and Subcortical Sub-Acute Ischemic Stroke Patients. Front Hum Neurosci 2021; 15:669915. [PMID: 34276326 PMCID: PMC8281978 DOI: 10.3389/fnhum.2021.669915] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/08/2021] [Indexed: 01/14/2023] Open
Abstract
Brain lesions caused by cerebral ischemia lead to network disturbances in both hemispheres, causing a subsequent reorganization of functional connectivity both locally and remotely with respect to the injury. Quantitative electroencephalography (qEEG) methods have long been used for exploring brain electrical activity and functional connectivity modifications after stroke. However, results obtained so far are not univocal. Here, we used basic and advanced EEG methods to characterize how brain activity and functional connectivity change after stroke. Thirty-three unilateral post stroke patients in the sub-acute phase and ten neurologically intact age-matched right-handed subjects were enrolled. Patients were subdivided into two groups based on lesion location: cortico-subcortical (CS, n = 18) and subcortical (S, n = 15), respectively. Stroke patients were evaluated in the period ranging from 45 days since the acute event (T0) up to 3 months after stroke (T1) with both neurophysiological (resting state EEG) and clinical assessment (Barthel Index, BI) measures, while healthy subjects were evaluated once. Brain power at T0 was similar between the two groups of patients in all frequency bands considered (δ, θ, α, and β). However, evolution of θ-band power over time was different, with a normalization only in the CS group. Instead, average connectivity and specific network measures (Integration, Segregation, and Small-worldness) in the β-band at T0 were significantly different between the two groups. The connectivity and network measures at T0 also appear to have a predictive role in functional recovery (BI T1-T0), again group-dependent. The results obtained in this study showed that connectivity measures and correlations between EEG features and recovery depend on lesion location. These data, if confirmed in further studies, on the one hand could explain the heterogeneity of results so far observed in previous studies, on the other hand they could be used by researchers as biomarkers predicting spontaneous recovery, to select homogenous groups of patients for the inclusion in clinical trials.
Collapse
Affiliation(s)
- Chiara Fanciullacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | | | - Vincenzo Spina
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Michael Lassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fiorenzo Artoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Translational Neural Engineering Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Translational Neural Engineering Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmelo Chisari
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Tortora S, Ghidoni S, Chisari C, Micera S, Artoni F. Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network. J Neural Eng 2020; 17:046011. [DOI: 10.1088/1741-2552/ab9842] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Strauss I, Valle G, Artoni F, D'Anna E, Granata G, Di Iorio R, Guiraud D, Stieglitz T, Rossini PM, Raspopovic S, Petrini FM, Micera S. Characterization of multi-channel intraneural stimulation in transradial amputees. Sci Rep 2019; 9:19258. [PMID: 31848384 PMCID: PMC6917705 DOI: 10.1038/s41598-019-55591-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/20/2019] [Indexed: 11/29/2022] Open
Abstract
Although peripheral nerve stimulation using intraneural electrodes has been shown to be an effective and reliable solution to restore sensory feedback after hand loss, there have been no reports on the characterization of multi-channel stimulation. A deeper understanding of how the simultaneous stimulation of multiple electrode channels affects the evoked sensations should help in improving the definition of encoding strategies for bidirectional prostheses. We characterized the sensations evoked by simultaneous stimulation of median and ulnar nerves (multi-channel configuration) in four transradial amputees who had been implanted with four TIMEs (Transverse Intrafascicular Multichannel Electrodes). The results were compared with the characterization of single-channel stimulation. The sensations were characterized in terms of location, extent, type, and intensity. Combining two or more single-channel configurations caused a linear combination of the sensation locations and types perceived with such single-channel stimulations. Interestingly, this was also true when two active sites from the same nerve were stimulated. When stimulating in multi-channel configuration, the charge needed from each electrode channel to evoke a sensation was significantly lower than the one needed in single-channel configuration (sensory facilitation). This result was also supported by electroencephalography (EEG) recordings during nerve stimulation. Somatosensory potentials evoked by multi-channel stimulation confirmed that sensations in the amputated hand were perceived by the subjects and that a perceptual sensory facilitation occurred. Our results should help the future development of more efficient bidirectional prostheses by providing guidelines for the development of more complex stimulation approaches to effectively restore multiple sensations at the same time.
