1
|
Yu J, Wang CG. Relationship between polymorphisms in homologous recombination repair genes RAD51 G172T、XRCC2 & XRCC3 and risk of breast cancer: A meta-analysis. Front Oncol 2023; 13:1047336. [PMID: 36761956 PMCID: PMC9903134 DOI: 10.3389/fonc.2023.1047336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Background Genetic variability in DNA double-strand break repair genes such as RAD51 gene and its paralogs XRCC2、XRCC3 may contribute to the occurrence and progression of breast cancer. To obtain a complete evaluation of the above association, we performed a meta-analysis of published studies. Methods Electronic databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, were comprehensively searched from inception to September 2022. The Newcastle-Ottawa Scale (NOS) checklist was used to assess all included non-randomized studies. Odds ratios (OR) with 95% confidence intervals (CI) were calculated by STATA 16.0 to assess the strength of the association between single nucleotide polymorphisms (SNPs) in these genes and breast cancer risk. Subsequently, the heterogeneity between studies, sensitivity, and publication bias were performed. We downloaded data from The Cancer Genome Atlas (TCGA) and used univariate and multivariate Cox proportional hazard regression (CPH) models to validate the prognostic value of these related genes in the R software. Results The combined results showed that there was a significant correlation between the G172T polymorphism and the susceptibility to breast cancer in the homozygote model (OR= 1.841, 95% CI=1.06-3.21, P=0.03). Furthermore, ethnic analysis showed that SNP was associated with the risk of breast cancer in Arab populations in homozygous models (OR=3.52, 95% CI=1.13-11.0, P= 0.003). For the XRCC2 R188H polymorphism, no significant association was observed. Regarding polymorphism in XRCC3 T241M, a significantly increased cancer risk was only observed in the allelic genetic model (OR=1.05, 95% CI= 1.00-1.11, P=0.04). Conclusions In conclusion, this meta-analysis suggests that Rad51 G172T polymorphism is likely associated with an increased risk of breast cancer, significantly in the Arab population. The relationship between the XRCC2 R188H polymorphism and breast cancer was not obvious. And T241M in XRCC3 may be associated with breast cancer risk, especially in the Asian population.
Collapse
|
2
|
Chen L, Zhou X, Zeng T, Pan X, Zhang YH, Huang T, Fang Z, Cai YD. Recognizing Pattern and Rule of Mutation Signatures Corresponding to Cancer Types. Front Cell Dev Biol 2021; 9:712931. [PMID: 34513841 PMCID: PMC8427289 DOI: 10.3389/fcell.2021.712931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
Cancer has been generally defined as a cluster of systematic malignant pathogenesis involving abnormal cell growth. Genetic mutations derived from environmental factors and inherited genetics trigger the initiation and progression of cancers. Although several well-known factors affect cancer, mutation features and rules that affect cancers are relatively unknown due to limited related studies. In this study, a computational investigation on mutation profiles of cancer samples in 27 types was given. These profiles were first analyzed by the Monte Carlo Feature Selection (MCFS) method. A feature list was thus obtained. Then, the incremental feature selection (IFS) method adopted such list to extract essential mutation features related to 27 cancer types, find out 207 mutation rules and construct efficient classifiers. The top 37 mutation features corresponding to different cancer types were discussed. All the qualitatively analyzed gene mutation features contribute to the distinction of different types of cancers, and most of such mutation rules are supported by recent literature. Therefore, our computational investigation could identify potential biomarkers and prediction rules for cancers in the mutation signature level.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, China.,College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Xianchao Zhou
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China.,Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zeng
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyong Pan
- Key Laboratory of System Control and Information Processing, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Ministry of Education of China, Shanghai, China
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoyuan Fang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Dashti S, Taherian-Esfahani Z, Keshtkar A, Ghafouri-Fard S. Associations between XRCC3 Thr241Met polymorphisms and breast cancer risk: systematic-review and meta-analysis of 55 case-control studies. BMC MEDICAL GENETICS 2019; 20:79. [PMID: 31077156 PMCID: PMC6511159 DOI: 10.1186/s12881-019-0809-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The X-ray repair cross-complementing group 3 (XRCC3) is an efficient component of homologous recombination and is required for the preservation of chromosomal integrity in mammalian cells. The association between Thr241Met single-nucleotide polymorphism (SNP) in this gene and susceptibility to breast cancer has been assessed in several studies. Yet, reports are controversial. The present meta-analysis has been designed to identify whether this SNP is associated with susceptibility to breast cancer. METHODS We performed a systematic review and meta-analysis for retrieving the case-control studies on the associations between T241 M SNP and the risk of breast cancer. Crude odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to verify the association in dominant, recessive, and homozygote inheritance models. RESULTS We included 55 studies containing 30,966 sporadic breast cancer cases, 1174 familial breast cancer cases and 32,890 controls in the meta-analysis. In crude analyses, no association was detected between the mentioned SNP and breast cancer risk in recessive, homozygote or dominant models. However, ethnic based analysis showed that in sporadic breast cancer, the SNP was associated with breast cancer risk in Arab populations in homozygous (OR (95% CI) = 3.649 (2.029-6.563), p = 0.0001) and recessive models (OR (95% CI) = 4.092 (1.806-9.271), p = 0.001). The association was significant in Asian population in dominant model (OR (95% CI) = 1.296, p = 0.029). However, the associations was significant in familial breast cancer in mixed ethnic-based subgroup in homozygote and recessive models (OR (95% CI) = 0.451 (0.309-0.659), p = 0.0001, OR (95% CI) = 0.462 (0.298-0.716), p = 0.001 respectively). CONCLUSIONS Taken together, our results in a large sample of both sporadic and familial cases of breast cancer showed insignificant role of Thr241Met in the pathogenesis of this type of malignancy. Such results were more conclusive in sporadic cases. In familial cases, future studies are needed to verify our results.
