1
|
Youssef H, Öge AE, Cuypers K, Vural A. Intra-rater reliability and validity of neuro-mobinavigation: A mobile app and laser-guided system of motor HotSpot localization. J Neurosci Methods 2025; 416:110374. [PMID: 39892749 DOI: 10.1016/j.jneumeth.2025.110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Optimal transcranial magnetic stimulation (TMS) efficacy depends on precise coil placement and orientation, as even minor deviations can significantly change the excitation evoked when stimulating the primary motor cortex (M1). To compare the intra-rater reliability of a novel method for consistent TMS coil orientation over a predetermined hotspot in M1, and to benchmark its accuracy against non-navigated method. NEW METHOD A three-step method was employed. First, a laser-guided-system stabilized head position. Second, a mobile-app monitored coil tilt and orientation. Finally, coil position was marked on participant's head cap for visual reference for both methods. Twenty-nine healthy-participants underwent six TMS blocks of 20 pulses each. Six experimental blocks, alternating between non-navigated-TMS and Neuro-Mobinavigated-TMS, to investigate the parameters of motor evoked potential (MEP). The experimental blocks were quasi-randomized with a five-minute interval. RESULTS AND COMPARISON WITH EXISTING METHOD(S) The novel method demonstrated excellent intra-rater reliability (ICC = 0.95, 95 % CI: 0.90-0.97) compared to moderate intra-rater reliability of the non-navigated TMS (ICC = 0.73, 95 % CI: 0.57-0.85) for MEP peak amplitude. Repeated measures ANOVA for novel-method showed consistent peak amplitude across three blocks (p = 0.078), non-navigated TMS exhibited significant variations (p < 0.0001). Wilcoxon signed rank test revealed significantly higher mean peak amplitudes for the novel method (1.02 ± 0.74) compared to non-navigated TMS (0.78 ± 0.61) (p < 0.001), small effect size (r = 0.35). CONCLUSIONS Neuro-Mobinavigation is superior to non-navigated method and provides a reliable and cost-effective alternative for MEP studies where gold standard neuronavigation is not available.
Collapse
Affiliation(s)
- Hussein Youssef
- Koç University, Research Center for Translational Medicine (KUTTAM), İstanbul, Turkey; Koç University Graduate School of Health Sciences, İstanbul, Turkey; Street Doctor, Alexandria, Egypt.
| | - Ali Emre Öge
- Koç University Hospital, Department of Neurology, İstanbul, Turkey
| | - Koen Cuypers
- Hasselt University, Faculty of Rehabilitation Sciences, REVAL Rehabilitation Research Center, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Atay Vural
- Koç University, Research Center for Translational Medicine (KUTTAM), İstanbul, Turkey; Koç University, School of Medicine, Department of Neurology, İstanbul, Turkey
| |
Collapse
|
2
|
Kim J, Yang GH. Manipulator Control of the Robotized TMS System with Incurved TMS Coil Case. APPLIED SCIENCES 2024; 14:11441. [DOI: 10.3390/app142311441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This paper proposes the force/torque control strategy for the robotized transcranial magnetic stimulation (TMS) system, considering the shape of the TMS coil case. Hybrid position/force control is used to compensate for the error between the current and target position of the coil and to maintain the contact between the coil and the subject’s head. The desired force magnitude of the force control part of the hybrid controller is scheduled by the error between the current and target position of the TMS coil for fast error reduction and the comfort of the subject. Additionally, the torque proportional to the torque acting on the coil’s center is generated to stabilize the contact. Compliance control, which makes the robot adaptive to the environment, stabilizes the coil and head interaction during force/torque control. The experimental results showed that the force controller made the coil generate a relatively large force for a short time (less than 10 s) for the fast error reduction, and a relatively small interaction force was maintained for the contact. They showed that the torque controller made the contact area inside the coil. The experiment also showed that the proposed strategy could be used for tracking a new target point estimated by the neuronavigation system when the head moved slightly.
Collapse
Affiliation(s)
- Jaewoo Kim
- Industrial Technology (Robotics), University of Science and Technology, Daejeon 34113, Republic of Korea
- Human-Centric Robotics R&D Department, Korea Insitute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Gi-Hun Yang
- Industrial Technology (Robotics), University of Science and Technology, Daejeon 34113, Republic of Korea
- Human-Centric Robotics R&D Department, Korea Insitute of Industrial Technology, Ansan 15588, Republic of Korea
| |
Collapse
|
3
|
McCarthy B, Sesa-Ashton G, Rim D, Henderson LA, Macefield VG. Single-pulse transcranial magnetic stimulation of the dorsolateral prefrontal cortex does not directly affect muscle sympathetic nerve activity in humans. Cereb Cortex 2024; 34:bhae484. [PMID: 39710610 DOI: 10.1093/cercor/bhae484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) is applied both in research settings and clinically, notably in treating depression through the dorsolateral prefrontal cortex (dlPFC). We have recently shown that transcranial alternating current stimulation of the dlPFC partially entrains muscle sympathetic nerve activity (MSNA) to the stimulus. We, therefore, aimed to further explore the sympathetic properties of the dlPFC, hypothesizing that single-pulse TMS could generate de novo MSNA bursts. Microneurography was performed on the right common peroneal nerve in 12 participants. TMS pulses were then delivered to the ipsilateral dlPFC at resting motor threshold (MT) of the first dorsal interosseous muscle and at powers 20 below, 10 below, 10% above, and 20% above MT. The MT and 10% above MT intensities were also used to stimulate the right motor cortex and shoulder. Comparisons between stimulus intensities at the same site and between sites at the same intensities revealed no differences in MSNA burst frequency, burst incidence, or single MSNA spikes. Most stimulus trains, however, showed reduced burst frequency and incidence from baseline, regardless of site. This suggests that the TMS itself was evoking arousal-based sympathoinhibition, independent of dlPFC influences. It seems the dlPFC is capable of modulating MSNA but cannot directly generate bursts.
