1
|
van der Merwe NC, Buccimazza I, Rossouw B, Araujo M, Ntaita KS, Schoeman M, Vorster K, Napo K, Kotze MJ, Oosthuizen J. Clinical relevance of double heterozygosity revealed by next-generation sequencing of homologous recombination repair pathway genes in South African breast cancer patients. Breast Cancer Res Treat 2024; 207:331-342. [PMID: 38814507 PMCID: PMC11297091 DOI: 10.1007/s10549-024-07362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Genetically predisposed breast cancer (BC) patients represent a minor but clinically meaningful subgroup of the disease, with 25% of all cases associated with actionable variants in BRCA1/2. Diagnostic implementation of next-generation sequencing (NGS) resulted in the rare identification of BC patients with double heterozygosity for deleterious variants in genes partaking in homologous recombination repair of DNA. As clinical heterogeneity poses challenges for genetic counseling, this study focused on the occurrence and clinical relevance of double heterozygous BC in South Africa. METHODS DNA samples were diagnostically screened using the NGS-based Oncomine™ BRCA Expanded Research Assay. Data was generated on the Ion GeneStudio S5 system and analyzed using the Torrent Suite™ and reporter software. The clinical significance of the variants detected was determined using international variant classification guidelines and treatment implications. RESULTS Six of 1600 BC patients (0.375%) tested were identified as being bi-allelic for two germline likely pathogenic or pathogenic variants. Most of the variants were present in BRCA1/2, including two founder-related small deletions in three cases, with family-specific variants detected in ATM, BARD1, FANCD2, NBN, and TP53. The scientific interpretation and clinical relevance were based on the clinical and tumor characteristics of each case. CONCLUSION This study increased current knowledge of the risk implications associated with the co-occurrence of more than one pathogenic variant in the BC susceptibility genes, confirmed to be a rare condition in South Africa. Further molecular pathology-based studies are warranted to determine whether clinical decision-making is affected by the detection of a second pathogenic variant in BRCA1/2 and TP53 carriers.
Collapse
Affiliation(s)
- Nerina C van der Merwe
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa.
| | - Ines Buccimazza
- Genetics Unit, Inkosi Albert Luthuli General Hospital, Durban, South Africa
- Department of Surgery, Nelson R Mandela School of Medicine, Inkosi Albert Luthuli General Hospital, Durban, South Africa
| | - Bianca Rossouw
- Division of Human Genetics, National Health Laboratory Service, Braamfontein, Johannesburg, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Monica Araujo
- Division of Human Genetics, National Health Laboratory Service, Braamfontein, Johannesburg, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kholiwe S Ntaita
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa
| | - Mardelle Schoeman
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Karin Vorster
- Department of Oncology, Free State Department of Health, Universitas Annex Hospital, Bloemfontein, South Africa
- Department of Oncology, Faculty of Health Science, University of the Free State, Bloemfontein, South Africa
| | - Kgabo Napo
- Department of Oncology, Free State Department of Health, Universitas Annex Hospital, Bloemfontein, South Africa
- Department of Oncology, Faculty of Health Science, University of the Free State, Bloemfontein, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jaco Oosthuizen
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa
| |
Collapse
|
2
|
Taylor SJ, Hollis RL, Gourley C, Herrington CS, Langdon SP, Arends MJ. FANCD2 expression affects platinum response and further characteristics of high grade serous ovarian cancer in cells with different genetic backgrounds. Exp Mol Pathol 2024; 138:104916. [PMID: 38959632 DOI: 10.1016/j.yexmp.2024.104916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most prevalent subtype of ovarian cancer and demonstrates 5-year survival of just 40%. One of the major causes of mortality is the development of tumour resistance to platinum-based chemotherapy, which can be modulated by dysregulation of DNA damage repair pathways. We therefore investigated the contribution of the DNA interstrand crosslink repair protein FANCD2 to chemosensitivity in HGSOC. Increased FANCD2 protein expression was observed in some cell line models of platinum resistant HGSOC compared with paired platinum sensitive models. Knockdown of FANCD2 in some cell lines, including the platinum resistant PEO4, led to increased carboplatin sensitivity. Investigation into mechanisms of FANCD2 regulation showed that increased FANCD2 expression in platinum resistant cells coincides with increased expression of mTOR. Treatment with mTOR inhibitors resulted in FANCD2 depletion, suggesting that mTOR can mediate platinum sensitivity via regulation of FANCD2. Tumours from a cohort of HGSOC patients showed varied nuclear and cytoplasmic FANCD2 expression, however this was not significantly associated with clinical characteristics. Knockout of FANCD2 was associated with increased cell migration, which may represent a non-canonical function of cytoplasmic FANCD2. We conclude that upregulation of FANCD2, possibly mediated by mTOR, is a potential mechanism of chemoresistance in HGSOC and modulation of FANCD2 expression can influence platinum sensitivity and other tumour cell characteristics.
Collapse
Affiliation(s)
- Sarah J Taylor
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| | - Robert L Hollis
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - C Simon Herrington
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom; Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon P Langdon
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark J Arends
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
3
|
Liu P, Shi C, Qiu L, Shang D, Lu Z, Tu Z, Liu H. Menin signaling and therapeutic targeting in breast cancer. Curr Probl Cancer 2024; 51:101118. [PMID: 38968834 DOI: 10.1016/j.currproblcancer.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
To date, mounting evidence have shown that patients with multiple endocrine neoplasia type 1 (MEN1) may face an increased risk for breast carcinogenesis. The product of the MEN1 gene, menin, was also indicated to be an important regulator in breast cancer signaling network. Menin directly interacts with MLL, EZH2, JunD, NF-κB, PPARγ, VDR, Smad3, β-catenin and ERα to modulate gene transcriptions leading to cell proliferation inhibition. Moreover, interaction of menin-FANCD2 contributes to the enhancement of BRCA1-mediated DNA repair mechanism. Ectopic expression of menin causes Bax-, Bak- and Caspase-8-dependent apoptosis. However, despite numbers of menin inhibitors were exploited in other cancers, data on the usage of menin inhibitors in breast cancer treatment remain limited. In this review, we focused on the menin associated signaling pathways and gene transcription regulations, with the aim of elucidating its molecular mechanisms and of guiding the development of novel menin targeted drugs in breast cancer therapy.