Collapse
Affiliation(s)
- I Strauss
- Center for Neuroscience, Neurotechnology, and Bioelectronic Medicine and The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - G Valle
- Center for Neuroscience, Neurotechnology, and Bioelectronic Medicine and The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - F Artoni
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - E D'Anna
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - G Granata
- Fondazione Policlinico Agostino Gemelli-IRCCS, Roma, Italy
| | - R Di Iorio
- Institute of Neurology, Catholic University of The Sacred Heart, Policlinic A. Gemelli Foundation, Roma, Italy
| | - D Guiraud
- University of Montpellier, INRIA, CAMIN team, 860 Rue St Priest, 34090, Montpellier, France
| | - T Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center, BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, D-79110, Germany
| | - P M Rossini
- Fondazione Policlinico Agostino Gemelli-IRCCS, Roma, Italy
- Institute of Neurology, Catholic University of The Sacred Heart, Policlinic A. Gemelli Foundation, Roma, Italy
| | - S Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich (ETH), Zürich, 8092, Switzerland
| | - F M Petrini
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich (ETH), Zürich, 8092, Switzerland.
| | - S Micera
- Center for Neuroscience, Neurotechnology, and Bioelectronic Medicine and The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
9
|
Van Hove O, Van Muylem A, Andrianopoulos V, Leduc D, Feipel V, Deboeck G, Bonnechère B. The use of cognitive mobile games to assess the interaction of cognitive function and breath-hold. Respir Physiol Neurobiol 2019; 274:103359. [PMID: 31812789 DOI: 10.1016/j.resp.2019.103359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/22/2023]
Abstract
The relationship between cognitive function and breath-holding time is in need of further investigation. We aim to determine whether cognitive mobile games (CMG) are sensitive enough to assess the link between cognition and breath-holding time in non-trained subjects. Thirty-one healthy subjects participated in this study. A set of 3 short CMG: Must Sort (response control), Rush Back (attention, working memory) and True Color (mental flexibility, inhibition) was used. Apneic time was recorded in three different conditions: Total Lung Capacity (TLC): 88 ± 35 s, Functional Residual Capacity (FRC): 49 ± 17 s, and Residual Volume (RV): 32 ± 14 s. In males, breath-holding time at RV was correlated with True Color (r = 0.48) and Rush Back (r = 0.65) and at TLC with True Color (r = 0.45). In women, breath-holding time at TLC and FRC was inversely correlated with Must Sort (r = -0.59 and r = -0.49 respectively). Males and females appeared to differ in their use of cognitive resources during different breath-holding conditions.
Collapse
Affiliation(s)
- Olivier Van Hove
- Chest and Thoracic Surgery Service, Erasme Hospital, Brussels, Belgium
| | | | - Vasileios Andrianopoulos
- Institute for Pulmonary Rehabilitation Research, Schoen Klinik Berchtesgadener Land, Schoenau am Koenigssee, Germany
| | - Dimitri Leduc
- Department of Pneumology, Erasme Hospital, Brussels, Belgium; Laboratory of Cardiorespiratory Physiology, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Feipel
- Laboratory of Functional Anatomy, Université Libre de Bruxelles, Brussels, Belgium
| | - Gaël Deboeck
- Research Unit in Cardio-respiratory Physiology, Université Libre de Bruxelles, Brussels, Belgium
| | - Bruno Bonnechère
- Centre de Recherche en Epidémiologie, Biostatistiques et Recherche Clinique, Ecole de Santé Publique, Université libre de Bruxelles, Brussels, Belgium; Department of Electronics and Informatics - ETRO, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
10
|
Gaillet V, Cutrone A, Artoni F, Vagni P, Mega Pratiwi A, Romero SA, Lipucci Di Paola D, Micera S, Ghezzi D. Spatially selective activation of the visual cortex via intraneural stimulation of the optic nerve. Nat Biomed Eng 2019; 4:181-194. [DOI: 10.1038/s41551-019-0446-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/18/2019] [Indexed: 01/22/2023]
|
11
|
Invitto S, Mazzatenta A. Olfactory Event-Related Potentials and Exhaled Organic Volatile Compounds: The Slow Link Between Olfactory Perception and Breath Metabolic Response. A Pilot Study on Phenylethyl Alcohol and Vaseline Oil. Brain Sci 2019; 9:E84. [PMID: 30991670 PMCID: PMC6523942 DOI: 10.3390/brainsci9040084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