Collapse
Affiliation(s)
- Brendan McCarthy
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Gianni Sesa-Ashton
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Donggyu Rim
- Department of Neuroscience, School of Translational Medicine, Monash University, The Alfred Centre, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, The University of Sydney, Paramatta Road, Camperdown, NSW 2050, Australia
| | - Vaughan G Macefield
- Baker Department of Cardiometabolic Health, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
- Department of Neuroscience, School of Translational Medicine, Monash University, The Alfred Centre, 99 Commercial Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
4
|
Tang C, Zhang W, Zhang X, Zhou J, Wang Z, Zhang X, Wu X, Su H, Jiang H, Zhai R, Zhao M. A 3D-Printed helmet for precise and repeatable neuromodulation targeting in awake non-human primates. Heliyon 2024; 10:e37121. [PMID: 39286206 PMCID: PMC11403478 DOI: 10.1016/j.heliyon.2024.e37121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
The application of non-invasive brain stimulation (NIBS) in non-human primates (NHPs) is critical for advancing understanding of brain networks and developing treatments for neurological diseases. Improving the precision of targeting can significantly enhance the efficacy of these interventions. Here, we introduce a 3D-printed helmet designed to achieve repeatable and precise neuromodulation targeting in awake rhesus monkeys, eliminating the need of head fixation. Imaging studies confirmed that the helmet consistently targets the primary motor cortex (M1) with a margin of error less than 1 mm. Evaluations of stimulation efficacy revealed high resolution and stability. Additionally, physiological evaluations under propofol anesthesia showed that the helmet effectively facilitated the generation of recruitment curves for motor area, confirming successful neuromodulation. Collectively, our findings present a straightforward and effective method for achieving consistent and precise NIBS targeting in awake NHPs, potentially advancing both basic neuroscience research and the development of clinical neuromodulation therapies.
Collapse
Affiliation(s)
- Chengjie Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenlei Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Jiahui Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zijing Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueze Zhang
- Academy for Engineering & Technology, Fudan University, China
| | - Xiaotian Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| |
Collapse
|
5
|
Moser P, Reishofer G, Prückl R, Schaffelhofer S, Freigang S, Thumfart S, Mahdy Ali K. Real-time estimation of the optimal coil placement in transcranial magnetic stimulation using multi-task deep learning. Sci Rep 2024; 14:19361. [PMID: 39169126 PMCID: PMC11339299 DOI: 10.1038/s41598-024-70367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a promising neuromodulation technique with both therapeutic and diagnostic applications. As accurate coil placement is known to be essential for focal stimulation, computational models have been established to help find the optimal coil positioning by maximizing electric fields at the cortical target. While these numerical simulations provide realistic and subject-specific field distributions, they are computationally demanding, precluding their use in real-time applications. In this paper, we developed a novel multi-task deep neural network which simultaneously predicts the optimal coil placement for a given cortical target as well as the associated TMS-induced electric field. Trained on large amounts of preceding numerical optimizations, the Attention U-Net-based neural surrogate provided accurate coil optimizations in only 35 ms, a fraction of time compared to the state-of-the-art numerical framework. The mean errors on the position estimates were below 2 mm, i.e., smaller than previously reported manual coil positioning errors. The predicted electric fields were also highly correlated (r> 0.97) with their numerical references. In addition to healthy subjects, we validated our approach also in glioblastoma patients. We first statistically underlined the importance of using realistic heterogeneous tumor conductivities instead of simply adopting values from the surrounding healthy tissue. Second, applying the trained neural surrogate to tumor patients yielded similar accurate positioning and electric field estimates as in healthy subjects. Our findings provide a promising framework for future real-time electric field-optimized TMS applications.
Collapse
Affiliation(s)
- Philipp Moser
- Research Unit Medical Informatics, RISC Software GmbH, Softwarepark 32a, Hagenberg, 4232, Austria.
| | - Gernot Reishofer
- Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, Graz, 8036, Austria
| | - Robert Prückl
- cortEXplore GmbH, Industriezeile 35, Linz, 4020, Austria
| | | | - Sascha Freigang
- Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 29, Graz, 8036, Austria
| | - Stefan Thumfart
- Research Unit Medical Informatics, RISC Software GmbH, Softwarepark 32a, Hagenberg, 4232, Austria
| | - Kariem Mahdy Ali
- Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 29, Graz, 8036, Austria
| |
Collapse
|
6
|
Matilainen N, Kataja J, Laakso I. Verification of neuronavigated TMS accuracy using structured-light 3D scans. Phys Med Biol 2024; 69:085004. [PMID: 38479018 DOI: 10.1088/1361-6560/ad33b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Objective.To investigate the reliability and accuracy of the manual three-point co-registration in neuronavigated transcranial magnetic stimulation (TMS). The effect of the error in landmark pointing on the coil placement and on the induced electric and magnetic fields was examined.Approach.The position of the TMS coil on the head was recorded by the neuronavigation system and by 3D scanning for ten healthy participants. The differences in the coil locations and orientations and the theoretical error values for electric and magnetic fields between the neuronavigated and 3D scanned coil positions were calculated. In addition, the sensitivity of the coil location on landmark accuracy was calculated.Main results.The measured distances between the neuronavigated and 3D scanned coil locations were on average 10.2 mm, ranging from 3.1 to 18.7 mm. The error in angles were on average from two to three degrees. The coil misplacement caused on average a 29% relative error in the electric field with a range from 9% to 51%. In the magnetic field, the same error was on average 33%, ranging from 10% to 58%. The misplacement of landmark points could cause a 1.8-fold error for the coil location.Significance.TMS neuronavigation with three landmark points can cause a significant error in the coil position, hampering research using highly accurate electric field calculations. Including 3D scanning to the process provides an efficient method to achieve a more accurate coil position.
Collapse
Affiliation(s)
- Noora Matilainen
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Juhani Kataja
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
- Aalto Neuroimaging, Aalto University, Espoo, Finland
| |
Collapse
|
7
|
Agboada D, Osnabruegge M, Rethwilm R, Kanig C, Schwitzgebel F, Mack W, Schecklmann M, Seiberl W, Schoisswohl S. Semi-automated motor hotspot search (SAMHS): a framework toward an optimised approach for motor hotspot identification. Front Hum Neurosci 2023; 17:1228859. [PMID: 38164193 PMCID: PMC10757939 DOI: 10.3389/fnhum.2023.1228859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Background Motor hotspot identification represents the first step in the determination of the motor threshold and is the basis for the specification of stimulation intensity used for various Transcranial Magnetic Stimulation (TMS) applications. The level of experimenters' experience and the methodology of motor hotspot identification differ between laboratories. The need for an optimized and time-efficient technique for motor hotspot identification is therefore substantial. Objective With the current work, we present a framework for an optimized and time-efficient semi-automated motor hotspot search (SAMHS) technique utilizing a neuronavigated robot-assisted TMS system (TMS-cobot). Furthermore, we aim to test its practicality and accuracy by a comparison with a manual motor hotspot identification method. Method A total of 32 participants took part in this dual-center study. At both study centers, participants underwent manual hotspot search (MHS) with an experienced TMS researcher, and the novel SAMHS procedure with a TMS-cobot (hereafter, called cobot hotspot search, CHS) in a randomized order. Resting motor threshold (RMT), and stimulus intensity to produce 1 mV (SI1mV) peak-to-peak of motor-evoked potential (MEP), as well as MEPs with 120% RMT and SI1mV were recorded as outcome measures for comparison. Results Compared to the MHS method, the CHS produced lower RMT, lower SI1mV and a trend-wise higher peak-to-peak MEP amplitude in stimulations with SI1mV. The duration of the CHS procedure was longer than that of the MHS (15.60 vs. 2.43 min on average). However, accuracy of the hotspot was higher for the CHS compared to the MHS. Conclusions The SAMHS procedure introduces an optimized motor hotspot determination system that is easy to use, and strikes a fairly good balance between accuracy and speed. This new procedure can thus be deplored by experienced as well as beginner-level TMS researchers.
