1
|
Chen ZL, Qin L, Peng XB, Hu Y, Liu B. INHBA gene silencing inhibits gastric cancer cell migration and invasion by impeding activation of the TGF-β signaling pathway. J Cell Physiol 2019; 234:18065-18074. [PMID: 30963572 DOI: 10.1002/jcp.28439] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 11/08/2022]
Abstract
Gastric cancer (GC) is the fourth largest cancer in the world, with a 5-year survival rate of <30%. Thus, this study intends to investigate the effects of inhibin βA (INHBA) gene silencing on the migration and invasion of GC cells via the transforming growth factor-β (TGF-β) signaling pathway. Initially, this study determined the expression of INHBA and the TGF-β signaling pathway-related genes in GC tissues. After that, to assess the effect of INHBA silencing on GC progression, GC cells were transfected with short hairpin RNAs that targeted INHBA in order to detect the expression of INHBA and the TGF-β signaling pathway-related genes, as well as cell migration, invasion, and proliferation abilities. Finally, a tumor xenograft model in nude mice was constructed to verify the effect that the silencing of INHBA had on tumor growth. Highly expressed INHBA and activated TGF-β signaling pathways were observed in GC tissues. In response to shINHBA-1 and shINHBA-2, the TGF-β signaling pathway was inhibited in GC cells, whereas the GC cell migration, invasion, proliferation, and tumor growth were significantly dampened. On the basis of the observations and findings of this study, INHBA gene silencing inhibited the progression of GC by inactivating the TGF-β signaling pathway, which provides a potential target in the treatment of GC.
Collapse
Affiliation(s)
- Zong-Lin Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Lu Qin
- Department of Intestinal Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Xu-Bin Peng
- Department of Neurosurgery, The Cancer Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Yu Hu
- Center for Experimental Medical Research, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Bo Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
2
|
Keating E, Martel F. Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism. Front Nutr 2018; 5:25. [PMID: 29713632 PMCID: PMC5911477 DOI: 10.3389/fnut.2018.00025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
In the last years, metabolic reprogramming became a new key hallmark of tumor cells. One of its components is a deviant energetic metabolism, known as Warburg effect—an aerobic lactatogenesis—characterized by elevated rates of glucose uptake and consumption with high-lactate production even in the presence of oxygen. Because many cancer cells display a greater sensitivity to glucose deprivation-induced cytotoxicity than normal cells, inhibitors of glucose cellular uptake (facilitative glucose transporter 1 inhibitors) and oxidative metabolism (glycolysis inhibitors) are potential therapeutic targets in cancer treatment. Polyphenols, abundantly contained in fruits and vegetables, are dietary components with an established protective role against cancer. Several molecular mechanisms are involved in the anticancer effect of polyphenols, including effects on apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways, and epigenetic mechanisms. Additionally, inhibition of glucose cellular uptake and metabolism in cancer cell lines has been described for several polyphenols, and this effect was shown to be associated with their anticarcinogenic effect. This work will review data showing an antimetabolic effect of polyphenols and its involvement in the chemopreventive/chemotherapeutic potential of these dietary compounds, in relation to breast cancer.
Collapse
Affiliation(s)
- Elisa Keating
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS, Center for Research in Health Technologies and Information Systems, University of Porto, Porto, Portugal
| | - Fátima Martel
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Martins FC, Teixeira F, Reis I, Geraldes N, Cabrita AMS, Dias MF. Increased Transglutaminase 2 and GLUT-1 Expression in Breast Tumors not Susceptible to Chemoprevention with Antioxidants. TUMORI JOURNAL 2018; 95:227-32. [DOI: 10.1177/030089160909500215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Goals Expression of GLUT-1 and transglutaminase 2 is increased in aggressive breast cancer, whereas claudin-1, which is expressed in normal tissues, is absent in such tumors. This experimental study was undertaken to establish the aggressiveness and prognosis of DMBA-induced mammary tumors in female Wistar rats based on the assessment of these markers. Materials and methods The rats were divided into two groups, a control group (n = 70) and a chemoprevention group (n = 70). Breast tumors were induced in both groups by administration of 7,12-dimethylbenz[a]anthracene (DMBA). The chemoprevention group also received alpha-tocopherol and a solution of micronutrients containing ascorbic acid and selenium. Neoplastic lesions of both groups were randomly selected for immunohistochemical assessment of the expression of GLUT-1, transglutaminase 2 and claudin-1. Results A higher proportion of mammary tumors expressed GLUT-1 and transglutaminase 2 in the chemoprevention group. Claudin-1 expression was absent in all tumors of both groups. Conclusions These results are suggestive of increased aggressiveness of tumors not susceptible to chemoprevention by the agents used in this study.