Collapse
Affiliation(s)
- Peng Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ziwen Lu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
4
|
Xie X, Zhao Y, Du F, Cai B, Fang Z, Liu Y, Sang Y, Ma C, Liu Z, Yu X, Zhang C, Jiang J, Gao Z, Liu Y, Lin X, Jing H, Zhong X, Cong L, Dai H, Sha D, Shao N, Feng H, Li L, Liu J, Shang L. Pan-cancer analysis of the tumorigenic role of Fanconi anemia complementation group D2 (FANCD2) in human tumors. Genomics 2024; 116:110762. [PMID: 38104669 DOI: 10.1016/j.ygeno.2023.110762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Monoubiquitination of FANCD2 is a central step in the activation of the Fanconi anemia (FA) pathway after DNA damage. Defects in the FA pathway centered around FANCD2 not only lead to genomic instability but also induce tumorigenesis. At present, few studies have investigated FANCD2 in tumors, and no pan-cancer research on FANCD2 has been conducted. We conducted a comprehensive analysis of the role of FANCD2 in cancer using public databases and other published studies. Moreover, we evaluated the role of FANCD2 in the proliferation, migration and invasion of lung adenocarcinoma cells through in vitro and in vivo experiments, and explored the role of FANCD2 in cisplatin chemoresistance. We investigated the regulatory effect of FANCD2 on the cell cycle of lung adenocarcinoma cells by flow cytometry, and verified this effect by western blotting. FANCD2 expression is elevated in most TCGA tumors and shows a strong positive correlation with poor prognosis in tumor patients. In addition, FANCD2 expression shows strong correlations with immune infiltration, immune checkpoints, the tumor mutation burden (TMB), and microsatellite instability (MSI), which are immune-related features, suggesting that it may be a potential target of tumor immunotherapy. We further found that FANCD2 significantly promotes the proliferation, invasion, and migration abilities of lung adenocarcinoma cells and that its ability to promote cancer cell proliferation may be achieved by modulating the cell cycle. The findings indicate that FANCD2 is a potential biomarker and therapeutic target in cancer treatment by analyzing the oncogenic role of FANCD2 in different tumors.
Collapse
Affiliation(s)
- Xiaozhou Xie
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China
| | - Yulong Zhao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China
| | - Fengying Du
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China
| | - Baoshan Cai
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China
| | - Zhen Fang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100000, China
| | - Yuan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China
| | - Yaodong Sang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China
| | - Chenghao Ma
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China
| | - Zhaodong Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Xinshuai Yu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Chi Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Jiayu Jiang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Zi Gao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Yan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Haiyan Jing
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Xiuming Zhong
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Lei Cong
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Honghai Dai
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Dan Sha
- Department of Minimally Invasive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Na Shao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Hong Feng
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China.
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China.
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China.
| |
Collapse
|
5
|
Huang Z, Yang J, Qiu W, Huang J, Chen Z, Han Y, Ye C. HAUS5 Is A Potential Prognostic Biomarker With Functional Significance in Breast Cancer. Front Oncol 2022; 12:829777. [PMID: 35280773 PMCID: PMC8913513 DOI: 10.3389/fonc.2022.829777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Breast cancer (BRCA) has become the most frequently appearing, lethal, and aggressive cancer with increasing morbidity and mortality. Previously, it was discovered that the HAUS5 protein is involved in centrosome integrity, spindle assembly, and the completion of the cytoplasmic division process during mitosis. By encouraging chromosome misdivision and aneuploidy, HAUS5 has the potential to cause cancer. The significance of HAUS5 in BRCA and the relationship between its expression and clinical outcomes or immune infiltration remains unclear. Methods Pan-cancer was analyzed by TIMER2 web and the expression differential of HAUS5 was discovered. The prognostic value of HAUS5 for BRCA was evaluated with KM plotter and confirmed with Gene Expression Omnibus (GEO) dataset. Following that, we looked at the relationship between the high and low expression groups of HAUS5 and breast cancer clinical indications. Signaling pathways linked to HAUS5 expression were discovered using Gene Set Enrichment Analysis (GSEA). The relative immune cell infiltrations of each sample were assessed using the CIBERSORT algorithm and ESTIMATE method. We evaluated the Tumor Mutation Burden (TMB) value between the two sets of samples with high and low HAUS5 expression, as well as the differences in gene mutations between the two groups. The proliferation changes of BRCA cells after knockdown of HAUS5 were evaluated by fluorescence cell counting and colony formation assay. Result HAUS5 is strongly expressed in most malignancies, and distinct associations exist between HAUS5 and prognosis in BRCA patients. Upregulated HAUS5 was associated with poor clinicopathological characteristics such as tumor T stage, ER, PR, and HER2 status. mitotic prometaphase, primary immunodeficiency, DNA replication, cell cycle related signaling pathways were all enriched in the presence of elevated HAUS5 expression, according to GSEA analysis. The BRCA microenvironment’s core gene, HAUS5, was shown to be related with invading immune cell subtypes and tumor cell stemness. TMB in the HAUS5-low expression group was significantly higher than that in the high expression group. The mutation frequency of 15 genes was substantially different in the high expression group compared to the low expression group. BRCA cells’ capacity to proliferate was decreased when HAUS5 was knocked down. Conclusion These findings show that HAUS5 is a positive regulator of BRCA progression that contributes to BRCA cells proliferation. As a result, HAUS5 might be a novel prognostic indicator and therapeutic target for BRCA patients.
Collapse
Affiliation(s)
- Zhijian Huang
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jiasheng Yang
- School of Electrical and Information Engineering, Anhui University of Technology, Maanshan, China
| | - Wenjing Qiu
- School of Electrical and Information Engineering, Anhui University of Technology, Maanshan, China
| | - Jing Huang
- Department of Pharmacy, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Zhirong Chen
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Changsheng Ye
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Badra Fajardo N, Taraviras S, Lygerou Z. Fanconi anemia proteins and genome fragility: unraveling replication defects for cancer therapy. Trends Cancer 2022; 8:467-481. [DOI: 10.1016/j.trecan.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
7
|
Zhan S, Siu J, Wang Z, Yu H, Bezabeh T, Deng Y, Du W, Fei P. Focal Point of Fanconi Anemia Signaling. Int J Mol Sci 2021; 22:12976. [PMID: 34884777 PMCID: PMC8657418 DOI: 10.3390/ijms222312976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Among human genetic diseases, Fanconi Anemia (FA) tops all with its largest number of health complications in nearly all human organ systems, suggesting the significant roles played by FA genes in the maintenance of human health. With the accumulated research on FA, the encoded protein products by FA genes have been building up to the biggest cell defense signaling network, composed of not only 22+ FA proteins but also ATM, ATR, and many other non-FA proteins. The FA D2 group protein (FANCD2) and its paralog form the focal point of FA signaling to converge the effects of its upstream players in response to a variety of cellular insults and simultaneously with downstream players to protect humans from contracting diseases, including aging and cancer. In this review, we update and discuss how the FA signaling crucially eases cellular stresses through understanding its focal point.
Collapse
Affiliation(s)
- Sudong Zhan
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA; (S.Z.); (Z.W.); (H.Y.)
| | - Jolene Siu
- Student Research Experience Program of University of Hawaii, Honolulu, HI 96822, USA;
| | - Zhanwei Wang
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA; (S.Z.); (Z.W.); (H.Y.)
| | - Herbert Yu
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA; (S.Z.); (Z.W.); (H.Y.)
| | - Tedros Bezabeh
- Department of Chemistry, University of Guam, Mangilao, GU 96923, USA;
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA;
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA;
| | - Peiwen Fei
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA; (S.Z.); (Z.W.); (H.Y.)
