1
|
Alladio E, Amante E, Bozzolino C, Vaglio S, Guzzetti G, Gerace E, Salomone A, Vincenti M. Optimization and validation of a GC-MS quantitative method for the determination of an extended estrogenic profile in human urine: Variability intervals in a population of healthy women. Biomed Chromatogr 2020; 35:e4967. [PMID: 32803777 DOI: 10.1002/bmc.4967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/02/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022]
Abstract
An analytical method based on GC-MS was developed for the determination of a wide panel of urinary estrogens, together with their principal metabolites. Because of the low concentration of estrogens in urine, an efficient sample pre-treatment was optimized by a design of experiment (DoE) procedure to achieve satisfactory sensitivity. A second DoE was built for the optimization of the chromatographic run, with the purpose of reaching the most efficient separation of analytes with potentially interfering ions and similar chromatographic properties. The method was fully validated using a rigorous calibration strategy: from several replicate analyses of blank urine samples spiked with the analytes, calibration models were built with particular attention to the study of heteroscedasticity and quadraticity. Other validation parameters, including the limit of detection, intra-assay precision and accuracy, repeatability, selectivity, specificity, and carry-over, were obtained using the same set of data. Further experiments were performed to evaluate matrix effect and extraction recovery. Then the urinary estrogen profiles of 138 post-menopausal healthy women were determined. These profiles provide a representation of physiological concentration ranges, which, in forthcoming studies, will be matched on the base of multivariate statistics with the urinary estrogenic profile of women with breast or ovarian cancer.
Collapse
Affiliation(s)
- Eugenio Alladio
- Dipartimento di Chimica, Università degli Studi di Torino, Torino, Italy.,Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Orbassano (TO), Italy
| | - Eleonora Amante
- Dipartimento di Chimica, Università degli Studi di Torino, Torino, Italy.,Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Orbassano (TO), Italy
| | - Cristina Bozzolino
- Dipartimento di Chimica, Università degli Studi di Torino, Torino, Italy
| | - Sara Vaglio
- Dipartimento di Chimica, Università degli Studi di Torino, Torino, Italy
| | - Giusy Guzzetti
- Dipartimento di Chimica, Università degli Studi di Torino, Torino, Italy
| | - Enrico Gerace
- Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Orbassano (TO), Italy
| | - Alberto Salomone
- Dipartimento di Chimica, Università degli Studi di Torino, Torino, Italy.,Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Orbassano (TO), Italy
| | - Marco Vincenti
- Dipartimento di Chimica, Università degli Studi di Torino, Torino, Italy.,Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Orbassano (TO), Italy
| |
Collapse
|
2
|
Parada-Bustamante A, Molina C, Valencia C, Flórez M, Lardone MC, Argandoña F, Piottante A, Ebensperguer M, Orihuela PA, Castro A. Disturbed testicular expression of the estrogen-metabolizing enzymes CYP1A1 and COMT in infertile men with primary spermatogenic failure: possible negative implications on Sertoli cells. Andrology 2017; 5:486-494. [PMID: 28334509 DOI: 10.1111/andr.12346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/27/2016] [Accepted: 01/29/2017] [Indexed: 01/21/2023]
Abstract
Estradiol (E2 ) is normally metabolized to hydroxyestradiols and methoxyestradiols by CYP1A1, CYP1B1 and COMT. However, an altered production of these metabolites by a disturbed expression of these enzymes is associated with reproductive and non-reproductive pathologies. In vitro studies suggest that increased hydroxyestradiols and methoxyestradiols intratesticular generation is related to male infertility, but no studies have explored whether infertile men have a disturbed testicular expression of the enzymes that generate these E2 metabolites. The aim of this study was to assess CYP1A1, CYP1B1 and COMT testicular expression at mRNA and protein level in men with spermatogenic impairment. Seventeen men with primary spermatogenic failure (13 with Sertoli cell-only syndrome and four with maturation arrest) and nine controls with normal spermatogenesis were subjected to testicular biopsy. mRNA was quantified using real-time RT-PCR and protein expression was evaluated using western blot and immunohistochemistry followed by integrated optic density analysis. Besides, the effects of hydroxyestradiols and methoxyestradiols on testosterone-induced transcriptional activity were evaluated in TM4 cells using a luciferase reporter assay system. Our results show that patients with Sertoli cell-only syndrome had significantly elevated COMT expression at the mRNA level, higher COMT immunoreactivity in their seminiferous tubules and increased protein expression of the soluble COMT isoform (S-COMT), whereas patients with maturation arrest had significantly elevated CYP1A1 mRNA levels and higher CYP1A1 immunoreactivity in interstitial space. Finally, 2-hydroxyestradiol decreased testosterone-induced transcriptional activity in Sertoli cells in vitro. In conclusion, male infertility is related to disturbed testicular expression of the enzymes responsible for producing hydroxyestradiols and/or methoxyestradiols. If these changes are related with increased intratesticular hydroxyestradiols and methoxyestradiols concentrations, they could elicit an impaired Sertoli cell function. Our results suggest CYP1A1 and COMT as new potential targets in treating male infertility.