Collapse
Affiliation(s)
- Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Taherian-Esfahani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ali AM, AbdulKareem H, Al Anazi M, Reddy Parine N, Shaik JP, Alamri A, Ali Khan Pathan A, Warsy A. Polymorphisms in DNA Repair Gene XRCC3 and Susceptibility to Breast Cancer in Saudi Females. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8721052. [PMID: 26881229 PMCID: PMC4736606 DOI: 10.1155/2016/8721052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 12/22/2022]
Abstract
We investigated three common polymorphisms (SNPs) in the XRCC3 gene (rs861539, rs1799794, and rs1799796) in 143 Saudi females suffering from breast cancer (median age = 51.4 years) and 145 age matched normal healthy controls. DNA was extracted from whole blood and genotyping was conducted using PCR-RFLP. rs1799794 showed significant association, where AA and AA+AG occurred at a significantly higher frequency in the cancer patients compared to the control group (OR: 28.1; 95% CI: 3.76-21.12; χ (2): 22.82; p < 0.0001). The G allele was protective and presented with a dominant model. The genotype and allele frequencies of rs861539 C>T and rs1799796 A>G did not show a significant difference when the results in the patients and controls were compared. However, the frequency of rs1799796 differed significantly in patients with different age of diagnosis, tumor grade, and ER and HER2 status. The wild type A allele occurred at a higher frequency in the ER- and HER2- group. Our results among Saudis suggest that some variations in XRCC3 may contribute to breast cancer susceptibility. In conclusion, the results obtained during this study suggest that rs1799794 in XRCC3 shows strong association with breast cancer development in Saudi females.
Collapse
Affiliation(s)
- Alaa Mohammed Ali
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Huda AbdulKareem
- Comprehensive Cancer Center, Department of Women's Imaging, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammad Al Anazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Narasimha Reddy Parine
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jilani Purusottapatnam Shaik
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alamri
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Akbar Ali Khan Pathan
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Arjumand Warsy
- Department of Biochemistry, Center for Science and Medical Studies for Girls, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
5
|
Chai F, Liang Y, Chen L, Zhang F, Jiang J. Association between XRCC3 Thr241Met Polymorphism and Risk of Breast Cancer: Meta-Analysis of 23 Case-Control Studies. Med Sci Monit 2015; 21:3231-40. [PMID: 26498491 PMCID: PMC4627365 DOI: 10.12659/msm.894637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Studies have shown that gene and environmental factors, such as BRCA1/2 mutations, ionized radiation, and chemical carcinogens, are related with breast cancer. X-ray repair cross-complementing group 3 (XRCC3) is involved in homologous repair of double DNA breaks. It was reported that Thr241Met single-nucleotide polymorphism (SNP) in XRCC3 is associated with increased risk of breast cancer. However, the finding remains controversial. The current meta-analysis aims to determine whether XRCC3 Thr241Met polymorphism is associated with increased risk of breast cancer. Material/Methods We performed a meta-analysis of association between XRCC3 T241M polymorphism and the risk of breast cancer. Crude odds ratios (ORs) together with 95% confidence intervals (CIs) were used to assess the strength of association in dominant, recessive, and homozygote models. Results We included 23 studies consisting of 13513 cases and 14100 controls in our study. For meta-analysis on the entire database, association of the SNP and breast cancer risk was observed in recessive (OR=1.10, 95% CI: 1.03–1.18, p=0.005) and homozygote (OR=1.09, 95% CI: 1.01–1.18, p=0.023) models. For the analysis on the Asian population subgroup, association of the SNP and breast cancer risk was also observed in recessive (OR=1.615, 95% CI: 1.17–2.228, p=0.004) and homozygote (OR=1.609, 95% CI: 1.154-2.241, p=0.005) models. For the evaluation of the patients without family history of breast cancer, association of the SNP and breast cancer risk was observed in dominant (OR=1.364, 95% CI: 1.096–1.698, p=0.005), recessive (OR=1.336, 95% CI: 0.999–1.788, p=0.051) and homozygote (OR=1.492, 95% CI: 1.085–2.051, p=0.014) models. Conclusions We can conclude that XRCC3 Thr241Met polymorphism might be associated with breast cancer risk, especially in Asian populations and in patients without family history of breast cancer.