- Student Research Experience Program of University of Hawaii, Honolulu, HI 96822, USA;
| |
Collapse
|
8
|
Gianni P, Matenoglou E, Geropoulos G, Agrawal N, Adnani H, Zafeiropoulos S, Miyara SJ, Guevara S, Mumford JM, Molmenti EP, Giannis D. The Fanconi anemia pathway and Breast Cancer: A comprehensive review of clinical data. Clin Breast Cancer 2021; 22:10-25. [PMID: 34489172 DOI: 10.1016/j.clbc.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
The development of breast cancer depends on several risk factors, including environmental, lifestyle and genetic factors. Despite the evolution of DNA sequencing techniques and biomarker detection, the epidemiology and mechanisms of various breast cancer susceptibility genes have not been elucidated yet. Dysregulation of the DNA damage response causes genomic instability and increases the rate of mutagenesis and the risk of carcinogenesis. The Fanconi Anemia (FA) pathway is an important component of the DNA damage response and plays a critical role in the repair of DNA interstrand crosslinks and genomic stability. The FA pathway involves 22 recognized genes and specific mutations have been identified as the underlying defect in the majority of FA patients. A thorough understanding of the function and epidemiology of these genes in breast cancer is critical for the development and implementation of individualized therapies that target unique tumor profiles. Targeted therapies (PARP inhibitors) exploiting the FA pathway gene defects have been developed and have shown promising results. This narrative review summarizes the current literature on the involvement of FA genes in sporadic and familial breast cancer with a focus on clinical data derived from large cohorts.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Germany
| | - Evangelia Matenoglou
- Medical School, Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Geropoulos
- Thoracic Surgery Department, University College London Hospitals NHS Foundation Trust, London
| | - Nirav Agrawal
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Harsha Adnani
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Stefanos Zafeiropoulos
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Santiago J Miyara
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Sara Guevara
- Department of Surgery, North Shore University Hospital, Manhasset, New York, NY
| | - James M Mumford
- Department of Family Medicine, Glen Cove Hospital, Glen Cove, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Ernesto P Molmenti
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Department of Surgery, North Shore University Hospital, Manhasset, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Dimitrios Giannis
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY.
| |
Collapse
|
9
|
Mohamed RI, Bargal SA, Mekawy AS, El-Shiekh I, Tuncbag N, Ahmed AS, Badr E, Elserafy M. The overexpression of DNA repair genes in invasive ductal and lobular breast carcinomas: Insights on individual variations and precision medicine. PLoS One 2021; 16:e0247837. [PMID: 33662042 PMCID: PMC7932549 DOI: 10.1371/journal.pone.0247837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/14/2021] [Indexed: 12/22/2022] Open
Abstract
In the era of precision medicine, analyzing the transcriptomic profile of patients is essential to tailor the appropriate therapy. In this study, we explored transcriptional differences between two invasive breast cancer subtypes; infiltrating ductal carcinoma (IDC) and lobular carcinoma (LC) using RNA-Seq data deposited in the TCGA-BRCA project. We revealed 3854 differentially expressed genes between normal ductal tissues and IDC. In addition, IDC to LC comparison resulted in 663 differentially expressed genes. We then focused on DNA repair genes because of their known effects on patients' response to therapy and resistance. We here report that 36 DNA repair genes are overexpressed in a significant number of both IDC and LC patients' samples. Despite the upregulation in a significant number of samples, we observed a noticeable variation in the expression levels of the repair genes across patients of the same cancer subtype. The same trend is valid for the expression of miRNAs, where remarkable variations between patients' samples of the same cancer subtype are also observed. These individual variations could lie behind the differential response of patients to treatment. The future of cancer diagnostics and therapy will inevitably depend on high-throughput genomic and transcriptomic data analysis. However, we propose that performing analysis on individual patients rather than a big set of patients' samples will be necessary to ensure that the best treatment is determined, and therapy resistance is reduced.
Collapse
Affiliation(s)
- Ruwaa I. Mohamed
- Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Salma A. Bargal
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Asmaa S. Mekawy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Iman El-Shiekh
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nurcan Tuncbag
- Graduate School of Informatics, Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Alaa S. Ahmed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Eman Badr
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
- * E-mail: (EB); (ME)
| | - Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- * E-mail: (EB); (ME)
| |
Collapse
|
10
|
Wu M, Sun Y, Wu J, Liu G. Identification of Hub Genes in High-Grade Serous Ovarian Cancer Using Weighted Gene Co-Expression Network Analysis. Med Sci Monit 2020; 26:e922107. [PMID: 32180586 PMCID: PMC7101203 DOI: 10.12659/msm.922107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background High-grade serous ovarian cancer (HGSOC) is the most malignant gynecologic tumor. This study reveals biomarkers related to HGSOC incidence and progression using the bioinformatics method. Material/Methods Five gene expression profiles were downloaded from GEO. Differentially-expressed genes (DEGs) in HGSOC and normal ovarian tissue samples were screened using limma and the function of DEGs was annotated by KEGG and GO analysis using clusterProfiler. A co-expression network utilizing the WGCNA package was established to define several hub genes from the key module. Furthermore, survival analysis was performed, followed by expression validation with datasets from TCGA and GTEx. Finally, we used single-gene GSEA to detect the function of prognostic hub genes. Results Out of the 1874 DEGs detected from 114 HGSOC versus 49 normal tissue samples, 956 were upregulated and 919 were downregulated. The functional annotation indicated that upregulated DEGs were mostly enriched in cell cycle, whereas the downregulated DEGs were enriched in the MAPK or Ras signaling pathway. Two modules significantly associated with HGSOC were excavated through WGCNA. After survival analysis and expression validation of hub genes, we found that 2 upregulated genes (MAD2L1 and PKD2) and 3 downregulated genes (DOCK5, FANCD2 and TBRG1) were positively correlated with HGSOC prognosis. GSEA for single-hub genes revealed that MAD2L1 and PKD2 were associated with proliferation, while DOCK5, FANCD2, and TBRG1 were associated with immune response. Conclusions We found that FANCD2, PKD2, TBRG1, and DOCK5 had prognostic value and could be used as potential biomarkers for HGSOC treatment.
Collapse
Affiliation(s)
- Meijing Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jing Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Guoyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| |
Collapse
|
11
|
Taylor SJ, Arends MJ, Langdon SP. Inhibitors of the Fanconi anaemia pathway as potential antitumour agents for ovarian cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:26-52. [PMID: 36046263 PMCID: PMC9400734 DOI: 10.37349/etat.2020.00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/18/2019] [Indexed: 11/30/2022] Open
Abstract
The Fanconi anaemia (FA) pathway is an important mechanism for cellular DNA damage repair, which functions to remove toxic DNA interstrand crosslinks. This is particularly relevant in the context of ovarian and other cancers which rely extensively on interstrand cross-link generating platinum chemotherapy as standard of care treatment. These cancers often respond well to initial treatment, but reoccur with resistant disease and upregulation of DNA damage repair pathways. The FA pathway is therefore of great interest as a target for therapies that aim to improve the efficacy of platinum chemotherapies, and reverse tumour resistance to these. In this review, we discuss recent advances in understanding the mechanism of interstrand cross-link repair by the FA pathway, and the potential of the component parts as targets for therapeutic agents. We then focus on the current state of play of inhibitor development, covering both the characterisation of broad spectrum inhibitors and high throughput screening approaches to identify novel small molecule inhibitors. We also consider synthetic lethality between the FA pathway and other DNA damage repair pathways as a therapeutic approach.