Olfactory processing starts with the breath and elicits neuronal, metabolic and cortical responses. This process can be investigated centrally via the Olfactory Event-Related Potentials (OERPs) and peripherally via exhaled Volatile Organic Compounds (VOCs). Despite this, the relationship between OERPs (i.e., N1 and Late Positive Component LPC) and exhaled VOCs has not been investigated enough. The aim of this research is to study OERPs and VOCs connection to two different stimuli: phenylethyl alcohol (PEA) and Vaseline Oil (VO). Fifteen healthy subjects performed a perceptual olfactory task with PEA as a smell target stimulus and VO as a neutral stimulus. The results suggest that OERPs and VOCs distributions follow the same amplitude trend and that PEA is highly arousing in both psychophysiological measures. PEA shows ampler and faster N1, a component related to the sensorial aspect of the stimulus. The N1 topographic localization is different between PEA and VO: PEA stimulus evokes greater N1 in the left centroparietal site. LPC, a component elicited by the perceptual characteristic of the stimulus, shows faster latency in the Frontal lobe and decreased amplitude in the Central and Parietal lobe elicited by the PEA smell. Moreover, the delayed time between the onset of N1-LPC and the onset of VOCs seems to be about 3 s. This delay could be identified as the internal metabolic time in which the odorous stimulus, once perceived at the cortical level, is metabolized and subsequently exhaled. Furthermore, the VO stimulus does not allocate the attentive, perceptive and metabolic resource as with PEA.
Collapse
Affiliation(s)
- Sara Invitto
- Department of Biological and Environmental Science and Technologies, University of Salento, Campus Ecotekne, Via per Monteroni, 73100 Lecce, Italy.
- DReAM Laboratory of InterDisciplinary Research Applied to Medicine, University of Salento-Vito Fazzi Hospital, 73100 Lecce, Italy.
| | - Andrea Mazzatenta
- Dipartimento di Neuroscienze, Imaging e Scienze Cliniche, Università "d'Annunzio" di Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
12
|
Steinberg F, Doppelmayr M. Neurocognitive Markers During Prolonged Breath-Holding in Freedivers: An Event-Related EEG Study. Front Physiol 2019; 10:69. [PMID: 30792665 PMCID: PMC6374628 DOI: 10.3389/fphys.2019.00069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/21/2019] [Indexed: 01/16/2023] Open
Abstract
Since little is known concerning the psychological, cognitive, and neurophysiological factors that are involved in and important for phases of prolonged breath-holding (pBH) in freedivers, the present study uses electroencephalography (EEG) to investigate event-related neurocognitive markers during pBH of experienced freedivers that regularly train pBH. The purpose was to determine whether the well-known neurophysiological modulations elicited by hypoxic and hypercapnic conditions can also be detected during pBH induced hypoxic hypercapnia. Ten experienced free-divers (all male, aged 35.10 ± 7.89 years) were asked to hold their breath twice for 4 min per instance. During the first pBH, a checker board reversal task was presented and in the second four-min pBH phase a classical visual oddball paradigm was performed. A visual evoked potential (VEP) as an index of early visual processing (i.e., latencies and amplitudes of N75, P100, and N145) and the latency and amplitude of a P300 component (visual oddball paradigm) as an index of cognitive processing were investigated. In a counter-balanced cross-over design, all tasks were once performed during normal breathing (B), and once during pBH. All components were then compared between an early pBH (0–2 min) and a later pBH stage (2–4 min) and with the same time phases without pBH (i.e., during normal breathing). Statistical analyses using analyses of variance (ANOVA) revealed that comparisons between B and pBH yielded no significant changes either in the amplitude and latency of the VEP or in the P300. This indicates that neurocognitive markers, whether in an early visual processing stream or at a later cognitive processing stage, were not affected by pBH in experienced free-divers.