Collapse
Affiliation(s)
- Fan Chai
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Yan Liang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Li Chen
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Fan Zhang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China (mainland)
| |
Collapse
|
6
|
Qureshi Z, Mahjabeen I, Baig R, Kayani M. Correlation between selected XRCC2, XRCC3 and RAD51 gene polymorphisms and primary breast cancer in women in Pakistan. Asian Pac J Cancer Prev 2015; 15:10225-9. [PMID: 25556451 DOI: 10.7314/apjcp.2014.15.23.10225] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Genetic polymorphisms in homologous recombination repair genes cause an abnormal development of cancerous cells. In the present study we evaluated the possibility of breast cancer association with single nucleotide polymorphisms of RAD51, XRCC2 and XRCC3 genes. Polymorphisms selected in this study were RAD51 135G/C, XRCC2 Arg188His; and XRCC3 Thr241Met. Each polymorphism was genotyped using Polymerase chain reaction-restriction fragment length polymorphism in study cohort of 306 females (156 breast cancer patients and 150 controls). We observed that heterozygous variant genotype (GC) of RAD51 135 G/C polymorphism was associated with a significantly (OR=2.70; 95%CI (0.63-1.79); p<0.03) increased risk of breast cancer. In case of the XRCC3 gene we observed that frequency of heterozygous (OR=2.88; 95%CI (1.02-8.14); p<0.02) and homozygous (OR=1.46; 95%CI (0.89-2.40); p<0.04) genotype of Thr241Met polymorphism were significantly higher in breast cancer patients. For the Arg188His polymorphism of XRCC2, ~2fold increase in breast cancer risk (OR=1.6, 95%CI = 0.73-3.50) was associated with GA genotype with a p value for trend of 0.03. Our results suggest that the 135G/C polymorphism of the RAD51, Thr241Met polymorphism of XRCC3 and Arg188His polymorphism of XRCC2 can be independent markers of breast cancer risk in Pakistan.
Collapse
Affiliation(s)
- Z Qureshi
- COMSATS Institute of Information Technology Islamabad, Pakistan E-mail :
| | | | | | | |
Collapse
|
7
|
Mao CF, Qian WY, Wu JZ, Sun DW, Tang JH. Association between the XRCC3 Thr241Met polymorphism and breast cancer risk: an updated meta-analysis of 36 case-control studies. Asian Pac J Cancer Prev 2015; 15:6613-8. [PMID: 25169497 DOI: 10.7314/apjcp.2014.15.16.6613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The X-ray repair cross-complementing group 3 (XRCC3) is a highly suspected candidate gene for cancer susceptibility. Attention has been drawn upon associations of the XRCC3 Thr241Met polymorphism with breast cancer risk. However, the previous published findings remain controversial. Hence, we performed a meta-analysis to accurately evaluate any association between breast cancer and XRCC3 T241M (23, 812 cases and 25, 349 controls) in different inheritance models. MATERIALS AND METHODS PubMed and Web of Science databases were searched systematically until December 31, 2013 to obtain all the records evaluating the association between the XRCC3 Thr241Met polymorphism and breast cancer risk. Crude odds ratios (ORs) together with 95% confidence intervals (CIs) were used to assess the strength of associations. RESULTS When all eligible studies were pooled into the meta analysis of XRCC3 T241M polymorphism, a significantly increased breast cancer risk was observed in heterozygote comparison (OR=1.06, 95%CI=1.01-1.12). No significant associations were found in other models. In subgroup analysis, this polymorphism seemed to be associated with elevated breast risk in Asians. No publication bias was detected. CONCLUSIONS This meta-analysis suggests that the T241M polymorphism confers a weakly increased breast cancer risk. A study with the larger sample size is needed to further evaluate gene-gene and gene-environment interactions of the XRCC3 T241M polymorphism with breast cancer risk.
Collapse
Affiliation(s)
- Chang-Fei Mao
- Department of Oncology, Nanjing Medical University Affiliated Jiangsu Cancer Hospital, Nanjing, China E-mail :
| | | | | | | | | |
Collapse
|
8
|
Zhao N, Han JG, Shyu CR, Korkin D. Determining effects of non-synonymous SNPs on protein-protein interactions using supervised and semi-supervised learning. PLoS Comput Biol 2014; 10:e1003592. [PMID: 24784581 PMCID: PMC4006705 DOI: 10.1371/journal.pcbi.1003592] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/13/2014] [Indexed: 12/31/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are among the most common types of genetic variation in complex genetic disorders. A growing number of studies link the functional role of SNPs with the networks and pathways mediated by the disease-associated genes. For example, many non-synonymous missense SNPs (nsSNPs) have been found near or inside the protein-protein interaction (PPI) interfaces. Determining whether such nsSNP will disrupt or preserve a PPI is a challenging task to address, both experimentally and computationally. Here, we present this task as three related classification problems, and develop a new computational method, called the SNP-IN tool (non-synonymous SNP INteraction effect predictor). Our method predicts the effects of nsSNPs on PPIs, given the interaction's structure. It leverages supervised and semi-supervised feature-based classifiers, including our new Random Forest self-learning protocol. The classifiers are trained based on a dataset of comprehensive mutagenesis studies for 151 PPI complexes, with experimentally determined binding affinities of the mutant and wild-type interactions. Three classification problems were considered: (1) a 2-class problem (strengthening/weakening PPI mutations), (2) another 2-class problem (mutations that disrupt/preserve a PPI), and (3) a 3-class classification (detrimental/neutral/beneficial mutation effects). In total, 11 different supervised and semi-supervised classifiers were trained and assessed resulting in a promising performance, with the weighted f-measure ranging from 0.87 for Problem 1 to 0.70 for the most challenging Problem 3. By integrating prediction results of the 2-class classifiers into the 3-class classifier, we further improved its performance for Problem 3. To demonstrate the utility of SNP-IN tool, it was applied to study the nsSNP-induced rewiring of two disease-centered networks. The accurate and balanced performance of SNP-IN tool makes it readily available to study the rewiring of large-scale protein-protein interaction networks, and can be useful for functional annotation of disease-associated SNPs. SNIP-IN tool is freely accessible as a web-server at http://korkinlab.org/snpintool/.
