1
|
Novakova L, Gajdos M, Barton M, Brabenec L, Zeleznikova Z, Moravkova I, Rektorova I. Striato-cortical functional connectivity changes in mild cognitive impairment with Lewy bodies. Parkinsonism Relat Disord 2024; 121:106031. [PMID: 38364623 DOI: 10.1016/j.parkreldis.2024.106031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Functional connectivity changes in clinically overt neurodegenerative diseases such as dementia with Lewy bodies have been described, but studies on connectivity changes in the pre-dementia phase are scarce. OBJECTIVES We concentrated on evaluating striato-cortical functional connectivity differences between patients with Mild Cognitive Impairment with Lewy bodies and healthy controls and on assessing the relation to cognition. METHODS Altogether, we enrolled 77 participants (47 patients, of which 35 met all the inclusion criteria for the final analysis, and 30 age- and gender-matched healthy controls, of which 28 met all the inclusion criteria for the final analysis) to study the seed-based connectivity of the dorsal, middle, and ventral striatum. We assessed correlations between functional connectivity in the regions of between-group differences and neuropsychological scores of interest (visuospatial and executive domains z-scores). RESULTS Subjects with Mild Cognitive Impairment with Lewy Bodies, as compared to healthy controls, showed increased connectivity from the dorsal part of the striatum particularly to the bilateral anterior part of the temporal cortex with an association with executive functions. CONCLUSIONS We were able to capture early abnormal connectivity within cholinergic and noradrenergic pathways that correlated with cognitive functions known to be linked to cholinergic/noradrenergic deficits. The knowledge of specific alterations may improve our understanding of early neural changes in pre-dementia stages and enhance research of disease modifying therapy.
Collapse
Affiliation(s)
- Lubomira Novakova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Martin Gajdos
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Marek Barton
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Lubos Brabenec
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Zaneta Zeleznikova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ivona Moravkova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Irena Rektorova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Kovářová A, Gajdoš M, Rektor I, Mikl M. Contribution of the multi-echo approach in accelerated functional magnetic resonance imaging multiband acquisition. Hum Brain Mapp 2021; 43:955-973. [PMID: 34716738 PMCID: PMC8764472 DOI: 10.1002/hbm.25698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/16/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022] Open
Abstract
We wanted to verify the effect of combining multi‐echo (ME) functional magnetic resonance imaging (fMRI) with slice acceleration in simultaneous multi‐slice acquisition. The aim was to shed light on the benefits of multiple echoes for various acquisition settings, especially for levels of slice acceleration and flip angle. Whole‐brain ME fMRI data were obtained from 26 healthy volunteers (using three echoes; seven runs with slice acceleration 1, 4, 6, and 8; and two different flip angles for each of the first three acceleration factors) and processed as single‐echo (SE) data and ME data based on optimal combinations weighted by the contrast‐to‐noise ratio. Global metrics (temporal signal‐to‐noise ratio, signal‐to‐noise separation, number of active voxels, etc.) and local characteristics in regions of interest were used to evaluate SE and ME data. ME results outperformed SE results in all runs; the differences became more apparent for higher acceleration, where a significant decrease in data quality is observed. ME fMRI can improve the observed data quality metrics over SE fMRI for a wide range of accelerated fMRI acquisitions.
