1
|
Paz-Linares D, Gonzalez-Moreira E, Areces-Gonzalez A, Wang Y, Li M, Martinez-Montes E, Bosch-Bayard J, Bringas-Vega ML, Valdes-Sosa M, Valdes-Sosa PA. Identifying oscillatory brain networks with hidden Gaussian graphical spectral models of MEEG. Sci Rep 2023; 13:11466. [PMID: 37454235 PMCID: PMC10349891 DOI: 10.1038/s41598-023-38513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Identifying the functional networks underpinning indirectly observed processes poses an inverse problem for neurosciences or other fields. A solution of such inverse problems estimates as a first step the activity emerging within functional networks from EEG or MEG data. These EEG or MEG estimates are a direct reflection of functional brain network activity with a temporal resolution that no other in vivo neuroimage may provide. A second step estimating functional connectivity from such activity pseudodata unveil the oscillatory brain networks that strongly correlate with all cognition and behavior. Simulations of such MEG or EEG inverse problem also reveal estimation errors of the functional connectivity determined by any of the state-of-the-art inverse solutions. We disclose a significant cause of estimation errors originating from misspecification of the functional network model incorporated into either inverse solution steps. We introduce the Bayesian identification of a Hidden Gaussian Graphical Spectral (HIGGS) model specifying such oscillatory brain networks model. In human EEG alpha rhythm simulations, the estimation errors measured as ROC performance do not surpass 2% in our HIGGS inverse solution and reach 20% in state-of-the-art methods. Macaque simultaneous EEG/ECoG recordings provide experimental confirmation for our results with 1/3 times larger congruence according to Riemannian distances than state-of-the-art methods.
Collapse
Affiliation(s)
- Deirel Paz-Linares
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Neuroinformatics, Cuban Neuroscience Center, Havana, Cuba
| | - Eduardo Gonzalez-Moreira
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Electrical Engineering, Central University "Marta Abreu" of Las Villas, Santa Clara, Cuba
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Ariosky Areces-Gonzalez
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Technical Sciences, University of Pinar del Río "Hermanos Saiz Montes de Oca", Pinar del Rio, Cuba
| | - Ying Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Jorge Bosch-Bayard
- Department of Neuroinformatics, Cuban Neuroscience Center, Havana, Cuba
- McGill Centre for Integrative Neurosciences MCIN, Ludmer Centre for Mental Health, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Maria L Bringas-Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Neuroinformatics, Cuban Neuroscience Center, Havana, Cuba
| | - Mitchell Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Neuroinformatics, Cuban Neuroscience Center, Havana, Cuba
| | - Pedro A Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Neuroinformatics, Cuban Neuroscience Center, Havana, Cuba.
| |
Collapse
|
2
|
Paz-Linares D, Gonzalez-Moreira E, Areces-Gonzalez A, Wang Y, Li M, Vega-Hernandez M, Wang Q, Bosch-Bayard J, Bringas-Vega ML, Martinez-Montes E, Valdes-Sosa MJ, Valdes-Sosa PA. Minimizing the distortions in electrophysiological source imaging of cortical oscillatory activity via Spectral Structured Sparse Bayesian Learning. Front Neurosci 2023; 17:978527. [PMID: 37008210 PMCID: PMC10050575 DOI: 10.3389/fnins.2023.978527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/07/2023] [Indexed: 03/17/2023] Open
Abstract
Oscillatory processes at all spatial scales and on all frequencies underpin brain function. Electrophysiological Source Imaging (ESI) is the data-driven brain imaging modality that provides the inverse solutions to the source processes of the EEG, MEG, or ECoG data. This study aimed to carry out an ESI of the source cross-spectrum while controlling common distortions of the estimates. As with all ESI-related problems under realistic settings, the main obstacle we faced is a severely ill-conditioned and high-dimensional inverse problem. Therefore, we opted for Bayesian inverse solutions that posited a priori probabilities on the source process. Indeed, rigorously specifying both the likelihoods and a priori probabilities of the problem leads to the proper Bayesian inverse problem of cross-spectral matrices. These inverse solutions are our formal definition for cross-spectral ESI (cESI), which requires a priori of the source cross-spectrum to counter the severe ill-condition and high-dimensionality of matrices. However, inverse solutions for this problem were NP-hard to tackle or approximated within iterations with bad-conditioned matrices in the standard ESI setup. We introduce cESI with a joint a priori probability upon the source cross-spectrum to avoid these problems. cESI inverse solutions are low-dimensional ones for the set of random vector instances and not random matrices. We achieved cESI inverse solutions through the variational approximations via our Spectral Structured Sparse Bayesian Learning (ssSBL) algorithm https://github.com/CCC-members/Spectral-Structured-Sparse-Bayesian-Learning. We compared low-density EEG (10-20 system) ssSBL inverse solutions with reference cESIs for two experiments: (a) high-density MEG that were used to simulate EEG and (b) high-density macaque ECoG that were recorded simultaneously with EEG. The ssSBL resulted in two orders of magnitude with less distortion than the state-of-the-art ESI methods. Our cESI toolbox, including the ssSBL method, is available at https://github.com/CCC-members/BC-VARETA_Toolbox.