Collapse
Affiliation(s)
- Filipe C Martins
- Gynecology Department, University Hospital of Coimbra, Coimbra
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| | - Filipa Teixeira
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| | - Ines Reis
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| | - Nuno Geraldes
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| | - AM Silvério Cabrita
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| | - Margarida F Dias
- Gynecology Department, University Hospital of Coimbra, Coimbra
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| |
Collapse
|
4
|
Ryu JE, Park HK, Choi HJ, Lee HB, Lee HJ, Lee H, Yu ES, Son WC. Expression of the glutamine metabolism-related proteins glutaminase 1 and glutamate dehydrogenase in canine mammary tumours. Vet Comp Oncol 2017; 16:239-245. [PMID: 29266697 DOI: 10.1111/vco.12369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/02/2017] [Accepted: 10/13/2017] [Indexed: 01/14/2023]
Abstract
Glutamine metabolism is an important metabolic pathway for cancer cell survival, and there is a critical connection between tumour growth and glutamine metabolism. Because of their similarities, canine mammary carcinomas are useful for studying human breast cancer. Accordingly, we investigated the correlations between the expression of glutamine metabolism-related proteins and the pathological features of canine mammary tumours. We performed immunohistochemical and western blot analysis of 39 mammary tumour tissues. In immunohistochemical analysis, the expression of glutaminase 1 (GLS1) in the epithelial region increased according to the histological grade (P < .005). In the stromal region, complex-type tumours displayed significantly higher GLS1 intensity than simple-type tumours. However, glutamate dehydrogenase expression did not show the same tendencies as GLS1. The western blot results were consistent with the immunohistochemical findings. These results suggest that the expression of GLS1 is correlates with clinicopathological factors in canine mammary tumours and shows a similar pattern to human breast cancer.
Collapse
Affiliation(s)
- J-E Ryu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - H-K Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - H-J Choi
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - H-B Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - H-J Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - H Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.,Pharma R&D Division, GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - E-S Yu
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - W-C Son
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.,Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
5
|
The effects of novel chitosan-targeted gemcitabine nanomedicine mediating cisplatin on epithelial mesenchymal transition, invasion and metastasis of pancreatic cancer cells. Biomed Pharmacother 2017; 96:650-658. [DOI: 10.1016/j.biopha.2017.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
|
6
|
Wu X, Wang L, Yang D, Qu M, Yang Y, Guo F, Han L, Xue J. Retracted
: Effects of Glut1 gene silencing on proliferation, differentiation, and apoptosis of colorectal cancer cells by targeting the TGF‐β/PI3K‐AKT‐mTOR signaling pathway. J Cell Biochem 2017; 119:2356-2367. [DOI: 10.1002/jcb.26399] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/30/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Xue‐Liang Wu
- Department of General SurgeryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| | - Li‐Kun Wang
- Department of UltrasoundThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| | - Dong‐Dong Yang
- Department of General SurgeryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| | - Ming Qu
- Department of General SurgeryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| | - Yong‐Jiang Yang
- Department of General SurgeryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| | - Fei Guo
- Department of General SurgeryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| | - Lei Han
- Department of General SurgeryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| | - Jun Xue
- Department of General SurgeryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| |
Collapse
|
7
|
Martel F, Guedes M, Keating E. Effect of polyphenols on glucose and lactate transport by breast cancer cells. Breast Cancer Res Treat 2016; 157:1-11. [PMID: 27097608 DOI: 10.1007/s10549-016-3794-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/08/2016] [Indexed: 01/26/2023]
Abstract
One of the cancer molecular hallmarks is a deviant energetic metabolism, known as the Warburg effect, whereby the rate of glucose uptake is significantly increased and a high rate of glycolysis and lactic acid production occurs even when oxygen is present-"aerobic lactatogenesis". Accordingly, GLUT1 and MCT1, which are the main glucose and lactate transporters in cancer cells, respectively, have been proposed as oncogenes and are currently seen as potential therapeutic targets in cancer treatment. Polyphenols, commonly contained in fruits and vegetables, have long been associated with a protective role against cancer. Generally considered as nontoxic, dietary polyphenols are considered ideal chemopreventive and possibly chemotherapeutic agents. Several mechanisms of action of polyphenols in breast cancer cells have been proposed including modulation of intracellular signaling, induction of apoptosis through redox regulation or modulation of epigenetic alterations. Additionally, in vitro studies have shown that several polyphenols act as specific inhibitors of glucose transport in breast cancer cell lines and an association between their anticarcinogenic effect and inhibition of glucose cellular uptake has been described. Also, some polyphenols were found to inhibit lactate transport. Importantly, some polyphenols behave as inhibitors of both glucose and lactate cellular uptake by breast cancer cells and these compounds are thus very interesting in the context of a chemopreventive effect, because they deplete breast cancer cells of their two most important energy suppliers. So, the antimetabolic effect of polyphenols should be regarded as a mechanism of action contributing to their chemopreventive/chemotherapeutic potential in relation to breast cancer.