Collapse
Affiliation(s)
- Sarah J Taylor
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Mark J Arends
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| |
Collapse
|
12
|
Subcellular localization of FANCD2 is associated with survival in ovarian carcinoma. Oncotarget 2020; 11:775-783. [PMID: 32165999 PMCID: PMC7055545 DOI: 10.18632/oncotarget.27437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/21/2019] [Indexed: 01/23/2023] Open
Abstract
Objective: Ovarian cancer is a leading cause of death from gynecological cancers. Late diagnosis and resistance to therapy results in mortality and effective screening is required for early diagnosis and better treatments. Expression of the Fanconi Anemia complementation group D2 protein (FANCD2) is reduced in ovarian surface epithelial cells (OSE) in patients with ovarian cancer. FANCD2 has been studied for its role in DNA repair; however multiple studies have suggested that FANCD2 has a role outside the nucleus. We sought to determine whether subcellular localization of FANCD2 correlates with patient outcome in ovarian cancer. Methods: We examined the subcellular localization of FANCD2 in primary OSE cells from consenting patients with ovarian cancer or a normal ovary. Ovarian tissue microarray was stained with anti-FANCD2 antibody by immunohistochemistry and the correlation of FANCD2 localization with patient outcomes was assessed. FANCD2 binding partners were identified by immunoprecipitation of cytoplasmic FANCD2. Results: Nuclear and cytoplasmic localization of FANCD2 was observed in OSEs from both normal and ovarian cancer patients. Patients with cytoplasmic localization of FANCD2 (cFANCD2) experienced significantly longer median survival time (50 months), versus patients without cytoplasmic localization of FANCD2 (38 months; p < 0.05). Cytoplasmic FANCD2 was found to bind proteins involved in the innate immune system, cellular response to heat stress, amyloid fiber formation and estrogen mediated signaling. Conclusions: Our results suggest that the presence of cytoplasmic FANCD2 modulates FANCD2 activity resulting in better survival outcome in ovarian cancer patients.
Collapse
|
13
|
Fang CB, Wu HT, Zhang ML, Liu J, Zhang GJ. Fanconi Anemia Pathway: Mechanisms of Breast Cancer Predisposition Development and Potential Therapeutic Targets. Front Cell Dev Biol 2020; 8:160. [PMID: 32300589 PMCID: PMC7142266 DOI: 10.3389/fcell.2020.00160] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/28/2020] [Indexed: 02/05/2023] Open
Abstract
The maintenance of genomic stability is crucial for species survival, and its failure is closely associated with tumorigenesis. The Fanconi anemia (FA) pathway, involving 22 identified genes, plays a central role in repairing DNA interstrand cross-links. Importantly, a germline defect in any of these genes can cause Fanconi's anemia, a heterogeneous genetic disorder, characterized by congenital growth abnormalities, bone marrow failure, and predisposition to cancer. On the other hand, the breast cancer susceptibility genes, BRCA1 and BRCA2, also known as FANCS and FANCD1, respectively, are involved in the FA pathway; hence, researchers have studied the association between the FA pathway and cancer predisposition. Here, we mainly focused on and systematically reviewed the clinical and mechanistic implications of the predisposition of individuals with abnormalities in the FA pathway to cancer, especially breast cancer.
Collapse
Affiliation(s)
- Can-Bin Fang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Man-Li Zhang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Jing Liu
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
- Department of Physiology, Shantou University Medical College, Shantou, China
- *Correspondence: Jing Liu,
| | - Guo-Jun Zhang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
- The Cancer Center and the Department of Breast-Thyroid Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiang’an, China
- Guo-Jun Zhang, ;
| |
Collapse
|
14
|
Xu S, Zhao F, Liang Z, Feng H, Bao Y, Xu W, Zhao C, Qin G. Expression of FANCD2 is associated with prognosis in patients with nasopharyngeal carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3465-3473. [PMID: 31934192 PMCID: PMC6949855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
The relationship between Fanconi anemia complementation group D2 (FANCD2) and early diagnosis, pathogenesis, recurrence, and prognosis in patients with nasopharyngeal carcinoma (NPC) was investigated in a retrospective case-control study. The clinicopathological data of patients with NPC were collected. The results showed that FANCD2 was significantly higher in poorly differentiated squamous cell carcinoma than in moderately and well differentiated carcinoma. FANCD2 was significantly lower in recurrent NPC tissues than in NPC tissues before treatment. FANCD2 was markedly higher in T1-2, stage I-II NPC tissues with a duration of disease shorter than 6 months than in T3-4, stage III-IV NPC tissues with a duration of disease longer than 6 months. Moreover, compared with patients with cervical lymph node metastases, FANCD2 was elevated in tissues from patients without cervical lymph node metastases. Furthermore, the NPC patients in the high-FANCD2-expression group exhibited a higher recurrence rate than the patients in the low-FANCD2-expression group. Finally, the disease-free survival rate of the high-expression group was significantly lower than it was in the low-expression group. Therefore, FANCD2 is associated with the occurrence, differentiation, and cervical lymph node metastasis of NPC. With the development of NPC, FANCD2 is down-regulated. FANCD2 may be a molecular marker for the early diagnosis and prognosis of NPC.
Collapse
Affiliation(s)
- Shengen Xu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Southwest Medical College Luzhou, Sichuan Province, China
| | - Feipeng Zhao
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Southwest Medical College Luzhou, Sichuan Province, China
| | - Zhuoping Liang
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Southwest Medical College Luzhou, Sichuan Province, China
| | - Huajun Feng
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Southwest Medical College Luzhou, Sichuan Province, China
| | - Yilin Bao
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Southwest Medical College Luzhou, Sichuan Province, China
| | - Wei Xu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Southwest Medical College Luzhou, Sichuan Province, China
| | - Chong Zhao
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Southwest Medical College Luzhou, Sichuan Province, China
| | - Gang Qin
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Southwest Medical College Luzhou, Sichuan Province, China
| |
Collapse
|
15
|
Moes-Sosnowska J, Rzepecka IK, Chodzynska J, Dansonka-Mieszkowska A, Szafron LM, Balabas A, Lotocka R, Sobiczewski P, Kupryjanczyk J. Clinical importance of FANCD2, BRIP1, BRCA1, BRCA2 and FANCF expression in ovarian carcinomas. Cancer Biol Ther 2019; 20:843-854. [PMID: 30822218 PMCID: PMC6606037 DOI: 10.1080/15384047.2019.1579955] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE DNA repair pathways are potential targets of molecular therapy in cancer patients. The FANCD2, BRIP1, BRCA1/2, and FANCF genes are involved in homologous recombination DNA repair, which implicates their possible role in cell response to DNA-damaging agents. We evaluated a clinical significance of pre-treatment expression of these genes at mRNA level in 99 primary, advanced-stage ovarian carcinomas from patients, who later received taxane-platinum (TP) or platinum-cyclophosphamide (PC) treatment. METHODS Gene expression was determined with the use of Real-Time PCR. The BRCA2 and BRIP1 gene sequence was investigated with the use of SSCP, dHPLC, and PCR-sequencing. RESULTS Increased FANCD2 expression occurred to be a negative prognostic factor for all patients (PC+TP:HR 3.85, p = 0.0003 for the risk of recurrence; HR 1.96, p = 0.02 for the risk of death), and this association was even stronger in the TP-treated group (HR 6.7, p = 0.0002 and HR 2.33, p = 0.01, respectively). Elevated BRIP1 expression was the only unfavorable molecular factor in the PC-treated patients (HR 8.37, p = 0.02 for the risk of recurrence). Additionally, an increased FANCD2 and BRCA1/2 expression levels were associated with poor ovarian cancer outcome in either TP53-positive or -negative subgroups of the TP-treated patients, however these groups were small. Sequence analysis identified one protein truncating variant (1/99) in BRCA2 and no mutations (0/56) in BRIP1. CONCLUSIONS Our study shows for the first time that FANCD2 overexpression is a strong negative prognostic factor in ovarian cancer, particularly in patients treated with TP regimen. Moreover, increased mRNA level of the BRIP1 is a negative prognostic factor in the PC-treated patients. Next, changes in the BRCA2 and BRIP1 genes are rare and together with other analyzed FA genes considered as homologous recombination deficiency may not affect the expression level of analyzed genes.