Collapse
Affiliation(s)
- Deirel Paz-Linares
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Neuroinformatics Department, Cuban Neuroscience Center, Havana, Cuba
| | - Eduardo Gonzalez-Moreira
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Research Unit for Neurodevelopment, Institute of Neurobiology, Autonomous University of Mexico, Querétaro, Mexico
- Faculty of Electrical Engineering, Central University “Marta Abreu” of Las Villas, Santa Clara, Cuba
| | - Ariosky Areces-Gonzalez
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Faculty of Technical Sciences, University of Pinar del Río “Hermanos Saiz Montes de Oca”, Pinar del Rio, Cuba
| | - Ying Wang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Qing Wang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- McGill Centre for Integrative Neurosciences MCIN, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Mental Health, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jorge Bosch-Bayard
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- McGill Centre for Integrative Neurosciences MCIN, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Mental Health, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Maria L. Bringas-Vega
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Neuroinformatics Department, Cuban Neuroscience Center, Havana, Cuba
| | | | - Mitchel J. Valdes-Sosa
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Neuroinformatics Department, Cuban Neuroscience Center, Havana, Cuba
| | - Pedro A. Valdes-Sosa
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Neuroinformatics Department, Cuban Neuroscience Center, Havana, Cuba
| |
Collapse
|
3
|
Moncion C, Balachandar L, Venkatakrishnan SB, Volakis JL, Riera Diaz J. Multichannel Wireless Neurosensing System for battery-free monitoring of neuronal activity. Biosens Bioelectron 2022; 213:114455. [PMID: 35738215 DOI: 10.1016/j.bios.2022.114455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
Electrical activity recordings are critical for evaluating and understanding brain function. We present a novel wireless, implantable, and battery-free device, namely the Wireless Neurosensing System (WiNS), and for the first time, we evaluate multichannel recording capabilities in vivo. For a preliminary evaluation, we performed a benchtop experiment with emulated sinusoidal signals of varying amplitude and frequency, representative of neuronal activity. We later performed and analyzed electrocortical recordings in rats of evoked somatosensory activity in response to three paradigms: hind/fore limb and whisker stimulation. Wired recordings were used for comparison and validation of WiNS. We found that through the channel multiplexing element of WiNS, it is possible to perform multichannel recordings with a maximum sampling rate of ∼10 kHz for a total of eight channels. This sampling rate is appropriate for monitoring the full range of neuronal signals of interest, from low-frequency population recordings of electrocorticography and local field potentials to high-frequency individual neuronal spike recordings. These in vivo experiments demonstrated that the evoked neuronal activity recorded with WiNS is comparable to that recorded with a wired system under identical circumstances. Analysis of critical parameters for interpreting the somatosensory evoked activity showed no statistically significant difference between the parameters obtained by a wired system versus those obtained using WiNS. Therefore, WiNS can match the performance of more invasive recording systems. WiNS is a groundbreaking technology with potential applications throughout neuroscience as it offers a simple alternative to address the pitfalls of battery-powered neuronal implants.