Collapse
Affiliation(s)
- F Martel
- Department of Biochemistry, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - M Guedes
- Department of Biochemistry, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - E Keating
- Department of Biochemistry, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- CINTESIS, Center for Research in Health Technologies and Information Systems, University of Porto, 4200-319, Porto, Portugal
| |
Collapse
|
8
|
Kim SK, Jung WH, Koo JS. Differential expression of enzymes associated with serine/glycine metabolism in different breast cancer subtypes. PLoS One 2014; 9:e101004. [PMID: 24979213 PMCID: PMC4076239 DOI: 10.1371/journal.pone.0101004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 05/21/2014] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Glycine and serine are well-known, classic metabolites of glycolysis. Here, we profiled the expression of enzymes associated with serine/glycine metabolism in different molecular subtypes of breast cancer and discuss their potential clinical implications. METHODS We used western blotting and immunohistochemistry to examine five serine-/glycine-metabolism-associated proteins (PHGDH, PSAT, PSPH, SHMT, and GLDC) in six breast cancer cell lines and 709 breast cancer cases using tissue microarray (TMA). RESULTS PHGDH and PSPH, associated with serine metabolism, were highly expressed in the TNBC cells. GLDC, associated with glycine metabolism, was highly expressed in HER-2-positive MDA-MB-453 and TNBC-related MDA-MB-435S. TMA showed that the TNBC-type breast cancer tissues highly expressed PHGDH, PSPH, and SHMT1, but not the luminal-A-type tissues (p<0.001). PSPH and SHMT1 expression in the tumor stroma of HER-2-type cancers was the highest, but the luminal-A tissues showed the lowest expression (p<0.001). GLDC was most frequently expressed in cancer cells and stroma of the HER-2-positive cancers and least frequently in TNBC (p<0.001). By Cox multivariate analysis, tumor PSPH positivity (hazard ratio [HR]: 2.068, 95% confidence interval [CI]: 1.049-4.079, p = 0.036), stromal PSPH positivity (HR: 2.152, 95% CI: 1.107-4.184, p = 0.024), and stromal SHMT1 negativity (HR: 2.142, 95% CI: 1.219-3.764, p = 0.008) were associated with short overall survival. CONCLUSIONS Expression of serine-metabolism-associated proteins was increased in TNBC and decreased in the luminal-A cancers. Expression of glycine-metabolism-associated proteins was high in the tumor and stroma of HER-2-positive cancers.
Collapse
Affiliation(s)
- Sang Kyum Kim
- Department of Pathology, Severance Hospital, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Woo Hee Jung
- Department of Pathology, Severance Hospital, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Severance Hospital, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
9
|
Kim HM, Kim DH, Jung WH, Koo JS. Metabolic phenotypes in primary unknown metastatic carcinoma. J Transl Med 2014; 12:2. [PMID: 24387319 PMCID: PMC3895852 DOI: 10.1186/1479-5876-12-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/27/2013] [Indexed: 11/25/2022] Open
Abstract
Background The purpose of this study is to evaluate expression of metabolism-related proteins in primary unknown metastatic carcinoma (PUMC) and associated implications for treatment. Methods A tissue microarray containing 77 cases of PUMC was constructed and immunohistochemical staining was used to evaluate expression of the following proteins: Glycolysis-related: Glut-1, carbonic anhydrase (CA) IX, and monocarboxylate transporter (MCT) 4; Glutaminolysis-related: glutaminase1 (GLS1), glutamate dehydrogenase (GDH), and amino acid transporter-2 (ASCT2); and Mitochondrial-related: ATP synthase, succinate dehydrogenase (SDH)A, and SDHB. The association between immunohistochemical staining results and clinicopathologic parameters was evaluated. Results The expression of metabolism-related proteins was different depending on the histologic subtype. Compared to other subtypes, squamous cell carcinomas (SQ) expressed more Glut-1 (p = 0.028), while adenocarcinomas (AD) expressed more SDHB in the stroma (p = 0.025). The expression of metabolism-related proteins was also different depending on the clinical subtypes. Glut-1 was expressed most in the nodal type and the least in carcinomatosis type, when compared to other subtypes (p = 0.021). The metabolic phenotypes also showed other trends: when the stroma showed no glutaminolysis, the tumor mostly invaded lymph node, bone, and brain, while the tumor invaded regions other than lymph node, bone, and brain when the stroma showed glutaminolysis (p = 0.003). When the stroma showed the mitochondrial metabolic type, the histologic subtype was mainly AD, but the non-mitochondrial type was associated more with SQ (P = 0.049). Conclusion For PUMC, the expression of metabolism-related proteins, such as Glut-1 and SDHB, differs in the tumor or stroma depending on the clinical and histologic tumor subtype.