Collapse
Affiliation(s)
- Joanna Moes-Sosnowska
- a Department of Immunology , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Iwona K Rzepecka
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Joanna Chodzynska
- c Laboratory of Bioinformatics and Biostatistics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Agnieszka Dansonka-Mieszkowska
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Lukasz M Szafron
- a Department of Immunology , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Aneta Balabas
- d Department of Genetics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Renata Lotocka
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Piotr Sobiczewski
- e Department of Gynecologic Oncology , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Jolanta Kupryjanczyk
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| |
Collapse
|
16
|
Feng L, Jin F. Expression and prognostic significance of Fanconi anemia group D2 protein and breast cancer type 1 susceptibility protein in familial and sporadic breast cancer. Oncol Lett 2019; 17:3687-3700. [PMID: 30881493 PMCID: PMC6403512 DOI: 10.3892/ol.2019.10046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Fanconi anemia group D2 protein (FANCD2) and breast cancer type 1 susceptibility protein (BRCA1), within the FA/BRCA pathway, are involved in the regulation of DNA damage repair, which is associated with breast cancer (BC) progression. The present study aimed to investigate BRCA1 and FANCD2 expression in breast cancer, and to highlight the association with patient clinical characteristics and prognoses. The BRCA1 and FANCD2 proteins were detected by immunohistochemistry in 335 tissue samples obtained from patients with BC, including 141 patients with familial BC (FBC), 147 patients with sporadic breast cancer (SBC) and 47 patients with benign breast tumors. Western blotting was used to detect the FANCD2 ubiquitination level in 56 frozen specimens that were randomly selected from the SBC group. Protein expression of BRCA1 in the FBC group was positively associated with tumor size, lymphatic invasion, Tumor-Node-Metastasis (TNM) stage, estrogen receptor (ER) status and FANCD2 expression. Protein expression of FANCD2 in the SBC group was positively associated with tumor size, TNM stage, ER status and Ki-67 index. Survival analyses revealed that BRCA1 expression was associated with the decreased disease-free survival (DFS) rate of patients with FBC (versus no BRCA1 expression) and that FANCD2 was associated with decreased DFS of patients with SBC (versus no FANCD expression). Univariable and multivariable analyses demonstrated that BRCA1 expression may be an independent prognostic factor in the FBC group. In the SBC group, FANCD2 high expression and low ubiquitination levels were considered as independent prognostic factors. In conclusion, the present study suggested that BRCA1 and FANCD2 expression, and FANCD2 ubiquitination levels, may be considered of novel potential prognostic value in patients with BC.
Collapse
Affiliation(s)
- Liang Feng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
17
|
Induction of HRR genes and inhibition of DNMT1 is associated with anthracycline anti-tumor antibiotic-tolerant breast carcinoma cells. Mol Cell Biochem 2018; 453:163-178. [DOI: 10.1007/s11010-018-3442-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/30/2018] [Indexed: 12/30/2022]
|
18
|
Majidinia M, Yousefi B. DNA repair and damage pathways in breast cancer development and therapy. DNA Repair (Amst) 2017; 54:22-29. [DOI: 10.1016/j.dnarep.2017.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/22/2022]
|
19
|
Dasgupta H, Mukherjee N, Islam S, Bhattacharya R, Alam N, Roy A, Roychoudhury S, Biswas J, Panda CK. Frequent alterations of homologous recombination repair pathway in primary and chemotolerant breast carcinomas: clinical importance. Future Oncol 2017; 13:159-174. [PMID: 27646721 DOI: 10.2217/fon-2016-0289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: To understand the importance of homologous recombination repair pathway in development of breast carcinoma (BC), alterations of some key regulatory genes like BRCA1, BRCA2, FANCC and FANCD2 were analyzed in pretherapeutic/neoadjuvant chemotherapy (NACT)-treated BC samples. Materials & methods: Alterations (deletion/methylation/expression) of the genes were analyzed in 118 pretherapeutic and 41 NACT-treated BC samples. Results: High deletion/methylation (29–68%) and 64–78% overall alterations of the genes were found in the samples. Concordance was evident between alteration and protein expression of the genes. Estrogen/progesterone receptor-negative tumors showed significantly high alterations even in NACT-treated samples having low CD44 and proliferating cell nuclear antigen expression. Pretherapeutic patients with alterations showed poor prognosis. Conclusion: Alterations of homologous recombination repair pathway genes are needed for the development of BC.
Collapse
Affiliation(s)
- Hemantika Dasgupta
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata, West Bengal 700026, India
| | - Nupur Mukherjee
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata, West Bengal 700026, India
| | - Saimul Islam
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata, West Bengal 700026, India
| | - Rittwika Bhattacharya
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata, West Bengal 700026, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Anup Roy
- Department of Pathology, North Bengal Medical College & Hospital, West Bengal, India
| | - Susanta Roychoudhury
- Saroj Gupta Cancer Center & Research Institute, MG Road, Thakurpukur, Kolkata, West Bengal, India
| | - Jaydip Biswas
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata, West Bengal 700026, India
| |
Collapse
|
20
|
Wiegmans AP, Yap PY, Ward A, Lim YC, Khanna KK. Differences in Expression of Key DNA Damage Repair Genes after Epigenetic-Induced BRCAness Dictate Synthetic Lethality with PARP1 Inhibition. Mol Cancer Ther 2015; 14:2321-31. [PMID: 26294743 DOI: 10.1158/1535-7163.mct-15-0374] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/03/2015] [Indexed: 11/16/2022]
Abstract
The triple-negative breast cancer (TNBC) subtype represents a cancer that is highly aggressive with poor patient outcome. Current preclinical success has been gained through synthetic lethality, targeting genome instability with PARP inhibition in breast cancer cells that harbor silencing of the homologous recombination (HR) pathway. Histone deacetylase inhibitors (HDACi) are a class of drugs that mediate epigenetic changes in expression of HR pathway genes. Here, we compare the activity of the pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), the class I/IIa HDAC inhibitor valproic acid (VPA), and the HDAC1/2-specific inhibitor romidepsin (ROMI) for their capability to regulate DNA damage repair gene expression and in sensitizing TNBC to PARPi. We found that two of the HDACis tested, SAHA and ROMI, but not VPA, indeed inhibit HR repair and that RAD51, BARD1, and FANCD2 represent key proteins whose inhibition is required for HDACi-mediated therapy with PARP inhibition in TNBC. We also observed that restoration of BRCA1 function stabilizes the genome compared with mutant BRCA1 that results in enhanced polyploid population after combination treatment with HDACi and PARPi. Furthermore, we found that overexpression of the key HR protein RAD51 represents a mechanism for this resistance, promoting aberrant repair and the enhanced polyploidy observed. These findings highlight the key components of HR in guiding synthetic lethality with PARP inhibition and support the rationale for utilizing the novel combination of HDACi and PARPi against TNBC in the clinical setting.