Collapse
Affiliation(s)
- Nan Zhao
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Jing Ginger Han
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Chi-Ren Shyu
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
| | - Dmitry Korkin
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Science Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
9
|
Zou Y, Song T, Yu W, Zhao R, Wang Y, Xie R, Chen T, Wu B, Wu S. XRCC3 polymorphisms are associated with the risk of developing radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with intensity modulation radiated therapy. Jpn J Clin Oncol 2014; 44:241-8. [PMID: 24453273 DOI: 10.1093/jjco/hyt202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE The incidence of radiation-induced late xerostomia varies greatly in nasopharyngeal carcinoma patients treated with radiotherapy. The single-nucleotide polymorphisms in genes involved in DNA repair and fibroblast proliferation may be correlated with such variability. The purpose of this paper was to evaluate the association between the risk of developing radiation-induced late xerostomia and four genetic polymorphisms: TGFβ1 C-509T, TGFβ1 T869C, XRCC3 722C>T and ATM 5557G>A in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. METHODS The severity of late xerostomia was assessed using a patient self-reported validated xerostomia questionnaire. Polymerase chain reaction-ligation detection reaction methods were performed to determine individual genetic polymorphism. The development of radiation-induced xerostomia associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for equivalent uniform dose. RESULTS A total of 43 (41.7%) patients experienced radiation-induced late xerostomia. Univariate Cox proportional hazard analyses showed a higher risk of late xerostomia for patients with XRCC3 722 TT/CT alleles. In multivariate analysis adjusted for clinical and dosimetric factors, XRCC3 722C>T polymorphisms remained a significant factor for higher risk of late xerostomia. CONCLUSIONS To our knowledge, this is the first study that demonstrated an association between genetic polymorphisms and the risk of radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. Our findings suggest that the polymorphisms in XRCC3 are significantly associated with the risk of developing radiation-induced late xerostomia.
Collapse
Affiliation(s)
- Yan Zou
- *Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Qin LY, Chen X, Li P, Yang Z, Mo WN. Association Between the XRCC3 Thr241Met Polymorphism and Cervical Cancer Risk: a Meta-analysis. Asian Pac J Cancer Prev 2013; 14:6703-7. [DOI: 10.7314/apjcp.2013.14.11.6703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
11
|
Comprehensive assessment of the association between DNA repair gene XRCC3 Thr241Met polymorphism and leukemia risk. Tumour Biol 2013; 35:2521-8. [PMID: 24197983 DOI: 10.1007/s13277-013-1333-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 10/14/2013] [Indexed: 01/17/2023] Open
Abstract
The XRCC3 gene has been suggested to play an important role in the pathogenesis of leukemia risk. But the findings of publications are contradictory. To derive a more precise estimation of the association, we performed a meta-analysis. The PubMed, Embase, and China National Knowledge Infrastructure (CNKI) databases were searched for case-control studies published up to August 2013. The pooled odds ratio (OR) and its corresponding 95% confidence interval (CI) were calculated by using a fixed- or random-effect model. A total of 15 case-control studies met the inclusion criteria and were selected. The pooled OR showed that there was no statistically significant association between XRCC3 Thr241Met polymorphism and leukemia risk in overall including studies, while a risky association was observed for acute myeloid leukemia (AML) (dominant model TT/TC vs. CC: OR = 1.240, 95% CI = 1.018-1.511, P = 0.032). The XRCC3 Thr241Met polymorphism might be associated with risk of leukemia in AML. More studies with larger sample sizes are needed to validate this result.
Collapse
|
12
|
Bănescu C, Tilinca M, Benedek EL, Demian S, Macarie I, Duicu C, Dobreanu M. XRCC3 Thr241Met polymorphism and risk of acute myeloid leukemia in a Romanian population. Gene 2013; 526:478-83. [PMID: 23747401 DOI: 10.1016/j.gene.2013.05.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/03/2013] [Accepted: 05/17/2013] [Indexed: 02/08/2023]
|
13
|
Liu HB, Peng YP, Dou CW, Su XL, Gao NK, Tian FM, Bai J. Comprehensive study on associations between nine SNPs and glioma risk. Asian Pac J Cancer Prev 2013; 13:4905-8. [PMID: 23244079 DOI: 10.7314/apjcp.2012.13.10.4905] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIM Glioma cancer is the most common type of adult brain tumor. Recent genome-wide association studies (GWAS) have identified various new susceptibility regions and here we conducted an extensive analysis of associations between 12 single nucleotide polymorphisms (SNPs) and glioma risk. METHODS A total of 197 glioma cases and 197 health controls were selected, and 9 SNPs in 8 genes were analyzed using the Sequenom MassARRAY platform and Sequenom Assay Design 3.1 software. RESULTS We found the MAF among selected controls were consistent with the MAF from the NCBI SNP database. Among 9 SNPs in 8 genes, we identified four significant SNP genotypes associated with the risk of glioma, C/C genotype at rs730437 and T/T genotype at rs1468727 in ERGF were protective against glioma, whereas the T/T genotype at rs1799782 in XRCC1 and C/C genotype at rs861539 in XRCC3 conferred elevated risk. CONCLUSION Our comprehensive analysis of nine SNPs in eight genes suggests that the rs730437 and rs1468727 in ERGF, rs1799782 in XRCC1 gene, and rs861539 in XRCC3 gene are associated with glioma risk. These findings indicate that genetic variants of various genes play a complex role in the development of glioma.