Collapse
Affiliation(s)
- Fabian Steinberg
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael Doppelmayr
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany.,Centre of Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
13
|
Artoni F, Delorme A, Makeig S. A visual working memory dataset collection with bootstrap Independent Component Analysis for comparison of electroencephalographic preprocessing pipelines. Data Brief 2019; 22:787-793. [PMID: 30705925 PMCID: PMC6348727 DOI: 10.1016/j.dib.2018.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 11/23/2022] Open
Abstract
Here we present an electroencephalographic (EEG) collection of 71-channel datasets recorded from 14 subjects (7 males, 7 females, aged 20-40 years) while performing a visual working memory task with a T set of 150 Independent Component Analysis (ICA) decompositions by Extended Infomax using RELICA, each on a bootstrap resampling of the data. These data are linked to the paper "Applying dimension reduction to EEG data by Principal Component Analysis reduces the quality of its subsequent Independent Component decomposition" [1]. Independent components (ICs) are clustered within subject and thereby associated with a quality index (QIc) measure of their stability to data resampling. Sets of single ICA decompositions obtained after applying Principal Component Analysis (PCA) to the data to perform dimension reduction retaining (85%, 95%, 99%) of data variance are also included, as are the positions of the best fitting equivalent dipoles for ICs whose scalp projections are compatible with a compact brain source. These bootstrap ICs may be used as benchmarks for different data preprocessing pipelines and/or ICA algorithms, allowing investigation of the effects that noise or insufficient data have on the quality of ICA decompositions.
Collapse
Affiliation(s)
- Fiorenzo Artoni
- The Biorobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, EPFL – Campus Biotech, Geneva, Switzerland
| | - Arnaud Delorme
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093-0559, USA
- Univ. Grenoble Alpes, CNRS, LNPC UMR 5105, Grenoble, France
| | - Scott Makeig
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093-0559, USA
| |
Collapse
|
14
|
Bilateral cortical representation of tactile roughness. Brain Res 2018; 1699:79-88. [PMID: 29908164 DOI: 10.1016/j.brainres.2018.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 11/21/2022]
Abstract
Roughness is the most important feature for texture discrimination. Here we investigate how the bilateral cortical representation of touch is modulated by tactile roughness by analyzing the neural responses elicited by stimuli with various coarseness levels ranging from fine to medium. A prolonged stimulation was delivered to 10 healthy subjects by passively sliding tactile stimuli under the fingertip while recording the EEG to study the modulation of Somatosensory Evoked Potentials (SEPs) as well as activity in the theta and alpha bands. Elicited long-latency SEPs, namely bilateral P100-N140 and frontal P240 were consistent across stimuli. On the contrary, the temporal lag N140 - P240 was nonlinearly modulated both in contralateral and ipsilateral sides, in agreement with literature. Using a time-frequency analysis approach, we identified a theta band power increase in the [0 0.5]s interval and a partially overlapped power decrease in the alpha band which lasted throughout the stimulation. The estimated time these two phenomena were overlapped was comparable across stimuli, whereas a linear decrease in alpha band amplitude was reported when increasing the stimulus roughness in both contralateral and ipsilateral sides. This study showed that the selected tactile stimuli generated physiological bilateral responses that were modulated in a diversified way according to the stimulus roughness and side. Specifically, we identified sensory processing features (i.e., theta and alpha time overlap) invariant to the stimulus roughness (i.e., associated to a basic cortical mechanism of touch) and roughness-dependent cortical outputs comparable in the contralateral and ipsilateral sides that confirm a bilateral processing of tactile information.