Collapse
Affiliation(s)
| | | | | | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, South Korea.
| |
Collapse
|
10
|
Expression levels of serine/glycine metabolism-related proteins in triple negative breast cancer tissues. Tumour Biol 2014; 35:4457-68. [DOI: 10.1007/s13277-013-1588-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/19/2013] [Indexed: 11/24/2022] Open
|
11
|
Adams A, van Brussel ASA, Vermeulen JF, Mali WPTM, van der Wall E, van Diest PJ, Elias SG. The potential of hypoxia markers as target for breast molecular imaging--a systematic review and meta-analysis of human marker expression. BMC Cancer 2013; 13:538. [PMID: 24206539 PMCID: PMC3903452 DOI: 10.1186/1471-2407-13-538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023] Open
Abstract
Background Molecular imaging of breast cancer is a promising emerging technology, potentially able to improve clinical care. Valid imaging targets for molecular imaging tracer development are membrane-bound hypoxia-related proteins, expressed when tumor growth outpaces neo-angiogenesis. We performed a systematic literature review and meta-analysis of such hypoxia marker expression rates in human breast cancer to evaluate their potential as clinically relevant molecular imaging targets. Methods We searched MEDLINE and EMBASE for articles describing membrane-bound proteins that are related to hypoxia inducible factor 1α (HIF-1α), the key regulator of the hypoxia response. We extracted expression rates of carbonic anhydrase-IX (CAIX), glucose transporter-1 (GLUT1), C-X-C chemokine receptor type-4 (CXCR4), or insulin-like growth factor-1 receptor (IGF1R) in human breast disease, evaluated by immunohistochemistry. We pooled study results using random-effects models and applied meta-regression to identify associations with clinicopathological variables. Results Of 1,705 identified articles, 117 matched our selection criteria, totaling 30,216 immunohistochemistry results. We found substantial between-study variability in expression rates. Invasive cancer showed pooled expression rates of 35% for CAIX (95% confidence interval (CI): 26-46%), 51% for GLUT1 (CI: 40-61%), 46% for CXCR4 (CI: 33-59%), and 46% for IGF1R (CI: 35-70%). Expression rates increased with tumor grade for GLUT1, CAIX, and CXCR4 (all p < 0.001), but decreased for IGF1R (p < 0.001). GLUT1 showed the highest expression rate in grade III cancers with 58% (45-69%). CXCR4 showed the highest expression rate in small T1 tumors with 48% (CI: 28-69%), but associations with size were only significant for CAIX (p < 0.001; positive association) and IGF1R (p = 0.047; negative association). Although based on few studies, CAIX, GLUT1, and CXCR4 showed profound lower expression rates in normal breast tissue and benign breast disease (p < 0.001), and high rates in carcinoma in situ. Invasive lobular carcinoma consistently showed lower expression rates (p < 0.001). Conclusions Our results support the potential of hypoxia-related markers as breast cancer molecular imaging targets. Although specificity is promising, combining targets would be necessary for optimal sensitivity. These data could help guide the choice of imaging targets for tracer development depending on the envisioned clinical application.