Collapse
Affiliation(s)
- Hai-Bo Liu
- Department of Neurosurgery, Affiliated Nanfang Hospital of Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
14
|
He XF, Wei W, Li JL, Shen XL, Ding DP, Wang SL, Liu ZZ, Qin JB, Wu LX, Xie DL. Association between the XRCC3 T241M polymorphism and risk of cancer: evidence from 157 case-control studies. Gene 2013; 523:10-9. [PMID: 23562721 DOI: 10.1016/j.gene.2013.03.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/21/2013] [Accepted: 03/16/2013] [Indexed: 12/16/2022]
Abstract
The T241M polymorphism in the X-ray cross-complementing group 3 (XRCC3) had been implicated in cancer susceptibility. The previous published data on the association between XRCC3 T241M polymorphism and cancer risk remained controversial. Hence, we performed a meta-analysis to investigate the association between cancer susceptibility and XRCC3 T241M (61,861 cases and 84,584 controls from 157 studies) polymorphism in different inheritance models. We used odds ratios with 95% confidence intervals to assess the strength of the association. Overall, significantly increased cancer risk was observed in any genetic model (dominant model: odds ration [OR]=1.07, 95% confidence interval [CI]=1.00-1.13; recessive model: OR=1.15, 95% CI=1.08-1.23; additive model: OR=1.17, 95% CI=1.08-1.28) when all eligible studies were pooled into the meta-analysis. In further stratified and sensitivity analyses, the elevated risk remained for subgroups of bladder cancer and breast cancer, especially in Caucasians. In addition, significantly decreased lung cancer risk was also observed. In summary, this meta-analysis suggests the participation of XRCC3 T241M in the susceptibility for bladder cancer and breast cancer, especially in Caucasians, and XRCC3 T241M polymorphism is associated with decreased lung cancer risk. Moreover, our work also points out the importance of new studies for T241M association in some cancer types, such as gastric cancer, colorectal cancer, and melanoma skin cancer, where at least some of the covariates responsible for heterogeneity could be controlled, to obtain a more conclusive understanding about the function of the XRCC3 polymorphism in cancer development.
Collapse
Affiliation(s)
- Xiao-Feng He
- Department of Research, Peace Hospital of Changzhi Medical College, Changzhi, 046000, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cheng CX, Xue M, Li K, Li WS. Predictive value of XRCC1 and XRCC3 gene polymorphisms for risk of ovarian cancer death after chemotherapy. Asian Pac J Cancer Prev 2013; 13:2541-5. [PMID: 22938418 DOI: 10.7314/apjcp.2012.13.6.2541] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To investigate any association between XRCC1 and XRCC3 polymorphisms and outcome of platinum-based chemotherapy in ovarian cancer patients. METHODS With a prospective study design was cases were consecutively collected from January 2005 to January 2007. All 310 included patients were followed-up until the end of January 2010. Genotyping of XRCC1 and XRCC3 polymorphisms was conducted by TaqMan Gene Expression assays. RESULTS A total of 191 patients died during follow-up. Our study showed a lower survival rate in XRCC1 399 Arg/Arg genotype than Gln/ Gln, with a significant increased risk of death (HR=1.69, 95%CI=1.07-2.78). Similarly, those carrying XRCC3 Thr/ Thr genotype had a increased risk as compare to the Met/Met genotype, with a HR (95% CI) of 1.90 (1.12-3.41). There was no significant association between XRCC1 Arg194Trp and XRCC1Arg280His gene polymorphisms and ovarian cancer death. CONCLUSION Our study demonstrates that polymorphisms in DNA repair genes have roles in the susceptibility and survival of ovarian cancer patients.