Collapse
Affiliation(s)
- Anežka Kovářová
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,First Department of Neurology, Faculty of Medicine of the Masaryk University, Brno, Czech Republic
| | - Martin Gajdoš
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,First Department of Neurology, Faculty of Medicine of the Masaryk University, Brno, Czech Republic
| | - Michal Mikl
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Salazar M, Shaw DJ, Gajdoš M, Mareček R, Czekóová K, Mikl M, Brázdil M. You took the words right out of my mouth: Dual-fMRI reveals intra- and inter-personal neural processes supporting verbal interaction. Neuroimage 2020; 228:117697. [PMID: 33385556 DOI: 10.1016/j.neuroimage.2020.117697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022] Open
Abstract
Verbal communication relies heavily upon mutual understanding, or common ground. Inferring the intentional states of our interaction partners is crucial in achieving this, and social neuroscience has begun elucidating the intra- and inter-personal neural processes supporting such inferences. Typically, however, neuroscientific paradigms lack the reciprocal to-and-fro characteristic of social communication, offering little insight into the way these processes operate online during real-world interaction. In the present study, we overcame this by developing a "hyperscanning" paradigm in which pairs of interactants could communicate verbally with one another in a joint-action task whilst both undergoing functional magnetic resonance imaging simultaneously. Successful performance on this task required both interlocutors to predict their partner's upcoming utterance in order to converge on the same word as each other over recursive exchanges, based only on one another's prior verbal expressions. By applying various levels of analysis to behavioural and neuroimaging data acquired from 20 dyads, three principal findings emerged: First, interlocutors converged frequently within the same semantic space, suggesting that mutual understanding had been established. Second, assessing the brain responses of each interlocutor as they planned their upcoming utterances on the basis of their co-player's previous word revealed the engagement of the temporo-parietal junctional (TPJ), precuneus and dorso-lateral pre-frontal cortex. Moreover, responses in the precuneus were modulated positively by the degree of semantic convergence achieved on each round. Second, effective connectivity among these regions indicates the crucial role of the right TPJ in this process, consistent with the Nexus model. Third, neural signals within certain nodes of this network became aligned between interacting interlocutors. We suggest this reflects an interpersonal neural process through which interactants infer and align to one another's intentional states whilst they establish a common ground.
Collapse
Affiliation(s)
- M Salazar
- Behavioural and Social Neuroscience Research Group, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 62500, Czech Republic; Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - D J Shaw
- Behavioural and Social Neuroscience Research Group, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 62500, Czech Republic; Department of Psychology, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom.
| | - M Gajdoš
- Multimodal and Functional Neuroimaging Laboratory, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - R Mareček
- Multimodal and Functional Neuroimaging Laboratory, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - K Czekóová
- Behavioural and Social Neuroscience Research Group, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - M Mikl
- Multimodal and Functional Neuroimaging Laboratory, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - M Brázdil
- Behavioural and Social Neuroscience Research Group, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| |
Collapse
|
4
|
Klobušiaková P, Mareček R, Fousek J, Výtvarová E, Rektorová I. Connectivity Between Brain Networks Dynamically Reflects Cognitive Status of Parkinson's Disease: A Longitudinal Study. J Alzheimers Dis 2020; 67:971-984. [PMID: 30776007 PMCID: PMC6398554 DOI: 10.3233/jad-180834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cognitive impairment in Parkinson's disease (PD) is associated with altered connectivity of the resting state networks (RSNs). Longitudinal studies in well cognitively characterized PD subgroups are missing. OBJECTIVES To assess changes of the whole-brain connectivity and between-network connectivity (BNC) of large-scale functional networks related to cognition in well characterized PD patients using a longitudinal study design and various analytical methods. METHODS We explored the whole-brain connectivity and BNC of the frontoparietal control network (FPCN) and the default mode, dorsal attention, and visual networks in PD with normal cognition (PD-NC, n = 17) and mild cognitive impairment (PD-MCI, n = 22) as compared to 51 healthy controls (HC). We applied regions of interest-based, partial least squares, and graph theory based network analyses. The differences among groups were analyzed at baseline and at the one-year follow-up visit (37 HC, 23 PD all). RESULTS The BNC of the FPCN and other RSNs was reduced, and the whole-brain analysis revealed increased characteristic path length and decreased average node strength, clustering coefficient, and global efficiency in PD-NC compared to HC. Values of all measures in PD-MCI were between that of HC and PD-NC. After one year, the BNC was further increased in the PD-all group; no changes were detected in HC. No cognitive domain z-scores deteriorated in either group. CONCLUSION As compared to HC, PD-NC patients display a less efficient transfer of information globally and reduced BNC of the visual and frontoparietal control network. The BNC increases with time and MCI status, reflecting compensatory efforts.
Collapse
Affiliation(s)
- Patrícia Klobušiaková
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radek Mareček
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic.,First Department of Neurology, St. Anne's University Hospital and School of Medicine, Masaryk University, Brno, Czech Republic.,Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic
| | - Jan Fousek
- Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic.,Institute of Computer Science, Masaryk University (MU), Brno, Czech Republic
| | - Eva Výtvarová
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic.,Faculty of Informatics, Masaryk University (MU), Brno, Czech Republic
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic.,First Department of Neurology, St. Anne's University Hospital and School of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|