Collapse
Affiliation(s)
- Adrian P Wiegmans
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| | - Pei-Yi Yap
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ambber Ward
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Yi Chieh Lim
- Translational Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| |
Collapse
|
21
|
Burdak-Rothkamm S, Rothkamm K, McClelland K, Al Rashid ST, Prise KM. BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells. Cancer Lett 2014; 356:454-61. [PMID: 25304378 DOI: 10.1016/j.canlet.2014.09.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022]
Abstract
Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation.
Collapse
Affiliation(s)
- Susanne Burdak-Rothkamm
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton/Didcot OX11 0RQ, UK
| | - Keeva McClelland
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Shahnaz T Al Rashid
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
22
|
Genetic variants in fanconi anemia pathway genes BRCA2 and FANCA predict melanoma survival. J Invest Dermatol 2014; 135:542-550. [PMID: 25243787 PMCID: PMC4289462 DOI: 10.1038/jid.2014.416] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/21/2014] [Accepted: 09/02/2014] [Indexed: 12/18/2022]
Abstract
Cutaneous melanoma (CM) is the most lethal skin cancer. The Fanconi Anemia (FA) pathway involved in DNA crosslinks repair may affect CM susceptibility and prognosis. Using data derived from published genome-wide association study, we comprehensively analyzed the associations of 2339 common single nucleotide polymorphisms (SNPs) in 14 autosomal FA genes with overall survival (OS) in 858 CM patients. By performing false-positive report probability corrections and stepwise Cox proportional hazards regression analyses, we identified significant associations between CM OS and four putatively functional SNPs: BRCA2 rs10492396 [AG vs. GG: adjusted hazard ratio (adjHR)=1.85, 95% confident interval (CI)=1.16-2.95, P=0.010], rs206118 (CC vs. TT+TC: adjHR=2.44, 95% CI=1.27-4.67, P=0.007), rs3752447 (CC vs. TT+TC: adjHR=2.10, 95% CI=1.38-3.18, P=0.0005), and FANCA rs62068372 (TT vs. CC+CT: adjHR=1.85, 95% CI=1.27-2.69, P=0.001). Moreover, patients with an increasing number of unfavorable genotypes (NUG) of these loci had markedly reduced OS and melanoma-specific survival (MSS). The final model incorporating with NUG, tumor stage and Breslow thickness showed an improved discriminatory ability to classify both 5-year OS and 5-year MSS. Additional investigations, preferably prospective studies, are needed to validate our findings.
Collapse
|
23
|
Caldon CE. Estrogen signaling and the DNA damage response in hormone dependent breast cancers. Front Oncol 2014; 4:106. [PMID: 24860786 PMCID: PMC4030134 DOI: 10.3389/fonc.2014.00106] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/28/2014] [Indexed: 12/21/2022] Open
Abstract
Estrogen is necessary for the normal growth and development of breast tissue, but high levels of estrogen are a major risk factor for breast cancer. One mechanism by which estrogen could contribute to breast cancer is via the induction of DNA damage. This perspective discusses the mechanisms by which estrogen alters the DNA damage response (DDR) and DNA repair through the regulation of key effector proteins including ATM, ATR, CHK1, BRCA1, and p53 and the feedback on estrogen receptor signaling from these proteins. We put forward the hypothesis that estrogen receptor signaling converges to suppress effective DNA repair and apoptosis in favor of proliferation. This is important in hormone-dependent breast cancer as it will affect processing of estrogen-induced DNA damage, as well as other genotoxic insults. DDR and DNA repair proteins are frequently mutated or altered in estrogen responsive breast cancer, which will further change the processing of DNA damage. Finally, the action of estrogen signaling on DNA damage is also relevant to the therapeutic setting as the suppression of a DDR by estrogen has the potential to alter the response of cancers to anti-hormone treatment or chemotherapy that induces DNA damage.
Collapse
Affiliation(s)
- C Elizabeth Caldon
- Genome and Replication Stability Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research , Sydney, NSW , Australia ; St Vincent's Clinical School, Faculty of Medicine, UNSW Australia , Sydney, NSW , Australia
| |
Collapse
|
24
|
Fagerholm R, Sprott K, Heikkinen T, Bartkova J, Heikkilä P, Aittomäki K, Bartek J, Weaver D, Blomqvist C, Nevanlinna H. Overabundant FANCD2, alone and combined with NQO1, is a sensitive marker of adverse prognosis in breast cancer. Ann Oncol 2013; 24:2780-5. [DOI: 10.1093/annonc/mdt290] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
25
|
Pickering A, Zhang J, Panneerselvam J, Fei P. Advances in the understanding of the Fanconi anemia tumor suppressor pathway. Cancer Biol Ther 2013; 14:1089-91. [PMID: 24025411 DOI: 10.4161/cbt.26380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Extremely high cancer incidence in Fanconi anemia (FA) patients has long suggested that the FA signaling pathway is a tumor suppressor pathway. Indeed, our recent findings, for the first time, indicate that the FA pathway plays a significant role in suppressing the development of non-FA human cancer. Also our studies on FA group D2 protein (FANCD2) have, among the first, documented the crosstalks between the FA and Rad6/Rad18 (HHR6) pathways upon DNA damage. In this review, we will discuss how our studies enhance the understanding of the FA tumor suppressor pathway.
Collapse
Affiliation(s)
- Anna Pickering
- University of Hawaii Cancer Center; University of Hawaii; Honolulu, HI USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester, MN USA
| | | | - Peiwen Fei
- University of Hawaii Cancer Center; University of Hawaii; Honolulu, HI USA
| |
Collapse
|
26
|
Chang H, Cui X, Ladd S, Ward BE, Quan S. Evaluation of Antibody Diluents for FANCD2 Immunohistochemistry with Breast Cancer Tissue. J Histotechnol 2013. [DOI: 10.1179/his.2010.33.4.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
27
|
Kavanagh JN, Redmond KM, Schettino G, Prise KM. DNA double strand break repair: a radiation perspective. Antioxid Redox Signal 2013; 18:2458-72. [PMID: 23311752 DOI: 10.1089/ars.2012.5151] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Ionizing radiation (IR) can induce a wide range of unique deoxyribonucleic acid (DNA) lesions due to the spatiotemporal correlation of the ionization produced. Of these, DNA double strand breaks (DSBs) play a key role. Complex mechanisms and sophisticated pathways are available within cells to restore the integrity and sequence of the damaged DNA molecules. RECENT ADVANCES Here we review the main aspects of the DNA DSB repair mechanisms with emphasis on the molecular pathways, radiation-induced lesions, and their significance for cellular processes. CRITICAL ISSUES Although the main characteristics and proteins involved in the two DNA DSB repair processes present in eukaryotic cells (homologous recombination and nonhomologous end-joining) are reasonably well established, there are still uncertainties regarding the primary sensing event and their dependency on the complexity, location, and time of the damage. Interactions and overlaps between the different pathways play a critical role in defining the repair efficiency and determining the cellular functional behavior due to unrepaired/miss-repaired DNA lesions. The repair pathways involved in repairing lesions induced by soluble factors released from directly irradiated cells may also differ from the established response mechanisms. FUTURE DIRECTIONS An improved understanding of the molecular pathways involved in sensing and repairing damaged DNA molecules and the role of DSBs is crucial for the development of novel classes of drugs to treat human diseases and to exploit characteristics of IR and alterations in tumor cells for successful radiotherapy applications.