Collapse
Affiliation(s)
- Chun-Xia Cheng
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | | | | | | |
Collapse
|
16
|
Pan WR, Li G, Guan JH. Polymorphisms in DNA repair genes and susceptibility to glioma in a chinese population. Int J Mol Sci 2013; 14:3314-24. [PMID: 23385236 PMCID: PMC3588045 DOI: 10.3390/ijms14023314] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/16/2022] Open
Abstract
The excision repair cross-complementing rodent repair deficiency complementation group 1 (ERCC1), and X-ray repair cross-complementing group 1 (XRCC1) genes appear to protect mammalian cells from the harmful effects of ionizing radiation. We conducted a large case-control study to investigate the association of polymorphisms in ERCC1 C118T, ERCC1 C8092A, XRCC1 A194T, XRCC1 A194T, and XRCC3 C241T, with glioma risk in a Chinese population. Five single nucleotide polymorphisms (SNPs) were genotyped, using the MassARRAY IPLEX platform, in 443 glioma cases and 443 controls. Association analyses based on an χ2 test and binary logistic regression were performed to determine the odds ratio (OR) and a 95% confidence interval (95% CI) for each SNP. For XRCC1 Arg194Trp, the variant genotype T/T was strongly associated with a lower risk of glioma cancer when compared with the wild type C/C (OR = 2.45, 95% CI = 1.43–4.45). Individuals carrying the XRCC1 399A allele had an increased risk of glioma (OR = 1.33, 95% CI = 1.02–1.64). The XRCC3 241T/T genotype was associated with a strong increased glioma risk (OR = 3.78, 95% CI = 1.86–9.06). Further analysis of the interactions of two susceptibility-associated SNPs, XRCC1 Arg194Trp and XRCC3 Thr241Met, showed that the combination of the XRCC1 194T and XRCC3 241T alleles brought a large increase in glioma risk (OR = 2.75, 95% CI = 1.54–4.04). XRCC1 Arg194Trp, XRCC1 Arg399Gln, and XRCC3 C241T, appear to be associated with susceptibility to glioma in a Chinese population.
Collapse
Affiliation(s)
- Wei-Ran Pan
- Department of Neurosurgery, Shengjing Affiliated Hospital of China Medical University, Shenyang 110004, China.
| | | | | |
Collapse
|
17
|
Custódio AC, Almeida LO, Pinto GR, Santos MJ, Almeida JRW, Clara CA, Rey JA, Casartelli C. Variation in DNA repair gene XRCC3 affects susceptibility to astrocytomas and glioblastomas. GENETICS AND MOLECULAR RESEARCH 2012; 11:332-9. [PMID: 22370935 DOI: 10.4238/2012.february.10.4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The gene XRCC3 (X-ray cross complementing group 3) has the task of repairing damage that occurs when there is recombination between homologous chromosomes. Repair of recombination between homologous chromosomes plays an important role in maintaining genome integrity, although it is known that double-strand breaks are the main inducers of chromosomal aberrations. Changes in the XRCC3 protein lead to an increase in errors in chromosome segregation due to defects in centrosomes, resulting in aneuploidy and other chromosomal aberrations, such as small increases in telomeres. We examined XRCC3 Thr241Met polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. The individuals of the control group (N = 100) were selected from the general population of the São Paulo State. Odds ratio and 95%CI were calculated using a logistic regression model. Patients who had the allele Met of the XRCC3 Thr241Met polymorphism had a significantly increased risk of tumor development (odds ratio = 3.13; 95% confidence interval = 1.50-6.50). There were no significant differences in overall survival of patients. We suggest that XRCC3 Thr241Met polymorphism is involved in susceptibility for developing astrocytomas and glioblastomas.
Collapse
Affiliation(s)
- A C Custódio
- Laboratório de Oncogenética, Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
He XF, Wei W, Su J, Yang ZX, Liu Y, Zhang Y, Ding DP, Wang W. Association between the XRCC3 polymorphisms and breast cancer risk: meta-analysis based on case–control studies. Mol Biol Rep 2011; 39:5125-34. [DOI: 10.1007/s11033-011-1308-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
|
19
|
Park SK, Kim Y, Kang D, Jung EJ, Yoo KY. Risk factors and control strategies for the rapidly rising rate of breast cancer in Korea. J Breast Cancer 2011; 14:79-87. [PMID: 21847401 PMCID: PMC3148542 DOI: 10.4048/jbc.2011.14.2.79] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/03/2011] [Indexed: 12/14/2022] Open
Abstract
Due to the aging population and tremendous changes in life style over the past decades, cancer has been the leading cause of death in Korea. The incidence rate of breast cancer is the second highest in Korea, and it has shown an annual increase of 6.8% for the past 6 years. The major risk factors of breast cancer in Korean women are as follows: Early menarche, late menopause, late full-term pregnancy (FTP), and low numbers of FTP. Height and body mass index increased the risk of breast cancer in postmenopausal women only. There are ethnic variations in breast cancer due to the differences in genetic susceptibility or exposure to etiologic agent. With the epidemiological evidences on the possibility of further increase of breast cancer in Korea, the Korean Government began implementing the National Cancer Screening Program against breast cancer in 2002. Five-year survival rates for female breast cancer have improved significantly from 78.0% in early 1993-1995 to 90.0% in 2004-2008. This data indicate that improvement of the survival rate may be partially due to the early diagnosis of breast cancer as well as the increased public awareness about the significance of early detection and organized cancer screening program. The current primary prevention programs are geared towards strengthening national prevention campaigns. In accordance with the improvement in 5-year survival rate, the overall cancer mortality has started to decrease. However, breast cancer death rate and incidence rates are still increasing, which need further organized effort by the Korean Government.