Collapse
|
15
|
Steinberg F, Pixa NH, Doppelmayr M. Electroencephalographic alpha activity modulations induced by breath-holding in apnoea divers and non-divers. Physiol Behav 2017; 179:90-98. [PMID: 28554527 DOI: 10.1016/j.physbeh.2017.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/24/2017] [Accepted: 05/25/2017] [Indexed: 10/19/2022]
Abstract
Little is known regarding cortical responses to sustained breath-holding (BH) in expert apnoea divers. The present study therefore investigated electroencephalographic (EEG) alpha activity and asymmetries in apnoea divers (experts) compared to non-divers (novices). EEG of 10 apnoea and 10 non-divers were recorded in the laboratory for either four minutes or for two minutes of BH. Alpha activity and alpha asymmetry (i.e. hemispherical EEG differences) were calculated and compared between expertise level and BH duration. Alpha amplitude in experts significantly decreased at four minutes of BH compared to resting activity, while alpha amplitude significantly decreased in novices only at centro-parietal regions. Alpha-asymmetry analysis revealed that the experts' decrease in alpha at the end of BH was different in the frontal electrodes with the left prefrontal cortex activity higher than that in the right prefrontal cortex. This lateralized pattern reflected differential prefrontal processing of the unique psycho-physiological state of BH.
Collapse
Affiliation(s)
- Fabian Steinberg
- Johannes Gutenberg University Mainz, Institute of Sport Science, Department of Sport Psychology, Germany.
| | - Nils Henrik Pixa
- Johannes Gutenberg University Mainz, Institute of Sport Science, Department of Sport Psychology, Germany
| | - Michael Doppelmayr
- Johannes Gutenberg University Mainz, Institute of Sport Science, Department of Sport Psychology, Germany; University of Salzburg, Centre of Cognitive Neuroscience, Austria
| |
Collapse
|
16
|
D'Anna E, Petrini FM, Artoni F, Popovic I, Simanić I, Raspopovic S, Micera S. A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci Rep 2017; 7:10930. [PMID: 28883640 PMCID: PMC5589952 DOI: 10.1038/s41598-017-11306-w] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/22/2017] [Indexed: 11/11/2022] Open
Abstract
According to amputees, sensory feedback is amongst the most important features lacking from commercial prostheses. Although restoration of touch by means of implantable neural interfaces has been achieved, these approaches require surgical interventions, and their long-term usability still needs to be fully investigated. Here, we developed a non-invasive alternative which maintains some of the advantages of invasive approaches, such as a somatotopic sensory restitution scheme. We used transcutaneous electrical nerve stimulation (TENS) to induce referred sensations to the phantom hand of amputees. These sensations were characterized in four amputees over two weeks. Although the induced sensation was often paresthesia, the location corresponded to parts of the innervation regions of the median and ulnar nerves, and electroencephalographic (EEG) recordings confirmed the presence of appropriate responses in relevant cortical areas. Using these sensations as feedback during bidirectional prosthesis control, the patients were able to perform several functional tasks that would not be possible otherwise, such as applying one of three levels of force on an external sensor. Performance during these tasks was high, suggesting that this approach could be a viable alternative to the more invasive solutions, offering a trade-off between the quality of the sensation, and the invasiveness of the intervention.
Collapse
Affiliation(s)
- Edoardo D'Anna
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Francesco M Petrini
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fiorenzo Artoni
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Igor Popovic
- Specialized Hospital for rehabilitation and orthopaedic prosthetics, Belgrade, Serbia
| | - Igor Simanić
- Specialized Hospital for rehabilitation and orthopaedic prosthetics, Belgrade, Serbia
| | - Stanisa Raspopovic
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. .,The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
17
|
Genna C, Artoni F, Fanciullacci C, Chisari C, Oddo CM, Micera S. Long-latency components of somatosensory evoked potentials during passive tactile perception of gratings. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:1648-1651. [PMID: 28268646 DOI: 10.1109/embc.2016.7591030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Perception of tactile stimuli elicits Somatosensory Evoked Potentials (SEPs) that can be recorded via non-invasive electroencephalography (EEG). However, it is not yet clear how SEPs localization, shape and latency are modulated by different stimuli during mechanical tactile stimulation of fingertips. The aim of this work is thus to characterize SEPs generated by the tactile perception of gratings during dynamic passive stimulation of the dominant fingertip by means of a mechatronic platform. Results show that a random sequence of stimuli elicited SEPs with two long-latency components: (i) a negative deflection around 140 ms located in the frontal-central-parietal side in the contralateral hemisphere; (ii) a positive deflection around 250 ms located in the frontal-central midline. Time-frequency analysis revealed significant continuous bilateral desynchronization in the alpha band throughout the passive stimulation. These results are a fundamental step towards building a model of brain responses during perception of tactile stimuli for future benchmarking studies.