Collapse
Affiliation(s)
- A Parada-Bustamante
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - C Molina
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - C Valencia
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - M Flórez
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - M C Lardone
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - F Argandoña
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - A Piottante
- Pathology Department, Clínica Las Condes, Santiago, Chile
| | - M Ebensperguer
- Urology Department, San Borja-Arriarán Clinical Hospital, Santiago, Chile
| | - P A Orihuela
- Laboratory of Reproductive Immunology, University of Santiago and CEDENNA, Santiago, Chile
| | - A Castro
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
3
|
Lahm T, Tuder RM, Petrache I. Progress in solving the sex hormone paradox in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2014; 307:L7-26. [PMID: 24816487 DOI: 10.1152/ajplung.00337.2013] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating and progressive disease with marked morbidity and mortality. Even though being female represents one of the most powerful risk factors for PAH, multiple questions about the underlying mechanisms remain, and two "estrogen paradoxes" in PAH exist. First, it is puzzling why estrogens have been found to be protective in various animal models of PAH, whereas PAH registries uniformly demonstrate a female susceptibility to the disease. Second, despite the pronounced tendency for the disease to develop in women, female PAH patients exhibit better survival than men. Recent mechanistic studies in classical and in novel animal models of PAH, as well as recent studies in PAH patients, have significantly advanced the field. In particular, it is now accepted that estrogen metabolism and receptor signaling, as well as estrogen interactions with key pathways in PAH development, appear to be potent disease modifiers. A better understanding of these interactions may lead to novel PAH therapies. It is the purpose of this review to 1) review sex hormone synthesis, metabolism, and receptor physiology; 2) assess the context in which sex hormones affect PAH pathogenesis; 3) provide a potential explanation for the observed estrogen paradoxes and gender differences in PAH; and 4) identify knowledge gaps and future research opportunities. Because the majority of published studies investigated 17β-estradiol and/or its metabolites, this review will primarily focus on pulmonary vascular and right ventricular effects of estrogens. Data for other sex hormones will be discussed very briefly.
Collapse
Affiliation(s)
- Tim Lahm
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, and Richard L. Roudebush VA Medical Center; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, School of Medicine, Denver, Colorado
| | - Irina Petrache
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, and Richard L. Roudebush VA Medical Center; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| |
Collapse
|
4
|
Lévesque É, Laverdière I, Audet-Walsh É, Caron P, Rouleau M, Fradet Y, Lacombe L, Guillemette C. Steroidogenic Germline Polymorphism Predictors of Prostate Cancer Progression in the Estradiol Pathway. Clin Cancer Res 2014; 20:2971-83. [DOI: 10.1158/1078-0432.ccr-13-2567] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Lattrich C, Häring J, Schüler S, Skrzypczak M, Ortmann O, Treeck O. Polymorphisms in the promoter region of estrogen receptor β gene in endometrial cancer. Arch Gynecol Obstet 2013; 289:631-5. [PMID: 23974281 DOI: 10.1007/s00404-013-3012-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 08/12/2013] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The development of endometrial cancer is known to be affected by estrogens. Thus, genetic variations like single nucleotide polymorphisms (SNPs) in genes involved in estrogen biosynthesis, metabolism, and signal transduction might affect risk for endometrial cancer. In this study, we tested the hypothesis that polymorphisms in the promoter of ESR2 gene may be associated with susceptibility to this disease. METHODS We compared the frequency of three SNPs in the promoter region of ESR2 gene (rs2987983, rs3020450, and rs3020449) in 135 women with endometrial cancer and 135 healthy women serving as controls by means of allele-specific tetra-primer PCR. RESULTS Regarding allele frequency, allele positivity or genotype frequencies of these SNPs we did not observe any significant difference between healthy women and women with endometrial cancer. CONCLUSION Our data clearly suggest that the tested SNPs in the promotor region of human ESR2 gene are not associated with the development of endometrial cancer.