Collapse
Affiliation(s)
- Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
20
|
Zhang C, Lv GQ, Yu XM, Gu YL, Li JP, Du LF, Zhou P. Current evidence on the relationship between HRAS1 polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 2011; 128:467-72. [DOI: 10.1007/s10549-011-1344-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 01/03/2011] [Indexed: 11/24/2022]
|
21
|
Figl A, Scherer D, Nagore E, Bermejo JL, Botella-Estrada R, Gast A, Thirumaran RK, Planelles D, Hemminki K, Schadendorf D, Kumar R. Single-nucleotide polymorphisms in DNA-repair genes and cutaneous melanoma. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 702:8-16. [DOI: 10.1016/j.mrgentox.2010.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/06/2010] [Accepted: 06/14/2010] [Indexed: 01/04/2023]
|
22
|
Qiu LX, Mao C, Yao L, Yu KD, Zhan P, Chen B, Liu HG, Yuan H, Zhang J, Xue K, Hu XC. XRCC3 5′-UTR and IVS5-14 polymorphisms and breast cancer susceptibility: a meta-analysis. Breast Cancer Res Treat 2010; 122:489-93. [DOI: 10.1007/s10549-009-0726-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 12/25/2009] [Indexed: 11/30/2022]
|
23
|
Breast cancer risk and common single nucleotide polymorphisms in homologous recombination DNA repair pathway genes XRCC2, XRCC3, NBS1 and RAD51. Cancer Epidemiol 2009; 34:85-92. [PMID: 20004634 DOI: 10.1016/j.canep.2009.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/26/2009] [Accepted: 11/10/2009] [Indexed: 11/29/2022]
Abstract
The possible role for DNA repair deficiencies in cancer development, namely in breast cancer has been the subject of increasing interest since it has been reported that breast cancer patients might be deficient in the repair of DNA damage. Exposure to ionizing radiation has been pointed out as a risk factor for breast cancer, and the type of DNA lesions induced by this carcinogen can be repaired by homologous recombination DNA repair (HRR) pathway. To evaluate the potential modifying role of some single nucleotide polymorphisms (SNP) in HRR involved genes on the individual susceptibility to breast cancer we carried out a hospital based case-control study in a Caucasian Portuguese population (289 histological confirmed breast cancer patients and 548 control individuals). We genotyped 4 SNPs in 4 different HRR pathway genes, XRCC2 (Ex3+442G>A, R188H, rs3218536), XRCC3 (Ex8-5C>T, T241M, rs861539), NBS1 (Ex5-32C>G, E185Q, rs1805794) and RAD51 5'UTR (Ex1-59G>T, rs1801321), tagging 41 SNPs in these genes. The frequency of the different polymorphisms in the Portuguese control population is similar to the ones reported for other Caucasian populations, and the deviation of the Hardy-Weinberg equilibrium was only observed for the XRCC2 (Ex3+442G>A, R188H, rs3218536) polymorphism in the control population. The results obtained, after logistic regression analysis, did not reveal a major role of these polymorphisms on breast cancer susceptibility. However, when the population was stratified according to breast feeding (women that breast fed and women that never breast fed) it is observed, in women that never breast fed, that the heterozygous individuals for the XRCC2 (Ex3+442G>A, R188H, rs3218536) polymorphism have a decreased risk for breast cancer [adjusted OR=0.45; 95% CI=0.22-0.92] (P=0.03). Additionally, after stratification according to menopausal status, our results suggest that post-menopausal women carrying at least one variant allele for the XRCC3 (Ex8-5C>T, T241M, rs861539) polymorphism have a lower risk for breast cancer [adjusted OR=0.67; 95% CI, 0.47-0.94] (P=0.03). Most of the studies suggest that breastfeeding may be responsible for 2/3 of the estimate reduction of breast cancer. The longer the duration of breastfeeding the lower the potential risk associated with breast cancer. Therefore, in our study the potential protective role of the variant allele of XRCC2 (Ex3+442G>A, R188H, rs3218536), in never breast fed women, might be related with a more efficient DNA repair activity.
Collapse
|
24
|
XRCC3 Thr241Met polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 2009; 121:439-43. [PMID: 19789975 DOI: 10.1007/s10549-009-0562-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
XRCC3 (X-ray repair complementing defective repair in Chinese hamster cells 3) is a member of the RecA/Rad51-related protein family that participates in homologous recombination, maintaining chromosome stability and participating in DNA repair. Attention has been drawn upon the association of XRCC3 Thr241Met polymorphism with breast cancer risk. The present meta-analysis aims to examine whether XRCC3 Thr241Met polymorphism status is associated with breast cancer risk. Apart from the overall meta-analysis, separate analyses were performed on Chinese and non-Chinese populations, in order to investigate race-specific effects. Eligible articles were identified by a search of MEDLINE bibliographical database for the period up to August 2009. Twenty case-control studies on non-Chinese subjects (19,575 cases and 21,125 controls) and three case-control studies on Chinese subjects (1,216 cases and 1,112 controls) were eligible. Pooled odds ratios (OR) were appropriately derived from fixed-effects or random-effects models. At the overall analysis, the T allele was associated with elevated breast cancer risk mainly following a recessive model (pooled OR = 1.064, 95% CI: 1.007-1.124, fixed effects), given that the effect was more pronounced in homozygous carriers (pooled OR = 1.073, 95% CI: 1.010-1.140, fixed effects). The association seemed confined in non-Chinese populations, once again following a recessive model (pooled OR = 1.072, 95% CI: 1.014-1.133, fixed effects). Concerning Chinese populations, no consistent results were demonstrated. In conclusion, the XRCC3 Thr241Met T allele seems associated with elevated breast cancer risk in non-Chinese subjects. The need for additional studies on Chinese populations seems warranted.