Collapse
|
18
|
Artoni F, Fanciullacci C, Bertolucci F, Panarese A, Makeig S, Micera S, Chisari C. Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking. Neuroimage 2017; 159:403-416. [PMID: 28782683 PMCID: PMC6698582 DOI: 10.1016/j.neuroimage.2017.07.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/01/2017] [Accepted: 07/09/2017] [Indexed: 01/20/2023] Open
Abstract
In lower mammals, locomotion seems to be mainly regulated by subcortical and spinal networks. On the contrary, recent evidence suggests that in humans the motor cortex is also significantly engaged during complex locomotion tasks. However, a detailed understanding of cortical contribution to locomotion is still lacking especially during stereotyped activities. Here, we show that cortical motor areas finely control leg muscle activation during treadmill stereotyped walking. Using a novel technique based on a combination of Reliable Independent Component Analysis, source localization and effective connectivity, and by combining electroencephalographic (EEG) and electromyographic (EMG) recordings in able-bodied adults we were able to examine for the first time cortical activation patterns and cortico-muscular connectivity including information flow direction. Results not only provided evidence of cortical activity associated with locomotion, but demonstrated significant causal unidirectional drive from contralateral motor cortex to muscles in the swing leg. These insights overturn the traditional view that human cortex has a limited role in the control of stereotyped locomotion, and suggest useful hypotheses concerning mechanisms underlying gait under other conditions. ONE SENTENCE SUMMARY Motor cortex proactively drives contralateral swing leg muscles during treadmill walking, counter to the traditional view of stereotyped human locomotion.
Collapse
Affiliation(s)
- Fiorenzo Artoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| | - Chiara Fanciullacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Pisa University Hospital, Pisa, Italy
| | | | | | - Scott Makeig
- Swartz Center for Computational Neuroscience, University of California, San Diego, La Jolla, CA, United States
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | | |
Collapse
|
19
|
Fanciullacci C, Bertolucci F, Lamola G, Panarese A, Artoni F, Micera S, Rossi B, Chisari C. Delta Power Is Higher and More Symmetrical in Ischemic Stroke Patients with Cortical Involvement. Front Hum Neurosci 2017; 11:385. [PMID: 28804453 PMCID: PMC5532374 DOI: 10.3389/fnhum.2017.00385] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/10/2017] [Indexed: 01/21/2023] Open
Abstract
A brain injury resulting from unilateral stroke critically alters brain functionality and the complex balance within the cortical activity. Such modifications may critically depend on lesion location and cortical involvement. Indeed, recent findings pointed out the necessity of applying a stratification based on lesion location when investigating inter-hemispheric balance in stroke. Here, we tested whether cortical involvement could imply differences in band-specific activity and brain symmetry in post stroke patients with cortico-subcortical and subcortical strokes. We explored brain activity related to lesion location through EEG power analysis and quantitative Electroencephalography (qEEG) measures. Thirty stroke patients in the subacute phase and 10 neurologically intact age-matched right-handed subjects were enrolled. Stroke patients were equally subdivided in two groups based on lesion location: cortico-subcortical (CS, mean age ± SD: 72.21 ± 10.97 years; time since stroke ± SD: 31.14 ± 11.73 days) and subcortical (S, mean age ± SD: 68.92 ± 10.001 years; time since stroke ± SD: 26.93 ± 13.08 days) group. We assessed patients’ neurological status by means of National Institutes of Health Stroke Scale (NIHSS). High density EEG at rest was recorded and power spectral analysis in Delta (1–4 Hz) and Alpha (8–14 Hz) bands was performed. qEEG metrics as pairwise derived Brain Symmetry Index (pdBSI) and Delta/Alpha Ratio (DAR) were computed and correlated with NIHSS score. S showed a lower Delta power in the Unaffected Hemisphere (UH) compared to Affected Hemisphere (AH; z = −1.98, p < 0.05) and a higher Alpha power compared to CS (z = −2.18, p < 0.05). pdBSI was negatively correlated with NIHSS (R = −0.59, p < 0.05). CS showed a higher value and symmetrical distribution of Delta band activity (z = −2.37, p < 0.05), confirmed also by a higher DAR value compared to S (z = −2.48, p < 0.05). Patients with cortico-subcortical and subcortical lesions show different brain symmetry in the subacute phase. Interestingly, in subcortical stroke patient brain activity is related with the clinical function. qEEG measures can be explicative of brain activity related to lesion location and they could allow precise definition of diagnostic-therapeutic algorithms in stroke patients.