Collapse
Affiliation(s)
- Carolina Moncion
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, United States
| | - Lakshmini Balachandar
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, United States
| | | | - John L Volakis
- Department of Electrical & Computer Engineering, Florida International University, Miami, FL, 33174, United States
| | - Jorge Riera Diaz
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, United States.
| |
Collapse
|
4
|
Bosch-Bayard J, Razzaq FA, Lopez-Naranjo C, Wang Y, Li M, Galan-Garcia L, Calzada-Reyes A, Virues-Alba T, Rabinowitz AG, Suarez-Murias C, Guo Y, Sanchez-Castillo M, Rogers K, Gallagher A, Prichep L, Anderson SG, Michel CM, Evans AC, Bringas-Vega ML, Galler JR, Valdes-Sosa PA. Early protein energy malnutrition impacts life-long developmental trajectories of the sources of EEG rhythmic activity. Neuroimage 2022; 254:119144. [PMID: 35342003 DOI: 10.1016/j.neuroimage.2022.119144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Protein Energy Malnutrition (PEM) has lifelong consequences on brain development and cognitive function. We studied the lifelong developmental trajectories of resting-state EEG source activity in 66 individuals with histories of Protein Energy Malnutrition (PEM) limited to the first year of life and in 83 matched classmate controls (CON) who are all participants of the 49 years longitudinal Barbados Nutrition Study (BNS). qEEGt source z-spectra measured deviation from normative values of EEG rhythmic activity sources at 5-11 years of age and 40 years later at 45-51 years of age. The PEM group showed qEEGt abnormalities in childhood, including a developmental delay in alpha rhythm maturation and an insufficient decrease in beta activity. These profiles may be correlated with accelerated cognitive decline.
Collapse
Affiliation(s)
- Jorge Bosch-Bayard
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; McGill Center for Integrative Neuroscience Center MCIN. Ludmer Center for Mental Health. Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Fuleah Abdul Razzaq
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| | - Carlos Lopez-Naranjo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | | | | | | | - Arielle G Rabinowitz
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Yanbo Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Kassandra Rogers
- LION Lab, Sainte-Justine University Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Anne Gallagher
- LION Lab, Sainte-Justine University Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | | | - Simon G Anderson
- Caribbean Institute for Health Research, University of the West Indies, Barbados
| | | | - Alan C Evans
- McGill Center for Integrative Neuroscience Center MCIN. Ludmer Center for Mental Health. Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Maria L Bringas-Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Cuban Neuroscience Center, La Habana, Cuba
| | - Janina R Galler
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Boston, MA, USA
| | - Pedro A Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; McGill Center for Integrative Neuroscience Center MCIN. Ludmer Center for Mental Health. Montreal Neurological Institute, McGill University, Montreal, Canada; Cuban Neuroscience Center, La Habana, Cuba.
| |
Collapse
|
5
|
Lin FH, Lee HJ, Ahveninen J, Jääskeläinen IP, Yu HY, Lee CC, Chou CC, Kuo WJ. Distributed source modeling of intracranial stereoelectro-encephalographic measurements. Neuroimage 2021; 230:117746. [PMID: 33454414 DOI: 10.1016/j.neuroimage.2021.117746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
Intracranial stereoelectroencephalography (sEEG) provides unsurpassed sensitivity and specificity for human neurophysiology. However, functional mapping of brain functions has been limited because the implantations have sparse coverage and differ greatly across individuals. Here, we developed a distributed, anatomically realistic sEEG source-modeling approach for within- and between-subject analyses. In addition to intracranial event-related potentials (iERP), we estimated the sources of high broadband gamma activity (HBBG), a putative correlate of local neural firing. Our novel approach accounted for a significant portion of the variance of the sEEG measurements in leave-one-out cross-validation. After logarithmic transformations, the sensitivity and signal-to-noise ratio were linearly inversely related to the minimal distance between the brain location and electrode contacts (slope≈-3.6). The signa-to-noise ratio and sensitivity in the thalamus and brain stem were comparable to those locations at the vicinity of electrode contact implantation. The HGGB source estimates were remarkably consistent with analyses of intracranial-contact data. In conclusion, distributed sEEG source modeling provides a powerful neuroimaging tool, which facilitates anatomically-normalized functional mapping of human brain using both iERP and HBBG data.