Collapse
Affiliation(s)
- Arthur Adams
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kim S, Jung WH, Koo JS. The Expression of Glut-1, CAIX, and MCT4 in Mucinous Carcinoma. J Breast Cancer 2013; 16:146-51. [PMID: 23843845 PMCID: PMC3706858 DOI: 10.4048/jbc.2013.16.2.146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/09/2013] [Indexed: 01/06/2023] Open
Abstract
Purpose The aim of this study was to assess the expression of metabolism-related proteins including glucose transporter 1 (Glut-1), carbonic anhydrase IX (CAIX) and monocarboxylate transporter 4 (MCT4) in breast mucinous carcinoma and to evaluate the implications of the results. Methods Immunohistochemical staining for Glut-1, CAIX, and MCT4 was performed on tissue sections from 59 cases of mucinous carcinoma to evaluate the association between the expression of metabolism-related proteins and clinicopathologic factors. Mucinous carcinoma was subclassified into type A and type B according to histopathological characteristics. Results Of the 59 patients, 35 patients (59.3%) were type A mucinous carcinoma and 24 patients (40.7%) were type B mucinous carcinoma. Stromal expression of MCT4 was significantly associated with a high histologic grade (p=0.022) and type B mucinous carcinoma (p=0.016). There were significant positive correlations between the expression of Glut-1, CAIX and tumoral expression of MCT4 (p<0.05). Conclusion We assessed the expression of metabolism-related proteins including Glut-1, CAIX, and MCT4 in breast mucinous carcinoma and found that the stromal expression of MCT4 was higher in type B mucinous carcinoma than in type A, which reflected a difference in the tumor microenvironment.
Collapse
Affiliation(s)
- Sewha Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
13
|
Kim S, Jung WH, Koo JS. The expression of glutamine-metabolism-related proteins in breast phyllodes tumors. Tumour Biol 2013; 34:2683-9. [PMID: 23636801 DOI: 10.1007/s13277-013-0819-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/19/2013] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to investigate the expression of glutamine-metabolism-related proteins according to the histologic grade of phyllodes tumors (PTs) and to assess its clinical implication. We generated tissue microarrays of 224 PTs and performed immunohistochemical staining and western blot analysis of glutamine-metabolism-related molecules, including GLS1, GDH, and ASCT2. The associations between immunohistochemical results and clinicopathologic parameters were evaluated. The expression of GLS1 (p < 0.001), GDH (p < 0.001), and ASCT2 (p = 0.005) in stromal components significantly increased with worsening PT histological grade. GDH expression in epithelial components significantly increased in high-grade PT (p = 0.026). In western blot, stromal expression of GLS1, GDH, and ASCT2 increased as histologic grade increased. By univariate analysis, stromal GLS1 expression (p = 0.022) and stromal GDH expression (p = 0.009) were independent predictors of shorter DFS. Stromal GLS1 expression (p < 0.001) and stromal GDH expression (p < 0.001) were independent predictors of shorter OS. This study demonstrated that the stromal expression of the glutamine-metabolism-related proteins GLS1, GDH, ASCT2 increases with worsening histological PT grade.
Collapse
Affiliation(s)
- Sewha Kim
- Department of Pathology, Yonsei University College of Medicine Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | | | | |
Collapse
|
14
|
Kocdor MA, Kocdor H, Pereira JS, Vanegas JE, Russo IH, Russo J. Progressive increase of glucose transporter-3 (GLUT-3) expression in estrogen-induced breast carcinogenesis. Clin Transl Oncol 2012; 15:55-64. [PMID: 23054751 DOI: 10.1007/s12094-012-0882-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 03/19/2012] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Increased glucose uptake and glycolysis are main metabolic characteristics of malignant cells. A family of glucose transporters (GLUTs) facilitates glucose movement across the plasma membranes in a tumor-specific manner. Glucose transporter-1 (GLUT-1), GLUT-3 and recently GLUT-12, have been previously shown in breast cancer cells and are found to be associated with poor prognosis. In addition, it has been shown that estrogen plays critical roles in GLUT regulation, however, the stage-specific GLUT regulation of mammary carcinogenesis is unclear. METHODS GLUT expression patterns were investigated in an in vitro-in vivo progressive, estrogen-induced, mammary carcinogenesis model which consisted of four cell lines, with same genetic background. In this model, different stages of tumor initiation and progression are represented, MCF-10F being the normal stage, E2 cells the transformed stage by estrogen, C5 cells, the invasive stage, and T4 cells the tumorigenic stage. In addition, loss of ductulogenesis and solid mass formation in collagen matrix and invasiveness of the cells were counted. RESULTS Real time PCR showed that GLUT1 expression was downregulated in MCF10F after treatment with 17β-estradiol (E2), and in the invasive cell type (C5), but not in the tumor cells (T4), which had no changes compared to MCF10F. C5 and T4 cells showed the highest rate of GLUT-3 expression. These cells were also found to be associated with loss of ductulogenesis, solid mass formation and higher invasive capacity, whereas, GLUT-12 was downregulated in C5 and T4 cells. CONCLUSION Estrogen-induced malignant transformation is associated with remarkable and progressive GLUT-3 expression, GLUT-1 re-expression at further stages, as well as GLUT-12 downregulation.