Collapse
Affiliation(s)
- Chiara Fanciullacci
- Neurorehabilitation Unit, University Hospital of PisaUniversity of Pisa, Pisa, Italy.,The BioRobotic Institute, Scuola Superiore Sant'AnnaPisa, Italy
| | - Federica Bertolucci
- Neurorehabilitation Unit, University Hospital of PisaUniversity of Pisa, Pisa, Italy
| | - Giuseppe Lamola
- Neurorehabilitation Unit, University Hospital of PisaUniversity of Pisa, Pisa, Italy
| | | | - Fiorenzo Artoni
- The BioRobotic Institute, Scuola Superiore Sant'AnnaPisa, Italy
| | - Silvestro Micera
- The BioRobotic Institute, Scuola Superiore Sant'AnnaPisa, Italy.,Translational Neuroengineering Lab, School of Engineering, École Polytechnique Fèdèrale de LausanneLausanne, Switzerland
| | - Bruno Rossi
- Neurorehabilitation Unit, University Hospital of PisaUniversity of Pisa, Pisa, Italy
| | - Carmelo Chisari
- Neurorehabilitation Unit, University Hospital of PisaUniversity of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Genna C, Oddo CM, Fanciullacci C, Chisari C, Jörntell H, Artoni F, Micera S. Spatiotemporal Dynamics of the Cortical Responses Induced by a Prolonged Tactile Stimulation of the Human Fingertips. Brain Topogr 2017; 30:473-485. [PMID: 28497235 DOI: 10.1007/s10548-017-0569-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/03/2017] [Indexed: 01/02/2023]
Abstract
The sense of touch is fundamental for daily behavior. The aim of this work is to understand the neural network responsible for touch processing during a prolonged tactile stimulation, delivered by means of a mechatronic platform by passively sliding a ridged surface under the subject's fingertip while recording the electroencephalogram (EEG). We then analyzed: (i) the temporal features of the Somatosensory Evoked Potentials and their topographical distribution bilaterally across the cortex; (ii) the associated temporal modulation of the EEG frequency bands. Long-latency SEP were identified with the following physiological sequence P100-N140-P240. P100 and N140 were bilateral potentials with higher amplitude in the contralateral hemisphere and with delayed latency in the ipsilateral side. Moreover, we found a late potential elicited around 200 ms after the stimulation was stopped, which likely encoded the end of tactile input. The analysis of cortical oscillations indicated an initial increase in the power of theta band (4-7 Hz) for 500 ms after the stimulus onset followed a decrease in the power of the alpha band (8-15 Hz) that lasted for the remainder of stimulation. This decrease was prominent in the somatosensory cortex and equally distributed in both contralateral and ipsilateral hemispheres. This study shows that prolonged stimulation of the human fingertip engages the cortex in widespread bilateral processing of tactile information, with different modulations of the theta and alpha bands across time.