Collapse
Affiliation(s)
- Claus Lattrich
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, 93053, Regensburg, Germany,
| | | | | | | | | | | |
Collapse
|
6
|
Austin ED, Lahm T, West J, Tofovic SP, Johansen AK, MacLean MR, Alzoubi A, Oka M. Gender, sex hormones and pulmonary hypertension. Pulm Circ 2013; 3:294-314. [PMID: 24015330 PMCID: PMC3757824 DOI: 10.4103/2045-8932.114756] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Most subtypes of pulmonary arterial hypertension (PAH) are characterized by a greater susceptibility to disease among females, although females with PAH appear to live longer after diagnosis. While this "estrogen paradoxȍ of enhanced female survival despite increased female susceptibility remains a mystery, recent progress has begun to shed light upon the interplay of sex hormones, the pathogenesis of pulmonary hypertension, and the right ventricular response to stress. For example, emerging data in humans and experimental models suggest that estrogens or differential sex hormone metabolism may modify disease risk among susceptible subjects, and that estrogens may interact with additional local factors such as serotonin to enhance the potentially damaging chronic effects of estrogens on the pulmonary vasculature. Regardless, it remains unclear why not all estrogenic compounds behave equally, nor why estrogens appear to be protective in certain settings but detrimental in others. The contribution of androgens and other compounds, such as dehydroepiandrosterone, to pathogenesis and possibly treatment must be considered as well. In this review, we will discuss the recent understandings on how estrogens, estrogen metabolism, dehydroepiandrosterone, and additional susceptibility factors may all contribute to the pathogenesis or potentially to the treatment of pulmonary hypertension, by evaluating current human, cell-based, and experimental model data.
Collapse
Affiliation(s)
- Eric D. Austin
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tim Lahm
- Division of Pulmonary, Allergy, Critical Care, Occupational, and Sleep Medicine and Richard L. Roudebush Veterans Affairs Medical Center, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James West
- Department of Medicine, Division of Allergy, Immunology, and Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stevan P. Tofovic
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne Katrine Johansen
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, USA
| | - Margaret R. MacLean
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, USA
| | - Abdallah Alzoubi
- Department of Medicine and Pharmacology and Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| | - Masahiko Oka
- Department of Medicine and Pharmacology and Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
7
|
Viñas R, Jeng YJ, Watson CS. Non-genomic effects of xenoestrogen mixtures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2694-714. [PMID: 23066391 PMCID: PMC3447581 DOI: 10.3390/ijerph9082694] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/09/2012] [Accepted: 07/17/2012] [Indexed: 12/13/2022]
Abstract
Xenoestrogens (XEs) are chemicals derived from a variety of natural and anthropogenic sources that can interfere with endogenous estrogens by either mimicking or blocking their responses via non-genomic and/or genomic signaling mechanisms. Disruption of estrogens' actions through the less-studied non-genomic pathway can alter such functional end points as cell proliferation, peptide hormone release, catecholamine transport, and apoptosis, among others. Studies of potentially adverse effects due to mixtures and to low doses of endocrine-disrupting chemicals have recently become more feasible, though few so far have included actions via the non-genomic pathway. Physiologic estrogens and XEs evoke non-monotonic dose responses, with different compounds having different patterns of actions dependent on concentration and time, making mixture assessments all the more challenging. In order to understand the spectrum of toxicities and their mechanisms, future work should focus on carefully studying individual and mixture components across a range of concentrations and cellular pathways in a variety of tissue types.