Collapse
Affiliation(s)
- M A Kocdor
- Department of Surgery, School of Medicine, Dokuz Eylul University, Inciralti, Izmir, Turkey.
| | | | | | | | | | | |
Collapse
|
15
|
The expression of metabolism-related proteins in phyllodes tumors. Tumour Biol 2012; 34:115-24. [DOI: 10.1007/s13277-012-0518-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/05/2012] [Indexed: 11/24/2022] Open
|
16
|
Choi J, Jung WH, Koo JS. Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry. Pathobiology 2012; 80:41-52. [PMID: 22832328 DOI: 10.1159/000339513] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/14/2012] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE The purpose of this study was to investigate the expression of metabolism-related proteins such as Glut-1 and carbonic anhydrase IX (CAIX) according to breast cancer molecular subtype. METHODS We generated a tissue microarray of 276 breast cancer patients and performed immunohistochemical staining for known metabolism-related proteins, which were evaluated according to the molecular subtype. RESULTS The expression of IGF-1, MIF, and HIF-1α was correlated with the HER-2 type (p < 0.05). Glut-1 overexpression and CAIX expression were associated with TNBC type, especially with basal-like type, high histologic grade, estrogen receptor negativity, and progesterone receptor negativity (p < 0.05). The expression of Glut-1 and CAIX was correlated with statistical significance (p < 0.001). CONCLUSION We identified different patterns of expression of metabolism-related proteins according to the molecular subtypes of breast cancer defined by surrogate immunohistochemistry. Increased expression of HIF-1α, IGF-1, and MIF was noted in HER-2 type breast cancer and increased expression of Glut-1 and CAIX was noted in TNBC type breast cancer, especially in the basal-like subtype, which exhibited a glycolytic and acid-resistant tumor phenotype.
Collapse
Affiliation(s)
- Junjeong Choi
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, South Korea
| | | | | |
Collapse
|
17
|
Yin Yang 1 plays an essential role in breast cancer and negatively regulates p27. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2120-33. [PMID: 22440256 DOI: 10.1016/j.ajpath.2012.01.037] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/10/2012] [Accepted: 01/24/2012] [Indexed: 02/06/2023]
Abstract
Yin Yang 1 (YY1) is highly expressed in various types of cancers and regulates tumorigenesis through multiple pathways. In the present study, we evaluated YY1 expression levels in breast cancer cell lines, a breast cancer TMA, and two gene arrays. We observed that, compared with normal samples, YY1 is generally overexpressed in breast cancer cells and tissues. In functional studies, depletion of YY1 inhibited the clonogenicity, migration, invasion, and tumor formation of breast cancer cells, but did not affect the clonogenicity of nontumorigenic cells. Conversely, ectopically expressed YY1 enhanced the migration and invasion of nontumorigenic MCF-10A breast cells. In both a monolayer culture condition and a three-dimensional Matrigel system, silenced YY1 expression changed the architecture of breast cancer MCF-7 cells to that resembling MCF-10A cells, whereas ectopically expressed YY1 in MCF-10A cells had the opposite effect. Furthermore, we detected an inverse correlation between YY1 and p27 expression in both breast cancer cells and xenograft tumors with manipulated YY1 expression. Counteracting the changes in p27 expression attenuated the effects of YY1 alterations on these cells. In addition, YY1 promoted p27 ubiquitination and physically interacted with p27. In conclusion, our data suggest that YY1 is an oncogene and identify p27 as a new target of YY1.