Collapse
Affiliation(s)
- Clara Genna
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Calogero M Oddo
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Chiara Fanciullacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Neurorehabilitation Unit, University Hospital of Pisa, Pisa, Italy
| | - Carmelo Chisari
- Neurorehabilitation Unit, University Hospital of Pisa, Pisa, Italy
| | - Henrik Jörntell
- Department of Experimental Medical Science, BMC, Lund University, Lund, Sweden
| | - Fiorenzo Artoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Bertarelli Foundation Chair in Translational NeuroEngineering, School of Engineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy. .,Bertarelli Foundation Chair in Translational NeuroEngineering, School of Engineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
21
|
Sebastiani L, Castellani E, Gemignani A, Artoni F, Menicucci D. Inefficient stimulus processing at encoding affects formation of high-order general representation: A study on cross-modal word-stem completion task. Brain Res 2015; 1622:386-96. [PMID: 26168892 DOI: 10.1016/j.brainres.2015.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
Priming is an implicit memory effect in which previous exposure to one stimulus influences the response to another stimulus. The main characteristic of priming is that it occurs without awareness. Priming takes place also when the physical attributes of previously studied and test stimuli do not match; in fact, it greatly refers to a general stimulus representation activated at encoding independently of the sensory modality engaged. Our aim was to evaluate whether, in a cross-modal word-stem completion task, negative priming scores could depend on inefficient word processing at study and therefore on an altered stimulus representation. Words were presented in the auditory modality, and word-stems to be completed in the visual modality. At study, we recorded auditory ERPs, and compared the P300 (attention/memory) and N400 (meaning processing) of individuals with positive and negative priming. Besides classical averaging-based ERPs analysis, we used an ICA-based method (ErpICASSO) to separate the potentials related to different processes contributing to ERPs. Classical analysis yielded significant difference between the two waves across the whole scalp. ErpICASSO allowed separating the novelty-related P3a and the top-down control-related P3b sub-components of P300. Specifically, in the component C3, the positive deflection identifiable as P3b, was significantly greater in the positive than in the negative priming group, while the late negative deflection corresponding to the parietal N400, was reduced in the positive priming group. In conclusion, inadequacy of specific processes at encoding, such as attention and/or meaning retrieval, could generate weak semantic representations, making words less accessible in subsequent implicit retrieval.
Collapse
Affiliation(s)
- Laura Sebastiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Eleonora Castellani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular & Critical Area Pathology, University of Pisa, Pisa, Italy; Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy; Extreme Centre, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fiorenzo Artoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Danilo Menicucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
RELICA: a method for estimating the reliability of independent components. Neuroimage 2014; 103:391-400. [PMID: 25234117 DOI: 10.1016/j.neuroimage.2014.09.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 08/04/2014] [Accepted: 09/05/2014] [Indexed: 11/21/2022] Open
Abstract
Independent Component Analysis (ICA) is a widely applied data-driven method for parsing brain and non-brain EEG source signals, mixed by volume conduction to the scalp electrodes, into a set of maximally temporally and often functionally independent components (ICs). Many ICs may be identified with a precise physiological or non-physiological origin. However, this process is hindered by partial instability in ICA results that can arise from noise in the data. Here we propose RELICA (RELiable ICA), a novel method to characterize IC reliability within subjects. RELICA first computes IC "dipolarity" a measure of physiological plausibility, plus a measure of IC consistency across multiple decompositions of bootstrap versions of the input data. RELICA then uses these two measures to visualize and cluster the separated ICs, providing a within-subject measure of IC reliability that does not involve checking for its occurrence across subjects. We demonstrate the use of RELICA on EEG data recorded from 14 subjects performing a working memory experiment and show that many brain and ocular artifact ICs are correctly classified as "stable" (highly repeatable across decompositions of bootstrapped versions of the input data). Many stable ICs appear to originate in the brain, while other stable ICs account for identifiable non-brain processes such as line noise. RELICA might be used with any linear blind source separation algorithm to reduce the risk of basing conclusions on unstable or physiologically un-interpretable component processes.
Collapse
|