Collapse
Affiliation(s)
- Desmond Agboada
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Mirja Osnabruegge
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Roman Rethwilm
- Institute of Sport Science, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Carolina Kanig
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Florian Schwitzgebel
- Department of Electrical Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Wolfgang Mack
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Wolfgang Seiberl
- Institute of Sport Science, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Stefan Schoisswohl
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Mancuso M, Cruciani A, Sveva V, Casula EP, Brown K, Rothwell JC, Di Lazzaro V, Koch G, Rocchi L. Somatosensory input in the context of transcranial magnetic stimulation coupled with electroencephalography: An evidence-based overview. Neurosci Biobehav Rev 2023; 155:105434. [PMID: 37890602 DOI: 10.1016/j.neubiorev.2023.105434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
The transcranial evoked potential (TEP) is a powerful technique to investigate brain dynamics, but some methodological issues limit its interpretation. A possible contamination of the TEP by electroencephalographic (EEG) responses evoked by the somatosensory input generated by transcranial magnetic stimulation (TMS) has been postulated; nonetheless, a characterization of these responses is lacking. The aim of this work was to review current evidence about possible somatosensory evoked potentials (SEP) induced by sources of somatosensory input in the craniofacial region. Among these, only contraction of craniofacial muscle and stimulation of free cutaneous nerve endings may be able to induce EEG responses, but direct evidence is lacking due to experimental difficulties in isolating these inputs. Notably, EEG evoked activity in this context is represented by a N100/P200 complex, reflecting a saliency-related multimodal response, rather than specific activation of the primary somatosensory cortex. Strategies to minimize or remove these responses by EEG processing still yield uncertain results; therefore, data inspection is of paramount importance to judge a possible contamination of the TEP by multimodal potentials caused by somatosensory input.
Collapse
Affiliation(s)
- M Mancuso
- Department of Human Neurosciences, University of Rome "Sapienza", Viale dell'Università 30, 00185 Rome, Italy
| | - A Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - V Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome "Sapienza", Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - E P Casula
- Department of System Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - K Brown
- Department of Kinesiology, University of Waterloo, 200 University Ave W, N2L 3G5 Waterloo, ON, Canada
| | - J C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, United Kingdom
| | - V Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - G Koch
- Non-Invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina, 306/354, 00179 Rome, Italy
| | - L Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato Blocco I S.S, 554 bivio per Sestu 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
9
|
Barbi C, Vernillo G, Emadi Andani M, Giuriato G, Laginestra FG, Cavicchia A, Fiorini Aloisi G, Martignon C, Pedrinolla A, Schena F, Venturelli M. Comparison between conventional and neuronavigated strategies to assess corticospinal responsiveness in unfatigued and fatigued knee-extensor muscles. Neurosci Lett 2023:137351. [PMID: 37321388 DOI: 10.1016/j.neulet.2023.137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
In studying neuromuscular fatigability, researchers commonly use functional criteria to position and hold the transcranial magnetic stimulation (TMS) coil during testing sessions. This could influence the magnitude of corticospinal excitability and inhibition responses due to imprecise and unsteady positions of the coil. To reduce coil position and orientation variability, neuronavigated TMS (nTMS) could be used. We evaluated the accuracy of nTMS and a standardized function-guided procedure for maintaining TMS coil position both in unfatigued and fatigued knee extensors. Eighteen participants (10F/8M) volunteered in two identical and randomized sessions. Maximal and submaximal neuromuscular evaluations were performed with TMS three times before (PRE_1) and three times after (PRE_2) a 2 min resting session and one time immediately after (POST) a 2-min sustained maximal voluntary isometric contraction (MVIC). The located "hotspot" [the location that evoked the largest motor-evoked potential (MEP) responses in the rectus femoris] was maintained either with or without nTMS. MEP, silent period (SP) and the distance between the "hotspot" and the actual coil position were recorded. A time × contraction intensity × testing session × muscle interaction was not observed for MEP, SP, and distance. Bland-Altman plots presented adequate agreements for MEP and SP. Spatial accuracy of TMS coil position over the motor cortex did not influence corticospinal excitability and inhibition in unfatigued and fatigued knee extensors. The variability in MEP and SP responses may be due to spontaneous fluctuations in corticospinal excitability and inhibition, and it is not altered by the spatial stability of the stimulation point.
Collapse
Affiliation(s)
- C Barbi
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - G Vernillo
- Department of Biomedical Sciences for Health, University of Milan, Italy
| | - M Emadi Andani
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - G Giuriato
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - F G Laginestra
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - A Cavicchia
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - G Fiorini Aloisi
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - C Martignon
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - A Pedrinolla
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - F Schena
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - M Venturelli
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy.
| |
Collapse
|
10
|
Alawi M, Lee PF, Deng ZD, Goh YK, Croarkin PE. Modelling the differential effects of age on transcranial magnetic stimulation induced electric fields. J Neural Eng 2023; 20. [PMID: 36240726 DOI: 10.1088/1741-2552/ac9a76] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
Objective. The therapeutic application of noninvasive brain stimulation modalities such as transcranial magnetic stimulation (TMS) has expanded in terms of indications and patient populations. Often neurodevelopmental and neurodegenerative changes are not considered in research studies and clinical applications. This study sought to examine TMS dosing across time points in the life cycle.Approach. TMS induced electric fields with a figure-of-eight coil was simulated at left dorsolateral prefrontal cortex regions and taken in vertex as a control region. Realistic magnetic resonance imaging-based head models (N= 48) were concurrently examined in a cross-sectional study of three different age groups (children, adults, and elderlies).Main results. Age had a negative correlation with electric field peaks in white matter, grey matter and cerebrospinal fluid (P< 0.001). Notably, the electric field map in children displayed the widest cortical surface spread of TMS induced electric fields.Significance. Age-related anatomical geometry beneath the coil stimulation site had a significant impact on the TMS induced electric fields for different age groups. Safety considerations for TMS applications and protocols in children are warranted based on the present electric field findings.