Collapse
Affiliation(s)
- René Viñas
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | |
Collapse
|
8
|
Watson CS, Jeng YJ, Guptarak J. Endocrine disruption via estrogen receptors that participate in nongenomic signaling pathways. J Steroid Biochem Mol Biol 2011; 127:44-50. [PMID: 21300151 PMCID: PMC3106143 DOI: 10.1016/j.jsbmb.2011.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/27/2011] [Accepted: 01/30/2011] [Indexed: 12/21/2022]
Abstract
When inappropriate (non-physiologic) estrogens affect organisms at critical times of estrogen sensitivity, disruption of normal endocrine functions can result. Non-physiologic estrogen mimetics (environmental, dietary, and pharmaceutical) can signal rapidly and potently via the membrane versions of estrogen receptors, as can physiologic estrogens. Both physiologic and non-physiologic estrogens activate multiple signaling pathways, leading to altered cellular functions (e.g. peptide release, cell proliferation or death, transport). Xenoestrogens' mimicry of physiologic estrogens is imperfect. When superimposed, xenoestrogens can alter endogenous estrogens' signaling and thereby disrupt normal signaling pathways, leading to malfunctions in many tissue types. Though these xenoestrogen actions occur rapidly via nongenomic signaling pathways, they can be sustained with continuing ligand stimulation, combinations of ligands, and signaling that perpetuates downstream, eventually also impinging on genomic regulation by controlling the activation state of transcription factors. Because via these pathways estrogens and xenoestrogens cause nonmonotonic stimulation patterns, they must be carefully tested for activity and toxicity over wide dose ranges. Nongenomic actions of xenoestrogens in combination with each other, and with physiologic estrogens, are still largely unexplored from these mechanistic perspectives.
Collapse
Affiliation(s)
- Cheryl S. Watson
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX 77555-0645, USA
| | - Yow-Juin Jeng
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX 77555-0645, USA
| | - Jutatip Guptarak
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX 77555-0645, USA
| |
Collapse
|
9
|
Obi N, Vrieling A, Heinz J, Chang-Claude J. Estrogen metabolite ratio: Is the 2-hydroxyestrone to 16α-hydroxyestrone ratio predictive for breast cancer? Int J Womens Health 2011; 3:37-51. [PMID: 21339936 PMCID: PMC3039007 DOI: 10.2147/ijwh.s7595] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Indexed: 01/12/2023] Open
Abstract
Experimental studies have shown that two main estrogen metabolites hydroxylated by CYP1A1 and CYP1B1 in the breast differentially affect breast cell proliferation and carcinogenesis. Although 16α-hydroxyestrone (16αOHE1) exerts estrogenic activity through covalent estrogen receptor (ER) binding, 2-hydroxyestrone (2OHE1) presumably has antiestrogenic capabilities. The ratio of 2OHE1 to 16αOHE1 represents the relative dominance of one pathway over the other and is believed to be modifiable by diet. It was hypothesized that women with or at high risk of breast cancer have a lower estrogen metabolite ratio (EMR) compared with women without breast cancer. We conducted a systematic review on the EMR as a predictor for breast cancer. A total of nine studies (six prospective and three retrospective) matched our inclusion criteria, comprising 682 premenopausal cases (1027 controls) and 1189 postmenopausal cases (1888 controls). For the highest compared with the lowest quantile of urinary EMR, nonsignificant associations suggested at best a weak protective effect in premenopausal but not in postmenopausal breast cancer (range of odds ratios: 0.50-0.75 for premenopausal and 0.71-1.31 for postmenopausal). Circulating serum/plasma EMR was not associated with breast cancer risk. Associations were inconclusive for receptor subtypes of breast cancer. Uncontrolled factors known to be involved in breast carcinogenesis, such as 4-hydroxyestrone (4OHE1) concentration, may have confounded results for EMR. Results of the prospective studies do not support the hypothesis that EMR can be used as a predictive marker for breast cancer risk. Future research should concentrate on profiles of estrogen metabolites, including 4OHE1, to gain a more complete picture of the relative importance of single metabolites for breast cancer.
Collapse
Affiliation(s)
- Nadia Obi
- University Cancer Center Hamburg (UCCH)/Hubertus Wald Tumor Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alina Vrieling
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Judith Heinz
- University Cancer Center Hamburg (UCCH)/Hubertus Wald Tumor Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
10
|
Cribb AE, Joy Knight M, Guernsey J, Dryer D, Hender K, Shawwa A, Tesch M, Saleh TM. CYP17, Catechol-O-Methyltransferase, and Glutathione Transferase M1 Genetic Polymorphisms, Lifestyle Factors, and Breast Cancer Risk in Women on Prince Edward Island. Breast J 2010; 17:24-31. [DOI: 10.1111/j.1524-4741.2010.01025.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Dallal C, Taioli E. Urinary 2/16 estrogen metabolite ratio levels in healthy women: a review of the literature. Mutat Res 2010; 705:154-162. [PMID: 20601100 PMCID: PMC3760212 DOI: 10.1016/j.mrrev.2010.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/10/2010] [Accepted: 06/23/2010] [Indexed: 12/18/2022]
Abstract
This is a summary of the published literature on the urinary 2/16 estrogen metabolite ratio in human populations, and a report the observed range of normal values in healthy women. Original research studies that included the measurement of urinary estrogen metabolites in human subjects were identified through an extensive Medline search; 43 distinct studies were identified, including a total of 6802 healthy women. The range of mean values of the 2/16 ratio measured with the ELISA method varied from 0.98 to 1.74; in studies of pre-menopausal women the range of mean values was 1.5-2.74, in studies of post-menopausal women mean values ranged from 1.15 to 2.25. The heterogeneity across studies was highly significant (p-value Q-test: <0.0001). In multivariable analyses, only race confirmed its role as an independent predictor of 2/16 ratio (F-value: 7.95; p-value: 0.009), after adjustment for age and menopausal status. There appears to be a large body of data on the 2/16 urinary ratio in healthy women. However, summary estimates are difficult to perform due to the high variability of the published study-specific values. The data suggests that race may be a contributor to 2/16 urinary ratio levels.