Collapse
|
18
|
Clausen KA, Blish KR, Birse CE, Triplette MA, Kute TE, Russell GB, D’Agostino RB, Miller LD, Torti FM, Torti SV. SOSTDC1 differentially modulates Smad and beta-catenin activation and is down-regulated in breast cancer. Breast Cancer Res Treat 2011; 129:737-46. [PMID: 21113658 PMCID: PMC3685185 DOI: 10.1007/s10549-010-1261-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 11/10/2010] [Indexed: 01/08/2023]
Abstract
Sclerostin domain containing 1 (SOSTDC1) protein regulates processes from development to cancer by modulating activity of bone morphogenetic protein (BMP) and wingless/int (Wnt) signaling pathways. As dysregulation of both BMP and Wnt signaling has been observed in breast cancer, we investigated whether disruption of SOSTDC1 signaling occurs in breast cancer. SOSTDC1 mRNA expression levels in breast tissue were examined using a dot blot. Affymetrix microarray data on SOSTDC1 levels were correlated with breast cancer patient survival using Kaplan-Meier plots. Correlations between SOSTDC1 protein levels and clinical parameters were assessed by immunohistochemistry of a breast cancer tissue microarray. SOSTDC1 secretion and BMP and Wnt signaling were investigated using immunoblotting. We found that SOSTDC1 is expressed in normal breast tissue and this expression is reduced in breast cancer. High levels of SOSTDC1 mRNA correlated with increased patient survival; conversely, SOSTDC1 protein levels decreased as tumor size and disease stage increased. Treatment of breast cancer cells with recombinant SOSTDC1 or Wise, a SOSTDC1 orthologue, demonstrated that SOSTDC1 selectively blocks BMP-7-induced Smad phosphorylation without diminishing BMP-2 or Wnt3a-induced signaling. In conclusion, SOSTDC1 mRNA and protein are reduced in breast cancer. High SOSTDC1 mRNA levels correlate with increased distant metastasis-free survival in breast cancer patients. SOSTDC1 differentially affects Wnt3a, BMP-2, and BMP-7 signaling in breast cancer cells. These results identify SOSTDC1 as a clinically important extracellular regulator of multiple signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Kathryn A. Clausen
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Kimberly R. Blish
- Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | - Matthew A. Triplette
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Timothy E. Kute
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Gregory B. Russell
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ralph B. D’Agostino
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Lance D. Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Frank M. Torti
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Suzy V. Torti
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
19
|
Li LF, Zhou SH, Zhao K, Wang SQ, Wu QL, Fan J, Cheng KJ, Ling L. Clinical Significance of FDG Single-Photon Emission Computed Tomography: Computed Tomography in the Diagnosis of Head and Neck Cancers and Study of Its Mechanism. Cancer Biother Radiopharm 2008; 23:701-14. [PMID: 19317609 DOI: 10.1089/cbr.2008.0510] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ling-Fa Li
- Department of Nuclear Medicine, Institute of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shui-Hong Zhou
- Department of Otolaryngology, Institute of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kui Zhao
- Department of Center of PET/CT, Institute of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shen-Qing Wang
- Department of Otolaryngology, Institute of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiu-Liang Wu
- Department of Stomatology, Institute of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Fan
- Key Laboratory of National Infectious Diseases, Institute of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ke-Jia Cheng
- Department of Otolaryngology, Institute of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ling Ling
- Department of Otolaryngology, Institute of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Martins FC, Teixeira F, Reis I, Geraldes N, Cabrita AS, Dias MF. Chemoprevention and Mammary Neoplastic Aggressiveness. Breast J 2008; 14:608-9. [DOI: 10.1111/j.1524-4741.2008.00664.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Abstract
Tumor hypoxia or a reduction of the tissue oxygen tension is a key microenvironmental factor for tumor progression and treatment resistance in solid tumors. Because hypoxic tumor cells have been demonstrated to be more resistant to ionizing radiation, hypoxia has been a focus of laboratory and clinical research in radiation therapy for many decades. It is believed that proper detection of hypoxic regions would guide treatment options and ultimately improve tumor response. To date, most clinical efforts in targeting tumor hypoxia have yielded equivocal results due to the lack of appropriate patient selection. However, with improved understanding of the molecular pathways regulated by hypoxia and the discovery of novel hypoxia markers, the prospect of targeting hypoxia has become more tangible. This chapter will focus on the development of clinical biomarkers for hypoxia targeting.
Collapse
|
22
|
Ford ME, Alford SH, Britton D, McClary B, Gordon HS. Factors influencing perceptions of breast cancer genetic counseling among women in an urban health care system. J Genet Couns 2007; 16:735-53. [PMID: 17701328 DOI: 10.1007/s10897-007-9106-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 05/16/2007] [Indexed: 11/30/2022]
Abstract
The study assessed perceptions of breast cancer genetic counseling. Focus groups were conducted with twenty women (ages < = 50 years) in a Midwestern, urban health system identified as at above average risk of developing hereditary breast cancer and referred for breast cancer genetic counseling following mammography. All participants associated the words "breast cancer" with fear. African American women who received breast cancer genetic counseling may have channeled their fear into increased vigilance related to breast health. African American women who did not receive breast cancer genetic counseling were most knowledgeable about it. In contrast, Caucasian women who did not receive it reported uncertainty about the role of genetic counseling and testing in assessing breast cancer risk, mistrust in medical professionals, and lack of trust in the accuracy of genetic tests. The results could be used to help develop interventions to improve informed decision-making regarding breast cancer genetic counseling.