Collapse
Affiliation(s)
- Mansour Alawi
- Lee Kong Chian Faculty of Engineering & Science, University Tunku Abdul Rahman, Kajang, Malaysia
| | - Poh Foong Lee
- Lee Kong Chian Faculty of Engineering & Science, University Tunku Abdul Rahman, Kajang, Malaysia
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, National Institute of Mental Health, NIH, Bethesda, MD, United States of America
| | - Yong Kheng Goh
- Lee Kong Chian Faculty of Engineering & Science, University Tunku Abdul Rahman, Kajang, Malaysia
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Minnesota, MN, United States of America
| |
Collapse
|
11
|
Hernandez-Pavon JC, Veniero D, Bergmann TO, Belardinelli P, Bortoletto M, Casarotto S, Casula EP, Farzan F, Fecchio M, Julkunen P, Kallioniemi E, Lioumis P, Metsomaa J, Miniussi C, Mutanen TP, Rocchi L, Rogasch NC, Shafi MM, Siebner HR, Thut G, Zrenner C, Ziemann U, Ilmoniemi RJ. TMS combined with EEG: Recommendations and open issues for data collection and analysis. Brain Stimul 2023; 16:567-593. [PMID: 36828303 DOI: 10.1016/j.brs.2023.02.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) evokes neuronal activity in the targeted cortex and connected brain regions. The evoked brain response can be measured with electroencephalography (EEG). TMS combined with simultaneous EEG (TMS-EEG) is widely used for studying cortical reactivity and connectivity at high spatiotemporal resolution. Methodologically, the combination of TMS with EEG is challenging, and there are many open questions in the field. Different TMS-EEG equipment and approaches for data collection and analysis are used. The lack of standardization may affect reproducibility and limit the comparability of results produced in different research laboratories. In addition, there is controversy about the extent to which auditory and somatosensory inputs contribute to transcranially evoked EEG. This review provides a guide for researchers who wish to use TMS-EEG to study the reactivity of the human cortex. A worldwide panel of experts working on TMS-EEG covered all aspects that should be considered in TMS-EEG experiments, providing methodological recommendations (when possible) for effective TMS-EEG recordings and analysis. The panel identified and discussed the challenges of the technique, particularly regarding recording procedures, artifact correction, analysis, and interpretation of the transcranial evoked potentials (TEPs). Therefore, this work offers an extensive overview of TMS-EEG methodology and thus may promote standardization of experimental and computational procedures across groups.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA.
| | | | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Paolo Belardinelli
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Elias P Casula
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Faranak Farzan
- Simon Fraser University, School of Mechatronic Systems Engineering, Surrey, British Columbia, Canada
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Petro Julkunen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Nigel C Rogasch
- University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Monash University, Melbourne, Australia
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregor Thut
- School of Psychology and Neuroscience, University of Glasgow, United Kingdom
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| |
Collapse
|
12
|
Selective Stimulus Intensity during Hotspot Search Ensures Faster and More Accurate Preoperative Motor Mapping with nTMS. Brain Sci 2023; 13:brainsci13020285. [PMID: 36831828 PMCID: PMC9954713 DOI: 10.3390/brainsci13020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
INTRODUCTION Navigated transcranial magnetic stimulation (nTMS) has emerged as one of the most innovative techniques in neurosurgical practice. However, nTMS motor mapping involves rigorous steps, and the importance of an accurate execution method has not been emphasized enough. In particular, despite strict adherence to procedural protocols, we have observed high variability in map activation according to the choice of stimulation intensity (SI) right from the early stage of hotspot localization. We present a retrospective analysis of motor mappings performed between March 2020 and July 2022, where the SI was only chosen with rigorous care in the most recent ones, under the guide of an expert neurophysiologist. MATERIALS AND METHODS In order to test the ability to reduce inaccurate responses and time expenditure using selective SI, data were collected from 16 patients who underwent mapping with the random method (group A) and 15 patients who underwent mapping with the proposed method (group B). The parameters considered were resting motor threshold (%), number of stimuli, number of valid motor evoked potentials (MEPs), number of valid MEPs considered true positives (TPs), number of valid MEPs considered false positives (FPs), ratio of true-positive MEPs to total stimuli, ratio of true-positive MEPs to valid MEPs, minimum amplitude, maximum amplitude and mapping time for each patient. RESULTS The analysis showed statistically significant reductions in total stimulus demand, procedural time and number of false-positive MEPs. Significant increases were observed in the number of true-positive MEPs, the ratio of true-positive MEPs to total stimuli and the ratio of true-positive MEPs to valid MEPs. In the subgroups analyzed, there were similar trends, in particular, an increase in true positives and a decrease in false-positive responses. CONCLUSIONS The precise selection of SI during hotspot search in nTMS motor mapping could provide reliable cortical maps in short time and with low employment of resources. This method seems to ensure that a MEP really represents a functionally eloquent cortical point, making mapping more intuitive even in less experienced centers.