Collapse
Affiliation(s)
- Cher Dallal
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emanuela Taioli
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States; Department of Epidemiology and Biostatistics, SUNY Downstate Medical Center, Brooklyn, NY, United States.
| |
Collapse
|
12
|
Fuhrman BJ, Pfeiffer R, Xu X, Wu AH, Korde L, Gail MH, Keefer LK, Veenstra TD, Hoover RN, Ziegler RG. Soy intake is associated with increased 2-hydroxylation and decreased 16alpha-hydroxylation of estrogens in Asian-American women. Cancer Epidemiol Biomarkers Prev 2009; 18:2751-60. [PMID: 19789363 DOI: 10.1158/1055-9965.epi-09-0388] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION In Asian and Asian-American women, soy consumption is associated with reduced breast cancer risk, perhaps due to its effects on estrogen production or metabolism. In a sample of Asian-American women, we investigated the associations of usual adult soy intake with the urinary concentrations of 15 estrogens and estrogen metabolites (EM) measured using liquid chromatography-tandem mass spectrometry. METHODS Participants included 430 Chinese-American, Japanese-American, and Filipino-American women, ages 20 to 55 years, and living in San Francisco-Oakland (California), Los Angeles (California), or Oahu (Hawaii). They were postmenopausal (n = 167) or premenopausal in luteal phase (n = 263) when 12-hour urine samples were collected. Robust linear regression was used to assess soy tertiles as predictors of log-transformed EM measures. Individual and grouped EM were considered as concentrations (pmol/mg creatinine) and as percentages of total EM (%EM). RESULTS Factor analysis confirmed that EM groups defined by metabolic pathways appropriately captured covariation in EM profiles. Total EM concentrations were not significantly associated with soy in premenopausal or postmenopausal women. Among all women, %2-hydroxylated EM and %4-hydroxylation pathway EM were 16% higher (P(trend) = 0.02) and 19% higher (P(trend) = 0.03) in the highest versus lowest soy tertiles, respectively. In contrast, 16% hydroxylated EM were 11% lower (P(trend) < 0.01). Results were consistent across ethnic and menopausal groups and after adjustment for westernization measured by birthplace (Asia or United States). DISCUSSION Findings suggest that regular soy intake is associated with increased ratios of 2:16-pathway EM and with higher relative levels of 4-hydroxylated EM. The observed variations in estrogen metabolism might modify breast cancer risk.
Collapse
Affiliation(s)
- Barbara J Fuhrman
- Epidemiology and Biostatistics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Boulevard, Room 5003, Rockville, MD 20852-7246, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Austin ED, Cogan JD, West JD, Hedges LK, Hamid R, Dawson EP, Wheeler LA, Parl FF, Loyd JE, Phillips JA. Alterations in oestrogen metabolism: implications for higher penetrance of familial pulmonary arterial hypertension in females. Eur Respir J 2009; 34:1093-9. [PMID: 19357154 DOI: 10.1183/09031936.00010409] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in bone morphogenetic protein receptor type 2 (BMPR2) cause familial pulmonary arterial hypertension (FPAH), but the penetrance is reduced and females are significantly overrepresented. In addition, gene expression data implicating the oestrogen-metabolising enzyme CYP1B1 suggests a detrimental role of oestrogens or oestrogen metabolites. We examined genetic and metabolic markers of altered oestrogen metabolism in subjects with a BMPR2 mutation. Genotypes for CYP1B1 Asn453Ser (N453S) were determined for 140 BMPR2 mutation carriers (86 females and 54 males). Nested from those subjects, a case-control study of urinary oestrogen metabolite levels (2-hydroxyoestrogen (2-OHE) and 16alpha-hydroxyoestrone (16alpha-OHE(1))) was conducted in females (five affected mutation carriers versus six unaffected mutation carriers). Among females, there was four-fold higher penetrance among subjects homozygous for the wild-type genotype (N/N) than those with N/S or S/S genotypes (p = 0.005). Consistent with this finding, the 2-OHE/16alpha-OHE(1) ratio was 2.3-fold lower in affected mutation carriers compared to unaffected mutation carriers (p = 0.006). Our findings suggest that variations in oestrogens and oestrogen metabolism modify FPAH risk. Further investigation of the role of oestrogens in this disease with profound sex bias may yield new insights and, perhaps, therapeutic interventions.