Collapse
Affiliation(s)
- Joy N Kavanagh
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | | | | | | |
Collapse
|
28
|
Reduced FANCD2 influences spontaneous SCE and RAD51 foci formation in uveal melanoma and Fanconi anaemia. Oncogene 2013; 32:5338-46. [PMID: 23318456 PMCID: PMC3898318 DOI: 10.1038/onc.2012.627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 12/31/2022]
Abstract
Uveal melanoma (UM) is unique among cancers in displaying reduced endogenous levels of sister chromatid exchange (SCE). Here we demonstrate that FANCD2 expression is reduced in UM and that ectopic expression of FANCD2 increased SCE. Similarly, FANCD2-deficient fibroblasts (PD20) derived from Fanconi anaemia patients displayed reduced spontaneous SCE formation relative to their FANCD2-complemented counterparts, suggesting that this observation is not specific to UM. In addition, spontaneous RAD51 foci were reduced in UM and PD20 cells compared with FANCD2-proficient cells. This is consistent with a model where spontaneous SCEs are the end product of endogenous recombination events and implicates FANCD2 in the promotion of recombination-mediated repair of endogenous DNA damage and in SCE formation during normal DNA replication. In both UM and PD20 cells, low SCE was reversed by inhibiting DNA-PKcs (DNA-dependent protein kinase, catalytic subunit). Finally, we demonstrate that both PD20 and UM are sensitive to acetaldehyde, supporting a role for FANCD2 in repair of lesions induced by such endogenous metabolites. Together, these data suggest FANCD2 may promote spontaneous SCE by influencing which double-strand break repair pathway predominates during normal S-phase progression.
Collapse
|
29
|
Stecklein SR, Jensen RA. Identifying and exploiting defects in the Fanconi anemia/BRCA pathway in oncology. Transl Res 2012; 160:178-97. [PMID: 22683426 DOI: 10.1016/j.trsl.2012.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 01/07/2023]
Abstract
Defects in components of DNA repair pathways are responsible for numerous hereditary cancer syndromes and are also common in many sporadic malignancies. Inherited mutations in the breast cancer susceptibility genes BRCA1 and BRCA2 or components of the Fanconi anemia (FA) complex incite genomic instability and predispose to malignancy. The products of the BRCA and FA genes participate in a conserved DNA damage repair pathway that is responsible for repairing interstrand crosslinks and double-strand DNA breaks by homologous recombination. While the genetic instability resulting from FA/BRCA dysfunction contributes to cancer pathogenesis, deficiency of these genes also lends to therapeutic exploitation. Crosslinking agents and ionizing radiation induce damage in cancer cells that requires the FA/BRCA pathway to be resolved; thus cancers that are deficient in BRCA1, BRCA2, or any other component of the FA/BRCA pathway are hypersensitive to these agents. Moreover, emerging synthetic lethal strategies offer opportunities to selectively target cancer cells with defects in homologous recombination. Conversely, enhanced activity of the FA/BRCA pathway is responsible for acquired resistance to specific therapeutic agents, suggesting that both dysfunction and hyperfunction of the FA/BRCA repair machinery are rational targets for cancer therapy. Selection of specific cytotoxic agents based on repair capacity may improve responses and enable personalized cytotoxic chemotherapy. This article reviews the FA/BRCA pathway and current approaches to identify deficiencies within it, discusses synthetic lethality and enhanced repair capacity as causes of therapeutic hypersensitivity and resistance, respectively, and highlights recent studies that have linked FA/BRCA pathway function with therapeutic efficacy.
Collapse
Affiliation(s)
- Shane R Stecklein
- Department of Pathology and Laboratory Medicine and The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
30
|
de Oliveira MMC, de Oliveira SFV, Lima RS, de Andrade Urban C, Cavalli LR, de Souza Fonseca Ribeiro EM, Cavalli IJ. Differential loss of heterozygosity profile on chromosome 3p in ductal and lobular breast carcinomas. Hum Pathol 2012; 43:1661-7. [PMID: 22503535 DOI: 10.1016/j.humpath.2011.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 01/18/2023]
Abstract
The 2 main histologic types of infiltrating breast cancer, invasive lobular and invasive ductal carcinoma, are morphologically and clinically distinct. Studies revealed that different patterns of gene expression and loss of heterozygosity can also distinguish these 2 subtypes. A whole-genome study using single nucleotide polymorphism array found a significantly higher frequency of loss of heterozygosity on 3p in invasive ductal carcinoma when compared with invasive lobular carcinoma. In this study, we performed a loss of heterozygosity analysis of the 3p chromosome region in ductal and lobular breast tumors. Seven microsatellite markers were evaluated in a series of 136 sporadic breast cancer cases (118 invasive ductal carcinoma and 18 invasive lobular carcinoma) and correlated with clinical-histopathologic parameters from the patients. A significantly higher frequency of loss of heterozygosity was observed in invasive ductal carcinoma (65.3%) when compared with invasive lobular carcinoma (38.9%). When the markers were analyzed separately, loss of heterozygosity at 3 of them, D3S1307 in 3p26.3, D3S1286 in 3p24.3, and D3S1300 in 3p14.2, were significantly more frequent in ductal than in lobular tumors. D3S1307 marker showed the highest frequency of loss of heterozygosity in invasive ductal carcinoma (46.2%), and associations between loss of this marker and loss of estrogen and progesterone receptors were found in these samples. Our results confirm the observations that invasive ductal carcinoma has a higher frequency of loss of heterozygosity events across the 3p region than invasive lobular carcinoma and show that specific losses on 3p26.3, 3p24.3, and 3p14.2 regions are more frequent in ductal than in lobular tumors. We discuss our data in relation to the known tumor suppressor genes that are mapped at the 3p loci investigated and their present relevant roles in breast cancer.
Collapse
|
31
|
van der Groep P, van der Wall E, van Diest PJ. Pathology of hereditary breast cancer. Cell Oncol (Dordr) 2011; 34:71-88. [PMID: 21336636 PMCID: PMC3063560 DOI: 10.1007/s13402-011-0010-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2010] [Indexed: 12/11/2022] Open
Abstract
Background Hereditary breast cancer runs in families where several members in different generations are affected. Most of these breast cancers are caused by mutations in the high penetrance genes BRCA1 and BRCA2 accounting for about 5% of all breast cancers. Other genes that include CHEK2, PTEN, TP53, ATM, STK11/LKB1, CDH1, NBS1, RAD50, BRIP1 and PALB2 have been described to be high or moderate penetrance breast cancer susceptibility genes, all contributing to the hereditary breast cancer spectrum. However, in still a part of familial hereditary breast cancers no relationship to any of these breast cancer susceptibility genes can be found. Research on new susceptibility genes is therefore ongoing. Design In this review we will describe the function of the today known high or moderate penetrance breast cancer susceptibility genes and the consequences of their mutated status. Furthermore, we will focus on the histology, the immunophenotype and genotype of breast cancers caused by mutations in BRCA1 and BRCA2 genes and the other high or moderate penetrance breast cancer susceptibility genes. Finally, an overview of the clinical implications of hereditary breast cancer patients will be provided. Conclusion This information leads to a better understanding of the morphological, immunohistochemical and molecular characteristics of different types of hereditary breast cancers. Further, these characteristics offer clues for diagnosis and new therapeutic approaches.