Collapse
|
13
|
Presland JD, Tofari PJ, Timmins RG, Kidgell DJ, Opar DA. Reliability of corticospinal excitability and intracortical inhibition in biceps femoris during different contraction modes. Eur J Neurosci 2023; 57:91-105. [PMID: 36382424 PMCID: PMC10107877 DOI: 10.1111/ejn.15868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
This study aimed to determine the test-retest reliability of a range of transcranial magnetic stimulation (TMS) outcomes in the biceps femoris during isometric, eccentric and concentric contractions. Corticospinal excitability (active motor threshold 120% [AMT120%] and area under recruitment curve [AURC]), short- and long-interval intracortical inhibition (SICI and LICI) and intracortical facilitation (ICF) were assessed from the biceps femoris in 10 participants (age 26.3 ± 6.0 years; height 180.2 ± 6.6 cm, body mass 77.2 ± 8.0 kg) in three sessions. Single- and paired-pulse stimuli were delivered under low-level muscle activity (5% ± 2% of maximal isometric root mean squared surface electromyography [rmsEMG]) during isometric, concentric and eccentric contractions. Participants were provided visual feedback on their levels of rmsEMG during all contractions. Single-pulse outcomes measured during isometric contractions (AURC, AMT110%, AMT120%, AMT130%, AMT150%, AMT170%) demonstrated fair to excellent reliability (ICC range, .51 to .92; CV%, 21% to 37%), whereas SICI, LICI and ICF demonstrated good to excellent reliability (ICC range, .62 to .80; CV%, 19 to 42%). Single-pulse outcomes measured during concentric contractions demonstrated excellent reliability (ICC range, .75 to .96; CV%, 15% to 34%), whereas SICI, LICI and ICF demonstrated good to excellent reliability (ICC range, .65 to .76; CV%, 16% to 71%). Single-pulse outcomes during eccentric contractions demonstrated fair to excellent reliability (ICC range, .56 to .96; CV%, 16% to 41%), whereas SICI, LICI and ICF demonstrated good to excellent (ICC range, .67 to .86; CV%, 20% to 42%). This study found that both single- and paired-pulse TMS outcomes can be measured from the biceps femoris muscle across all contraction modes with fair to excellent reliability. However, coefficient of variation values were typically greater than the smallest worthwhile change which may make tracking physiological changes in these variables difficult without moderate to large effect sizes.
Collapse
Affiliation(s)
- Joel D Presland
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Paul J Tofari
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia.,Sports Performance, Recovery, Injury & New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, Victoria, Australia
| | - Ryan G Timmins
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia.,Sports Performance, Recovery, Injury & New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, Victoria, Australia
| | - Dawson J Kidgell
- School of Primary and Allied Health Care, Monash University, Melbourne, Victoria, Australia
| | - David A Opar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia.,Sports Performance, Recovery, Injury & New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Hu N, Avela J, Kidgell DJ, Nevanperä S, Walker S, Piirainen JM. Reliability of transcranial magnetic stimulation and H-reflex measurement during balance perturbation tasks. Front Physiol 2022; 13:957650. [PMID: 36311220 PMCID: PMC9614306 DOI: 10.3389/fphys.2022.957650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Following ankle movement, posterior balance perturbation evokes short- (SLR ∼30–50 ms), medium- (MLR ∼50–60 ms), and long-latency responses (LLR ∼70–90 ms) in soleus muscle before voluntary muscle contraction. Transcranial magnetic stimulation (TMS) and Hoffmann-reflex (H-reflex) measurements can provide insight into the contributions of corticospinal and spinal mechanisms to each response. Motor evoked potential (MEP) and H-reflex responses have shown good reliability in some dynamic muscle contraction tasks. However, it is still unclear how reliable these methods are in dynamic balance perturbation and corticospinal modulation during long amplitude balance perturbation tasks. 14 subjects completed two test sessions in this study to evaluate the reliability of MEPs, H-reflex, and corticospinal modulation during balance perturbation. In each session, the balance perturbation system operated at 0.25 m/s, accelerating at 2.5 m/s2 over 0.3 m displacement. MEPs and H-reflexes were elicited in the right leg soleus muscle at four delays after ankle movement (10 ms, 40 ms, 80 ms, and 140 ms), respectively. Test-retest reliability of MEP and H-reflex amplitudes were assessed via intraclass correlation coefficients (ICC) both between- and within-session. Between-session test-retest reliability for MEPs was excellent (ICC = 0.928–0.947), while H-reflex demonstrated moderate-to-good reliability (ICC = 0.626–0.887). Within-session reliability for both MEPs and H-reflex was excellent (ICC = 0.927–0.983). TMS and H-reflex measurements were reliable at different delays after perturbation between- and within-sessions, which indicated that these methods can be used to measure corticospinal excitability during balance perturbation.
Collapse
Affiliation(s)
- Nijia Hu
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- *Correspondence: Nijia Hu,
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Dawson J. Kidgell
- School of Primary and Allied Health Care, Department of Physiotherapy, Monash University, Melbourne, VIC, Australia
| | - Samuli Nevanperä
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jarmo M. Piirainen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
15
|
TMS-EEG responses across the lifespan: Measurement, methods for characterisation and identified responses. J Neurosci Methods 2022; 366:109430. [PMID: 34856320 DOI: 10.1016/j.jneumeth.2021.109430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 01/29/2023]
Abstract
The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) allows probing of the neurophysiology of any neocortical brain area in vivo with millisecond accuracy. TMS-EEG is particularly unique compared with other available neurophysiological methods, as it can measure the state and dynamics of excitatory and inhibitory systems separately. Because of these capabilities, TMS-EEG responses are sensitive to the brain state, and the responses are influenced by brain maturation and ageing, making TMS-EEG a suitable method to study age-specific pathophysiology. In this review, we outline the TMS-EEG measurement procedure, the existing methods used for characterising TMS-EEG responses and the challenges associated with identifying the responses. We also summarise the findings thus far on how TMS-EEG responses change across the lifespan and the TMS-EEG features that separate typical and atypical brain maturation and ageing. Finally, we give an overview of the gaps in current knowledge to provide directions for future studies.
Collapse
|
16
|
Kallioniemi E, Awiszus F, Pitkänen M, Julkunen P. Fast acquisition of resting motor threshold with a stimulus-response curve - Possibility or hazard for transcranial magnetic stimulation applications? Clin Neurophysiol Pract 2022; 7:7-15. [PMID: 35024510 PMCID: PMC8733273 DOI: 10.1016/j.cnp.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Objective Previous research has suggested that transcranial magnetic stimulation (TMS) related cortical excitability measures could be estimated quickly using stimulus-response curves with short interstimulus intervals (ISIs). Here we evaluated the resting motor threshold (rMT) estimated with these curves. Methods Stimulus-response curves were measured with three ISIs: 1.2-2 s, 2-3 s, and 3-4 s. Each curve was formed with 108 stimuli using stimulation intensities ranging from 0.75 to 1.25 times the rMTguess, which was estimated based on motor evoked potential (MEP) amplitudes of three scout responses. Results The ISI did not affect the rMT estimated from the curves (F = 0.235, p = 0.683) or single-trial MEP amplitudes at the group level (F = 0.90, p = 0.405), but a significant subject by ISI interaction (F = 3.64; p < 0.001) was detected in MEP amplitudes. No trend was observed which ISI was most excitable, as it varied between subjects. Conclusions At the group level, the stimulus-response curves are unaffected by the short ISI. At the individual level, these curves are highly affected by the ISI. Significance Estimating rMT using stimulus-response curves with short ISIs impacts the rMT estimate and should be avoided in clinical and research TMS applications.