Collapse
|
25
|
An empirical comparison of meta-analyses of published gene-disease associations versus consortium analyses. Genet Med 2009; 11:153-62. [PMID: 19367188 DOI: 10.1097/gim.0b013e3181929237] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Consortia of investigators currently compile sufficiently large sample sizes to investigate the effects of low-risk susceptibility genetic variants. It is not clear how the results obtained by consortia compare with those derived from meta-analyses of published studies. METHODS We performed meta-analyses of published data for 16 genetic polymorphisms investigated by the Breast Cancer Association Consortium, and compared sample sizes, heterogeneity, and effect sizes. PubMed, Web of Science, and Human Genome Epidemiology Network databases were searched for breast cancer case-control association studies. RESULTS We found that meta-analyses of published data and consortium analyses were based on substantially different data. Published data by non-consortium teams amounted on average to 26.9% of all available data (range 3.0 -50.0%). Both approaches showed statistically significant decreased breast cancer risks for CASP8 D302H. The meta-analyses of published data demonstrated statistically significant results for five other genes and the consortium analyses for two other genes, but the strength of this evidence, evaluated on the basis of the Venice criteria, was not strong. CONCLUSIONS Because both approaches identified the same gene out of 16 candidates, the methods can be complimentary. The expense and complexity of consortium-based studies should be considered vis-à-vis the potential methodological limitations of synthesis of published studies.
Collapse
|
26
|
Krupa R, Synowiec E, Pawlowska E, Morawiec Z, Sobczuk A, Zadrozny M, Wozniak K, Blasiak J. Polymorphism of the homologous recombination repair genes RAD51 and XRCC3 in breast cancer. Exp Mol Pathol 2009; 87:32-5. [PMID: 19426727 DOI: 10.1016/j.yexmp.2009.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 04/24/2009] [Accepted: 04/29/2009] [Indexed: 02/06/2023]
Abstract
The RAD51 protein and its paralog, XRCC3, play an important role in the repair of DNA double-strand breaks (DSBs) by homologous recombination. Since DSBs may contribute to the pathogenesis of breast cancer and variability in DNA repair genes may be linked with some cancers, we performed a case-control study (135 cases and 175 controls) to check the association between the genotypes of the Thr241Met polymorphism of the XRCC3 gene and the 135G>C polymorphism of the RAD51 gene and breast cancer occurrence and progression. Genotypes were determined in peripheral blood lymphocytes by RFLP-PCR. We did not find any association between either polymorphism singly and breast cancer occurrence. Both polymorphisms were not related to tumor size, estrogen and progesterone receptors status, cancer type and grade. However, the Thr241Met genotype of the XRCC3 polymorphism slightly increased the risk of local metastasis in breast cancer patients (OR 2.56, 95% CI 1.27-5.17). The combined Thr241Met/135G>C genotype decreased the risk of breast cancer occurrence (OR 0.22, 95% CI 0.08-0.59). Our results suggest that the variability of the DNA homologous recombination repair genes RAD51 and XRCC3 may play a role in breast cancer occurrence and progression, but this role may be underlined by a mutual interaction between these genes.
Collapse
Affiliation(s)
- Renata Krupa
- Laboratory of DNA Repair, Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
The polymorphism of XRCC3 codon 241 and AFB1-related hepatocellular carcinoma in Guangxi population, China. Ann Epidemiol 2008; 18:572-8. [PMID: 18504145 DOI: 10.1016/j.annepidem.2008.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/29/2008] [Accepted: 03/01/2008] [Indexed: 11/23/2022]
Abstract
PURPOSE The relationship between aflatoxin B1 (AFB1) exposure and hepatocellular carcinoma (HCC) has been previously demonstrated and supported with strong epidemiological evidence. However, the role of genetic polymorphism of X-ray cross-complementing group 3 (XRCC3) codon 241 (namely: Thr241Met), which may be involved in the repair of DNA double-strand breaks caused by carcinogens such as AFB1, been less well elaborated. METHODS We conducted a case-control study including 491 cases and 862 controls to evaluate the associations between this polymorphism and HCC risk for Guangxi population by means of polymerase chain reaction-restriction fragment length polymorphism analysis. RESULTS We found that individuals with the XRCC3 genotypes with codon 241 Met (namely XRCC3-TM or XRCC3-MM) had an increased risk of HCC than those with the homozygote of XRCC3 codon 241 Thr alleles (namely XRCC3-TT, adjusted odds ratios 2.22 and 7.19; 95% confidence intervals 1.72-2.88 and 4.52-11.42, respectively). The risk of HCC, moreover, did appear to differ more significantly among individuals featuring high-level AFB1-DNA adducts, whose adjusted odds ratios (95% confidence intervals) were 11.59 (5.73-23.47) and 37.54 (16.32-86.32), respectively. CONCLUSIONS These findings support the hypothesis that the XRCC3 Thr241Met polymorphism may be associated with the risk of AFB1-related HCC among the Guangxi population.
Collapse
|