Collapse
Affiliation(s)
- E D Austin
- Dept of Pediatrics, Division of Pulmonary, Allergy, and Immunology Medicine, DD-2205 Medical Center North, Vanderbilt University School of Medicine, Nashville, TN, 37232-2578, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Treeck O, Elemenler E, Kriener C, Horn F, Springwald A, Hartmann A, Ortmann O. Polymorphisms in the promoter region of ESR2 gene and breast cancer susceptibility. J Steroid Biochem Mol Biol 2009; 114:207-11. [PMID: 19429453 DOI: 10.1016/j.jsbmb.2009.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 02/13/2009] [Accepted: 02/17/2009] [Indexed: 01/18/2023]
Abstract
Genetic variations like single nucleotide polymorphisms (SNPs) in genes involved in estrogen biosynthesis, metabolism and signal transduction have been suggested to affect breast cancer susceptibility. In this study we tested the hypothesis that polymorphisms in the promoter of ESR2 gene may be associated with increased risk for breast cancer. We analyzed three SNPs in the promoter region of human ESR2 gene by means of allele-specific tetra-primer PCR. A total of 318 sporadic breast cancer cases and 318 age-matched controls were included in the study. With regard to homozygous genotypes, women with sporadic breast cancer more frequently carried the CC genotype of ESR2 promoter SNP rs2987983 (OR 1.99, p=0.005). Calculation of allele positivity demonstrated that presence of T allele of this SNP was more frequent in healthy women. Our data suggest that a SNP in the promoter region of ESR2 gene might be able to affect breast cancer risk. These results further support the emerging hypothesis that ERbeta is an important factor in breast cancer development.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Obstetrics and Gynecology, University of Regensburg, Landshuter Strasse 65, Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Watson CS, Jeng YJ, Kochukov MY. Nongenomic actions of estradiol compared with estrone and estriol in pituitary tumor cell signaling and proliferation. FASEB J 2008; 22:3328-36. [PMID: 18541692 DOI: 10.1096/fj.08-107672] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Physiological estrogens, including estrone (E(1)), estradiol (E(2)), and estriol (E(3)), fluctuate with life stage, suggesting specific roles for them in biological and disease processes. We compared their nongenomic signaling and functional actions in GH3/B6/F10 rat pituitary tumor cells. All hormones caused prolactin release at 1 min; the lowest effective concentrations were 10(-11) M E(2), 10(-10) M E(1), and 10(-7) M E(3). All estrogens increased the oscillation frequency of calcium (Ca) spikes, with the same time delay (approximately 200 s) at all levels (10(-15) to 10(-9) M). At some concentrations, E(1) and E(3) provoked more Ca-responding cells than E(2). The amplitude and volume of Ca peaks were elevated by all hormones at > or = 10(-15) M. All hormones caused cell proliferation, with the lowest effective concentrations of E(2) (10(-15) M) > E(1) (10(-12) M) > E(3) (10(-10) M); E(2) caused higher maximal cell numbers at most concentrations. All estrogens caused oscillating extracellular-regulated kinase (ERK) activations, with relative potencies of E(1) and E(2) > E(3). All estrogens were ineffective in activation of ERKs or causing proliferation in a subline expressing low levels of membrane estrogen receptor-alpha. Dose-response patterns were frequently nonmonotonic. Therefore, the hormones E(1) and E(3), which have been designated "weak" estrogens in genomic actions, are strong estrogens in the nongenomic signaling pathways and functional responses in the pituitary.
Collapse
Affiliation(s)
- Cheryl S Watson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0645, USA
| | | | | |
Collapse
|