Collapse
Affiliation(s)
- Marvella E Ford
- Department of Biostatistics, Bioinformatics, and Epidemiology, Hollings Cancer Center, Medical University of South Carolina, 135 Cannon Street, Suite 303, P.O. Box 250835, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
23
|
Moon EJ, Brizel DM, Chi JTA, Dewhirst MW. The potential role of intrinsic hypoxia markers as prognostic variables in cancer. Antioxid Redox Signal 2007; 9:1237-94. [PMID: 17571959 DOI: 10.1089/ars.2007.1623] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tumor hypoxia is related to tumor progression and therapy resistance, which leads to poor patient outcome. It has been suggested that measuring the hypoxic status of a tumor helps to predict patient outcome and to select more targeted treatment. However, current methods using needle electrodes or exogenous markers have limitations due to their invasiveness or necessity for preinjection. Recent studies showed that hypoxia-regulated genes could be alternatively used as endogenous hypoxia markers. This is a review of 15 hypoxia-regulated genes, including hypoxia-inducible factor-1 and its targets, and their correlation with tumor hypoxia and patient outcome from 213 studies. Though most of the studies showed significance of these genes in predicting prognosis, there was no definitive prognostic and hypoxia marker. In conclusion, this review suggests the need for further studies with standardized methods to examine gene expression, as well as the use of multiple gene expressions.
Collapse
Affiliation(s)
- Eui Jung Moon
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
24
|
Winter JL, Stackhouse BL, Russell GB, Kute TE. Measurement of PTEN expression using tissue microarrays to determine a race-specific prognostic marker in breast cancer. Arch Pathol Lab Med 2007; 131:767-72. [PMID: 17488163 DOI: 10.5858/2007-131-767-mopeut] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2006] [Indexed: 11/06/2022]
Abstract
CONTEXT African American women with breast cancer have worse prognoses than non-African Americans and might benefit with a race-specific prognostic marker such as PTEN (phosphatase and tensin homologue), a tumor suppressor protein. Reduced PTEN expression is associated with worse outcomes and resistance to trastuzumab in human epidermal growth factor receptor 2-positive breast cancers. Standardized PTEN evaluation is therefore needed. OBJECTIVE To assess PTEN as a race-specific prognostic marker in breast cancer by using a novel semiquantitative score and a percent staining assessment. DESIGN Between 1991 and 1996, 146 patients with invasive ductal adenocarcinoma were grouped by race and recurrence; there was a median follow-up of 7.2 years with 63 recurrences. Immunostaining of PTEN in tissue microarrays was correlated with race, recurrence, node positivity, stage, size, age, estrogen/progesterone receptor status, grade, and DNA ploidy. RESULTS No significant racial difference was detected in mean PTEN values using either the semiquantitative score (P = .46) or the percent staining (P = .54). Unrelated to race, the percentage of tumor cells with positive PTEN expression correlated with longer time to recurrence (P = .047), positive estrogen receptor status (P = .009), and lower tumor grade (P = .005). The semiquantitative score correlated with positive estrogen receptor status (P = .01) and lower tumor grade (P = .001). CONCLUSIONS PTEN expression is not a race-specific biologic prognostic marker for invasive ductal adenocarcinoma. Increased PTEN expression correlates with longer time to recurrence, positive estrogen receptor status, and lower tumor grade. The novel semiquantitative score may be used to evaluate PTEN expression, but the approximate percentage of tumor cells with any PTEN staining may be the most useful measure of PTEN expression.
Collapse
Affiliation(s)
- Jerald Luke Winter
- Department of Pathology, Wake Forest University Baptist Medical Center, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Women of African descent have a lower incidence of breast cancer than their white counterparts; however, the overall age-adjusted breast cancer mortality rates are higher. They also present at a younger age, and have more advanced disease that exhibits poor prognostic features including significantly larger tumors of higher grade, higher rates of estrogen receptor and progesterone receptor negativity and a higher rate of p53 mutations and HRAS1 proto-oncogene expression, all of which confer a poor prognosis. While there are many possible contributory factors to the discrepancies in outcome in women of African descent, there is no satisfactory explanation as to why women of African origin tend to present at a younger age with hormone receptor-negative tumors and more adverse prognostic features.
Collapse
Affiliation(s)
- R L Bowen
- Tumour Biology, Institute of Cancer, Barts and the London, Charterhouse Square, London EC1M 6BQ, UK.
| | | | | |
Collapse
|