Collapse
Key Words
- APB, abductor pollicis brevis
- EMG, electromyography
- ISI, interstimulus interval
- Interstimulus interval
- MEP, motor evoked potential
- MRI, magnetic resonance imaging
- MSO, maximum stimulator output
- Motor evoked potential
- Motor threshold
- SI, stimulation intensity
- Stimulus-response curve
- TMS, transcranial magnetic stimulation
- rMT, resting motor threshold
- rMTRR, resting motor threshold estimated with the Rossini-Rothwell method
- rMTestimate, resting motor threshold estimated with stimulus–response curves
- rMTguess, resting motor threshold estimated with prior information and three scout pulses
- rMTthreshold, resting motor threshold estimated with the threshold-hunting method
- rMTtrue, true resting motor threshold in simulations
Collapse
Affiliation(s)
- Elisa Kallioniemi
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States
| | - Friedemann Awiszus
- Neuromuscular Research Group at the Department of Orthopaedics, Otto-von-Guericke University, Magdeburg, Germany
| | - Minna Pitkänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Petro Julkunen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
17
|
Sondergaard RE, Martino D, Kiss ZHT, Condliffe EG. TMS Motor Mapping Methodology and Reliability: A Structured Review. Front Neurosci 2021; 15:709368. [PMID: 34489629 PMCID: PMC8417420 DOI: 10.3389/fnins.2021.709368] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
Motor cortical representation can be probed non-invasively using a transcranial magnetic stimulation (TMS) technique known as motor mapping. The mapping technique can influence features of the maps because of several controllable elements. Here we review the literature on six key motor mapping parameters, as well as their influence on outcome measures and discuss factors impacting their selection. 132 of 1,587 distinct records were examined in detail and synthesized to form the basis of our review. A summary of mapping parameters, their impact on outcome measures and feasibility considerations are reported to support the design and interpretation of TMS mapping studies.
Collapse
Affiliation(s)
- Rachel E. Sondergaard
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Davide Martino
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zelma H. T. Kiss
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Elizabeth G. Condliffe
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Turco CV, Nelson AJ. Transcranial Magnetic Stimulation to Assess Exercise-Induced Neuroplasticity. FRONTIERS IN NEUROERGONOMICS 2021; 2:679033. [PMID: 38235229 PMCID: PMC10790852 DOI: 10.3389/fnrgo.2021.679033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/06/2021] [Indexed: 01/19/2024]
Abstract
Aerobic exercise facilitates neuroplasticity and has been linked to improvements in cognitive and motor function. Transcranial magnetic stimulation (TMS) is a non-invasive technique that can be used to quantify changes in neurophysiology induced by exercise. The present review summarizes the single- and paired-pulse TMS paradigms that can be used to probe exercise-induced neuroplasticity, the optimal stimulation parameters and the current understanding of the neurophysiology underlying each paradigm. Further, this review amalgamates previous research exploring the modulation of these paradigms with exercise-induced neuroplasticity in healthy and clinical populations and highlights important considerations for future TMS-exercise research.
Collapse
Affiliation(s)
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
19
|
Noccaro A, Mioli A, D’Alonzo M, Pinardi M, Di Pino G, Formica D. Development and Validation of a Novel Calibration Methodology and Control Approach for Robot-Aided Transcranial Magnetic Stimulation (TMS). IEEE Trans Biomed Eng 2021; 68:1589-1600. [PMID: 33513096 PMCID: PMC7616920 DOI: 10.1109/tbme.2021.3055434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS application. METHODS The robotic TMS platform is composed of a 7 dof manipulator, controlled by an impedance control, and a camera-based neuronavigation system. The proposed calibration method was optimized on the workspace useful for the specific TMS application (spherical shell around the subject's head), and tested on three different hand-eye and robot-world calibration algorithms. The platform functionality was tested on six healthy subjects during a real TMS procedure, over the left primary motor cortex. RESULTS employing our method significantly decreases ( ) the calibration error by 34% for the position and 19% for the orientation. The robotic TMS platform achieved greater orientation accuracy than the expert operators, significantly reducing orientation errors by 46% ( ). No significant differences were found in the position errors and in the amplitude of the motor evoked potentials (MEPs) between the robot-aided TMS and the expert operators. CONCLUSION The proposed calibration represents a valid method to significantly reduce the calibration errors in robot-aided TMS applications. Results showed the efficacy of the proposed platform (including the control algorithm) in administering a real TMS procedure, achieving better coil positioning than expert operators, and similar results in terms of MEPs. SIGNIFICANCE This article spotlights how to improve the performance of a robotic TMS platform, providing a reproducible and low-cost alternative to the few devices commercially available.
Collapse
Affiliation(s)
- A. Noccaro
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - A. Mioli
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - M. D’Alonzo
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - M. Pinardi
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - G. Di Pino
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - D. Formica
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
20
|
Roos D, Biermann L, Jarczok TA, Bender S. Local Differences in Cortical Excitability - A Systematic Mapping Study of the TMS-Evoked N100 Component. Front Neurosci 2021; 15:623692. [PMID: 33732105 PMCID: PMC7959732 DOI: 10.3389/fnins.2021.623692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) with simultaneous electroencephalography applied to the primary motor cortex provides two parameters for cortical excitability: motor evoked potentials (MEPs) and TMS-evoked potentials (TEPs). This study aimed to evaluate the effects of systematic coil shifts on both the TEP N100 component and MEPs in addition to the relationship between both parameters. In 12 healthy adults, the center of a standardized grid was fixed above the hot spot of the target muscle of the left primary motor cortex. Twelve additional positions were arranged in a quadratic grid with positions between 5 and 10 mm from the hot spot. At each of the 13 positions, TMS single pulses were applied. The topographical maximum of the resulting N100 was located ipsilateral and slightly posterior to the stimulation site. A source analysis revealed an equivalent dipole localized more deeply than standard motor cortex coordinates that could not be explained by a single seeded primary motor cortex dipole. The N100 topography might not only reflect primary motor cortex activation, but also sum activation of the surrounding cortex. N100 amplitude and latency decreased significantly during stimulation anterior-medial to the hot spot although MEP amplitudes were smaller at all other stimulation sites. Therefore, N100 amplitudes might be suitable for detecting differences in local cortical excitability. The N100 topography, with its maximum located posterior to the stimulation site, possibly depends on both anatomical characteristics of the stimulated cortex and differences in local excitability of surrounding cortical areas. The less excitable anterior cortex might contribute to a more posterior maximum. There was no correlation between N100 and MEP amplitudes, but a single-trial analysis revealed a trend toward larger N100 amplitudes in trials with larger MEPs. Thus, functionally efficient cortical excitation might increase the probability of higher N100 amplitudes, but TEPs are also generated in the absence of MEPs.