Collapse
Affiliation(s)
- Fa-Hsuan Lin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Hsin-Ju Lee
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Iiro P Jääskeläinen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; International Laboratory of Social Neurobiology, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation
| | - Hsiang-Yu Yu
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Chia Lee
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Chen Chou
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Jui Kuo
- Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan; Brain Research Center, National Yang Ming University, Taipei, Taiwan.
| |
Collapse
|
6
|
Li Q, Gao J, Huang Q, Wu Y, Xu B. Distinguishing Epileptiform Discharges From Normal Electroencephalograms Using Scale-Dependent Lyapunov Exponent. Front Bioeng Biotechnol 2020; 8:1006. [PMID: 33015003 PMCID: PMC7506120 DOI: 10.3389/fbioe.2020.01006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022] Open
Abstract
Epileptiform discharges are of fundamental importance in understanding the physiology of epilepsy. To aid in the clinical diagnosis, classification, prognosis, and treatment of epilepsy, it is important to develop automated computer programs to distinguish epileptiform discharges from normal electroencephalogram (EEG). This is a challenging task as clinically used scalp EEG often contains a lot of noise and motion artifacts. The challenge is even greater if one wishes to develop explainable rather than black-box based approaches. To take on this challenge, we propose to use a multiscale complexity measure, the scale-dependent Lyapunov exponent (SDLE). We analyzed 640 multi-channel EEG segments, each 4 s long. Among these segments, 540 are short epileptiform discharges, and 100 are from healthy controls. We found that features from SDLE were very effective in distinguishing epileptiform discharges from normal EEG. Using Random Forest Classifier (RF) and Support Vector Machines (SVM), the proposed approach with different features from SDLE robustly achieves an accuracy exceeding 99% in distinguishing epileptiform discharges from normal control ones. A single parameter, which is the ratio of the spectral energy of EEG signals and the SDLE and quantifies the regularity or predictability of the EEG signals, is introduced to better understand the high accuracy in the classification. It is found that this regularity is considerably greater for epileptiform discharges than for normal controls. Robustly having high accuracy in distinguishing epileptiform discharges from normal controls irrespective of which classification scheme being used, the proposed approach has the potential to be used widely in a clinical setting.
Collapse
Affiliation(s)
- Qiong Li
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
| | - Jianbo Gao
- Center for Geodata and Analysis, Faculty of Geographical Science, Beijing Normal University, Beijing, China.,Institute of Automation, Chinese Academy of Sciences, Beijing, China.,International College, Guangxi University, Nanning, China
| | - Qi Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Wu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Xu
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Li Q, Gao J, Zhang Z, Huang Q, Wu Y, Xu B. Distinguishing Epileptiform Discharges From Normal Electroencephalograms Using Adaptive Fractal and Network Analysis: A Clinical Perspective. Front Physiol 2020; 11:828. [PMID: 32903770 PMCID: PMC7438848 DOI: 10.3389/fphys.2020.00828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is one of the most common disorders of the brain. Clinically, to corroborate an epileptic seizure-like symptom and to find the seizure localization, electroencephalogram (EEG) data are often visually examined by a clinical doctor to detect the presence of epileptiform discharges. Epileptiform discharges are transient waveforms lasting for several tens to hundreds of milliseconds and are mainly divided into seven types. It is important to develop systematic approaches to accurately distinguish these waveforms from normal control ones. This is a difficult task if one wishes to develop first principle rather than black-box based approaches, since clinically used scalp EEGs usually contain a lot of noise and artifacts. To solve this problem, we analyzed 640 multi-channel EEG segments, each 4s long. Among these segments, 540 are short epileptiform discharges, and 100 are from healthy controls. We have proposed two approaches for distinguishing epileptiform discharges from normal EEGs. The first method is based on Signal Range and EEGs' long range correlation properties characterized by the Hurst parameter H extracted by applying adaptive fractal analysis (AFA), which can also maximally suppress the effects of noise and various kinds of artifacts. Our second method is based on networks constructed from three aspects of the scalp EEG signals, the Signal Range, the energy of the alpha wave component, and EEG's long range correlation properties. The networks are further analyzed using singular value decomposition (SVD). The square of the first singular value from SVD is used to construct features to distinguish epileptiform discharges from normal controls. Using Random Forest Classifier (RF), our approaches can achieve very high accuracy in distinguishing epileptiform discharges from normal control ones, and thus are very promising to be used clinically. The network-based approach is also used to infer the localizations of each type of epileptiform discharges, and it is found that the sub-networks representing the most likely location of each type of epileptiform discharges are different among the seven types of epileptiform discharges.
Collapse
Affiliation(s)
- Qiong Li
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
| | - Jianbo Gao
- Center for Geodata and Analysis, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
- International College, Guangxi University, Nanning, Guangxi, China
| | - Ziwen Zhang
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
| | - Qi Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Wu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Xu
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|