Collapse
Affiliation(s)
- Petra van der Groep
- Department of Pathology, University Medical Center Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | | | | |
Collapse
|
32
|
Zhang B, Chen R, Lu J, Shi Q, Zhang X, Chen J. Expression of FANCD2 in sporadic breast cancer and clinicopathological analysis. ACTA ACUST UNITED AC 2010; 30:322-5. [PMID: 20556575 DOI: 10.1007/s11596-010-0350-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Indexed: 10/19/2022]
Abstract
FANCD2 is involved in DNA damage repair and maintenance of chromosome stability. The purpose of this study was to investigate the expression of FANCD2 in sporadic breast cancer tissues and its association with clinicopathological features. A total of 162 Chinese women with invasive breast carcinoma who had no family history in first-degree relatives and 12 normal breast tissues were examined. The expression of FANCD2 was detected by immunohistochemical staining based on a tissue microarray technique. SAS system was used to analyze the data. Twenty-one out of the 162 invasive breast cancers (13%) were negative for FANCD2. The mean percentage of FANCD2 positive cells was significantly lower in breast cancers than in controls (P<0.05). FANCD2 expression was significantly inversely associated with histological grade and TNM stage (P<0.05), but not with axillary lymph node status or other conventional prognostic markers such as ER, PR, Her-2 and PCNA (P>0.05). It was suggested that FANCD2 may play a critical role in breast carcinogenesis. It may become a valuable and independent marker for identifying women with sporadic breast cancer and evaluating the prognosis.
Collapse
Affiliation(s)
- Bo Zhang
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | | | | | | | | | | |
Collapse
|
33
|
Rudland PS, Platt-Higgins AM, Davies LM, de Silva Rudland S, Wilson JB, Aladwani A, Winstanley JHR, Barraclough DL, Barraclough R, West CR, Jones NJ. Significance of the Fanconi anemia FANCD2 protein in sporadic and metastatic human breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2935-47. [PMID: 20363922 DOI: 10.2353/ajpath.2010.090779] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
FANCD2, a pivotal protein in the Fanconi anemia and BRCA pathway/network, is monoubiquitylated in the nucleus in response to DNA damage. This study examines the subcellular location and relationship with prognostic factors and patient survival of FANCD2 in breast cancer. Antibodies to FANCD2 were used to immunocytochemically stain 16 benign and 20 malignant breast specimens as well as 314 primary breast carcinomas to assess its association with subcellular compartment and prognostic factors using Fisher's Exact test or with patient survival over 20 years using Wilcoxon-Gehan statistics. Immunoreactive FANCD2 was found in the nucleus and cytoplasm of all 16 benign tissues, but nuclear staining was lost from a significant 19/20 malignant carcinomas (P < 0.0001). Antibodies to FANCD2 stained the cytoplasm of 196 primary carcinomas, leaving 118 as negatively stained. Negative cytoplasmic staining was significantly associated with positive staining for the metastasis-inducing proteins S100A4, S100P, osteopontin, and AGR2 (P < or = 0.002). Survival of patients with FANCD2-negative carcinomas was significantly worse (P < 0.0001) than those with positively stained carcinomas, and only 4% were alive at the census date. Multivariate regression analysis identified negative staining for cytoplasmic FANCD2 as the most significant indicator of patient death (P = 0.001). Thus FANCD2's cytoplasmic loss in the primary carcinomas may allow the selection of cells overexpressing proteins that can induce metastases before surgery.
Collapse
Affiliation(s)
- Philip S Rudland
- Cancer and Polio Research Fund Laboratories, School of Biological Sciences, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 3BX, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ozawa H, Iwatsuki M, Mimori K, Sato T, Johansson F, Toh H, Watanabe M, Mori M. FANCD2 mRNA overexpression is a bona fide indicator of lymph node metastasis in human colorectal cancer. Ann Surg Oncol 2010; 17:2341-8. [PMID: 20339950 DOI: 10.1245/s10434-010-1002-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Indexed: 01/19/2023]
Abstract
BACKGROUND Lymph node metastasis is widely accepted as one of the most important determinants of prognosis in colorectal cancer (CRC) patients. Therefore, there is an urgent need to identify molecular markers that can be used to predict lymph node metastasis. MATERIALS AND METHODS Candidate genes were found using LMD and cDNA microarrays in a large-scale study of CRC, followed by Penalized Canonical Correlation Analysis (PCCA). We focused on the Fanconi anemia, complementation group D2 (FANCD2) gene and evaluated FANCD2 mRNA expression in 133 CRC cases to determine the clinicopathological significance of FANCD2 expression. RESULTS The mean level of FANCD2 mRNA expression in tumor tissue specimens was significantly higher than in nontumor tissue. FANCD2 expression was found to be a significant factor affecting lymph node metastasis: the high FANCD2 expression group had a significantly poorer prognosis than the low expression group. CONCLUSIONS This study suggests that PCCA can be used to identify genes related to clinicopathological features. Furthermore, high FANCD2 expression was a significant independent factor for lymph node metastasis.
Collapse
Affiliation(s)
- Heita Ozawa
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Landais I, Sobeck A, Stone S, LaChapelle A, Hoatlin ME. A novel cell-free screen identifies a potent inhibitor of the Fanconi anemia pathway. Int J Cancer 2009; 124:783-92. [DOI: 10.1002/ijc.24039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Tan DSP, Marchiò C, Reis-Filho JS. Hereditary breast cancer: from molecular pathology to tailored therapies. J Clin Pathol 2008; 61:1073-82. [PMID: 18682420 DOI: 10.1136/jcp.2008.057950] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hereditary breast cancer accounts for up to 5-10% of all breast carcinomas. Recent studies have demonstrated that mutations in two high-penetrance genes, namely BRCA1 and BRCA2, are responsible for about 16% of the familial risk of breast cancer. Even though subsequent studies have failed to find another high-penetrance breast cancer susceptibility gene, several genes that confer a moderate to low risk of breast cancer development have been identified; moreover, hereditary breast cancer can be part of multiple cancer syndromes. In this review we will focus on the hereditary breast carcinomas caused by mutations in BRCA1, BRCA2, Fanconi anaemia (FANC) genes, CHK2 and ATM tumour suppressor genes. We describe the hallmark histological features of these carcinomas compared with non-hereditary breast cancers and show how an accurate histopathological diagnosis may help improve the identification of patients to be screened for mutations. Finally, novel therapeutic approaches to treat patients with BRCA1 and BRCA2 germ line mutations, including cross-linking agents and PARP inhibitors, are discussed.
Collapse
Affiliation(s)
- D S P Tan
- Molecular Pathology Laboratory, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK
| | | | | |
Collapse
|