Collapse
Affiliation(s)
- Daniela Roos
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lea Biermann
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tomasz A Jarczok
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
21
|
Proessl F, Canino MC, Beckner ME, Sinnott AM, Eagle SR, LaGoy AD, Conkright WR, Sterczala AJ, Connaboy C, Ferrarelli F, Germain A, Nindl BC, Flanagan SD. Characterizing off-target corticospinal responses to double-cone transcranial magnetic stimulation. Exp Brain Res 2021; 239:1099-1110. [PMID: 33547521 DOI: 10.1007/s00221-021-06044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The double-cone coil (D-CONE) is frequently used in transcranial magnetic stimulation (TMS) experiments that target the motor cortex (M1) lower-limb representation. Anecdotal evidence and modeling studies have shed light on the off-target effects of D-CONE TMS but the physiological extent remains undetermined. PURPOSE To characterize the off-target effects of D-CONE TMS based on bilateral corticospinal responses in the legs and hands. METHODS Thirty (N = 30) participants (9 women, age: 26 ± 5yrs) completed a stimulus-response curve procedure with D-CONE TMS applied to the dominant vastus lateralis (cVL) and motor-evoked potentials (MEPs) recorded in each active VL and resting first dorsal interosseous (FDI). As a positive control (CON), the dominant FDI was directly targeted with a figure-of-eight coil and MEPs were similarly recorded in each active FDI and resting VL. MEPMAX, V50 and MEP latencies were compared with repeated-measures ANOVAs or mixed-effects analysis and Bonferroni-corrected pairwise comparisons. RESULTS Off-target responses were evident in all muscles, with similar MEPMAX in the target (cVL) and off-target (iVL) leg (p = 0.99) and cFDI compared with CON (p = 0.99). cFDI and CON MEPMAX were greater than iFDI (p < 0.01). A main effect of target (p < 0.001) indicated that latencies were shorter with CON but similar in all muscles with D-CONE. DISCUSSION Concurrent MEP recordings in bilateral upper- and lower-extremity muscles confirm that lower-limb D-CONE TMS produces substantial distance-dependent off-target effects. In addition to monitoring corticospinal responses in off-target muscles to improve targeting accuracy in real-time, future studies may incorporate off-target information into statistical models post-hoc.
Collapse
Affiliation(s)
- F Proessl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, 3860 South Water St, Pittsburgh, PA, 15203, USA
| | - M C Canino
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, 3860 South Water St, Pittsburgh, PA, 15203, USA
| | - M E Beckner
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, 3860 South Water St, Pittsburgh, PA, 15203, USA
| | - A M Sinnott
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, 3860 South Water St, Pittsburgh, PA, 15203, USA
| | - S R Eagle
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, 3860 South Water St, Pittsburgh, PA, 15203, USA
| | - A D LaGoy
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, 3860 South Water St, Pittsburgh, PA, 15203, USA.,Department of Psychiatry, University of Pittsburgh Medical School, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - W R Conkright
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, 3860 South Water St, Pittsburgh, PA, 15203, USA
| | - A J Sterczala
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, 3860 South Water St, Pittsburgh, PA, 15203, USA
| | - C Connaboy
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, 3860 South Water St, Pittsburgh, PA, 15203, USA
| | - F Ferrarelli
- Department of Psychiatry, University of Pittsburgh Medical School, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - A Germain
- Department of Psychiatry, University of Pittsburgh Medical School, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - B C Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, 3860 South Water St, Pittsburgh, PA, 15203, USA
| | - S D Flanagan
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, 3860 South Water St, Pittsburgh, PA, 15203, USA.
| |
Collapse
|
22
|
Recovery of reward function in problematic substance users using a combination of robotics, electrophysiology, and TMS. Int J Psychophysiol 2020; 158:288-298. [DOI: 10.1016/j.ijpsycho.2020.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
|
23
|
Cuypers K, Marsman A. Transcranial magnetic stimulation and magnetic resonance spectroscopy: Opportunities for a bimodal approach in human neuroscience. Neuroimage 2020; 224:117394. [PMID: 32987106 DOI: 10.1016/j.neuroimage.2020.117394] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Over the last decade, there has been an increasing number of studies combining transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS). MRS provides a manner to non-invasively investigate molecular concentrations in the living brain and thus identify metabolites involved in physiological and pathological processes. Particularly the MRS-detectable metabolites glutamate, the major excitatory neurotransmitter, and gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter, are of interest when combining TMS and MRS. TMS is a non-invasive brain stimulation technique that can be applied either as a neuromodulation or neurostimulation tool, specifically targeting glutamatergic and GABAergic mechanisms. The combination of TMS and MRS can be used to evaluate alterations in brain metabolite levels following an interventional TMS protocol such as repetitive TMS (rTMS) or paired associative stimulation (PAS). MRS can also be combined with a variety of non-interventional TMS protocols to identify the interplay between brain metabolite levels and measures of excitability or receptor-mediated inhibition and facilitation. In this review, we provide an overview of studies performed in healthy and patient populations combining MRS and TMS, both as a measurement tool and as an intervention. TMS and MRS may reveal complementary and comprehensive information on glutamatergic and GABAergic neurotransmission. Potentially, connectivity changes and dedicated network interactions can be probed using the combined TMS-MRS approach. Considering the ongoing technical developments in both fields, combined studies hold future promise for investigations of brain network interactions and neurotransmission.
Collapse
Affiliation(s)
- Koen Cuypers
- Department of Movement Sciences, Group Biomedical Sciences, Movement Control & Neuroplasticity Research Group, KU Leuven, 3001 Heverlee, Belgium; REVAL Research Institute, Hasselt University, Agoralaan, Building A, 3590 Diepenbeek, Belgium
| | - Anouk Marsman
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Kettegård Allé 30, 26500 Hvidovre, Denmark.
| |
Collapse
|
24
|
Hand BJ, Opie GM, Sidhu SK, Semmler JG. TMS coil orientation and muscle activation influence lower limb intracortical excitability. Brain Res 2020; 1746:147027. [PMID: 32717277 DOI: 10.1016/j.brainres.2020.147027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Previous research with transcranial magnetic stimulation (TMS) indicates that coil orientation (TMS current direction) and muscle activation state (rest or active) modify corticospinal and intracortical excitability of upper limb muscles. However, the extent to which these factors influence corticospinal and intracortical excitability of lower limb muscles is unknown. This study aimed to examine how variations in coil orientation and muscle activation affect corticospinal and intracortical excitability of tibialis anterior (TA), a lower leg muscle. METHODS In 21 young (21.6 ± 3.3 years, 11 female) adults, TMS was administered to the motor cortical representation of TA in posterior-anterior (PA) and mediolateral (ML) orientations at rest and during muscle activation. Single-pulse TMS measures of motor evoked potential amplitude, in addition to resting and active motor thresholds, were used to index corticospinal excitability, whereas paired-pulse TMS measures of short-interval intracortical inhibition (SICI) and facilitation (SICF), and long-interval intracortical inhibition (LICI), were used to assess excitability of intracortical circuits. RESULTS For single-pulse TMS, motor thresholds and test TMS intensity were lower for ML stimulation (all P < 0.05). In a resting muscle, ML TMS produced greater SICI (P < 0.001) and less SICF (both P < 0.05) when compared with PA TMS. In contrast, ML TMS in an active muscle resulted in reduced SICI but increased SICF (both P ≤ 0.001) when compared with PA TMS. CONCLUSION TMS coil orientation and muscle activation influence measurements of intracortical excitability recorded in the tibialis anterior, and are therefore important considerations in TMS studies of lower limb muscles.
Collapse
Affiliation(s)
- Brodie J Hand
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Simranjit K Sidhu
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
25
|
de Goede AA, Cumplido-Mayoral I, van Putten MJAM. Spatiotemporal Dynamics of Single and Paired Pulse TMS-EEG Responses. Brain Topogr 2020; 33:425-437. [PMID: 32367427 PMCID: PMC7293671 DOI: 10.1007/s10548-020-00773-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
For physiological brain function a particular balance between excitation and inhibition is essential. Paired pulse transcranial magnetic stimulation (TMS) can estimate cortical excitability and the relative contribution of inhibitory and excitatory networks. Combining TMS with electroencephalography (EEG) enables additional assessment of the spatiotemporal dynamics of neuronal responses in the stimulated brain. This study aims to evaluate the spatiotemporal dynamics and stability of single and paired pulse TMS-EEG responses, and assess long intracortical inhibition (LICI) at the cortical level. Twenty-five healthy subjects were studied twice, approximately one week apart. Manual coil positioning was applied in sixteen subjects and robot-guided positioning in nine. Both motor cortices were stimulated with 50 single pulses and 50 paired pulses at each of the five interstimulus intervals (ISIs): 100, 150, 200, 250 and 300 ms. To assess stability and LICI, the intraclass correlation coefficient and cluster-based permutation analysis were used. We found great resemblance in the topographical distribution of the characteristic TMS-EEG components for single and paired pulse TMS. Stimulation of the dominant and non-dominant hemisphere resulted in a mirrored spatiotemporal dynamics. No significant effect on the TMS-EEG responses was found for either stimulated hemisphere, time or coil positioning method, indicating the stability of both single and paired pulse TMS-EEG responses. For all ISIs, LICI was characterized by significant suppression of the late N100 and P180 components in the central areas, without affecting the early P30, N45 and P60 components. These observations in healthy subjects can serve as reference values for future neuropsychiatric and pharmacological studies.
Collapse
Affiliation(s)
- Annika A de Goede
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, P.O. Box 217, Technohal 3385, 7500 AE, Enschede, The Netherlands.
| | - Irene Cumplido-Mayoral
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, P.O. Box 217, Technohal 3385, 7500 AE, Enschede, The Netherlands.,Biomedical Engineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, P.O. Box 217, Technohal 3385, 7500 AE, Enschede, The Netherlands.,Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, The Netherlands
| |
Collapse
|
26
|
Magalhães SC, Queiroz de Paiva JP, Kaelin-Lang A, Sterr A, Eckeli AL, Winkler AM, Fernandes do Prado G, Amaro E, Conforto AB. Short-interval intracortical inhibition is decreased in restless legs syndrome across a range of severity. Sleep Med 2019; 62:34-42. [PMID: 31539846 DOI: 10.1016/j.sleep.2019.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Decreased short-interval intracortical inhibition (SICI) to transcranial magnetic stimulation (TMS) of the primary motor cortex was described in subjects with restless legs syndrome/Willis-Ekbom disease (RLS/WED). It remained to be determined whether the magnitude of SICI decrease would be similar across levels of RLS/WED severity. Moreover, it was unknown whether, in addition to decreases in SICI, changes in cortical thickness or area could be detected in subjects with RLS/WED compared to controls. The objective of this study was to compare SICI, cortical thickness, and cortical area in subjects with idiopathic mild to moderate RLS/WED, severe to very severe RLS/WED, and controls. METHODS The severity of RLS/WED was assessed by the International Restless Legs Syndrome Severity Scale (IRLSS). SICI and 3T magnetic resonance imaging (MRI) data of subjects with RLS/WED and controls were compared. A receiver operating characteristic curve for SICI was designed for discrimination of participants with RLS/WED from controls. Cortical thickness and area were assessed by automated surface-based analysis. RESULTS SICI was significantly reduced in patients with mild to moderate and severe to very severe RLS/WED, compared to controls (one-way analysis of variance: F = 9.62, p < 0.001). Receiver operating characteristic curve analysis predicted RLS/WED when SICI was above 35% (area under the curve = 0.79, 95% CI 0.67-0.91, p < 0.001). Analyses of the whole brain and of regions of interest did not reveal differences in gray matter thickness or area between controls and subjects with RLS/WED. CONCLUSION SICI is an accurate cortical biomarker that can support the diagnosis of RLS/WED even in subjects with mild symptoms, but cortical thickness and area were not useful for discriminating subjects with this condition from controls.
Collapse
Affiliation(s)
- Samir Câmara Magalhães
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil; Universidade de Fortaleza, Unifor, Fortaleza, CE, Brazil.
| | | | | | - Annette Sterr
- Department of Psychology, University of Surrey, Guildford, Surrey, UK
| | - Alan Luiz Eckeli
- Departamento de Neurociências e Ciências do Comportamento, Divisão de Neurologia, Hospital das Clínicas da Faculdade de Medicina da USP-Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | | | - Edson Amaro
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil; Departamento de Radiologia, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adriana Bastos Conforto
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil; Departamento de Neurologia, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|