1
|
Kontomanolis E, Tsigalou C, Mitrakas A, Gkegka AG, Efraimidou E, Karamanidis D, Nikoletos K, Panagiotis T, Nikoletos N, Giatromanolaki A, Koukourakis MI. Cytokine Plasma Levels in Breast Cancer Patients, Before and After Surgery. J Interferon Cytokine Res 2024; 44:135-142. [PMID: 38386538 DOI: 10.1089/jir.2023.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Studying the levels of cytokines in the plasma of patients could be valuable in guiding immunotherapy policies. We assessed the plasma levels of 4 major cytokines [interferon (IFN)-β, interleukin-2 (IL-2), tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β)] collected from 19 patients with ductal breast cancer (BCa), before surgery (BS) and 5 days after surgery (AS). The ratio AS/BS was also calculated and correlated with histopathological variables and tumor-infiltrating lymphocyte (TIL) density. The IFN-β and TNF-α levels were significantly higher in BCa patients, BS and AS, than healthy controls (P < 0.02). High IL-2 levels BS were linked with node involvement (P = 0.02), and marginally with HER2 expression (P = 0.08), while high TNF-α levels were linked with high PgR expression (P = 0.02). Increasing IFN-β, IL-2, and TNF-α levels were noted AS, which was more evident in patients with larger tumors. The TGF-β levels were significantly lower in BCa patients (P < 0.007). Linear regression analysis showed a direct association of IFN-β levels AS (P = 0.02, r = 0.52) and of TNF-α AS/BS-ratio (P = 0.001, r = 0.72) with TIL-density. It is suggested that although effector immune response is evident in the majority of early stage BCa patients, removal of the primary tumor further unblocks such responses.
Collapse
Affiliation(s)
- Emmanuel Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Tsigalou
- Department of Microbiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Achilleas Mitrakas
- Department of Radiotherapy and Oncology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anastasia G Gkegka
- Department of Pathology, and Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleni Efraimidou
- Department of Surgery, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Konstantinos Nikoletos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Tsikouras Panagiotis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos Nikoletos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Michael I Koukourakis
- Department of Radiotherapy and Oncology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
2
|
Ma L, Gonzalez-Junca A, Chou W, Barcellos-Hoff MH. Monitoring TGFβ signaling in irradiated tumors. Methods Cell Biol 2023; 180:49-67. [PMID: 37890932 DOI: 10.1016/bs.mcb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Transforming growth factor β (TGFβ) is exquisitely regulated under physiological conditions but its activity is highly dysregulated in cancer. All cells make TGFβ and have receptors for the ligand, which is sequestered in the extracellular matrix in a latent form. Ionizing radiation elicits rapid release of TGFβ from these stores, so-called activation, over a wide range of doses and exposures, including low dose (<1Gy) whole-body irradiation, creating an extraordinarily potent signal in the irradiated tissue or tumor. Hence, accurate evaluation of TGFβ activity is complicated because of its ubiquitous distribution as a latent complex. Here we describe conditions for assays that reveal TGFβ activity in situ using either tissue preparations or functional imaging.
Collapse
Affiliation(s)
- Lin Ma
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Alba Gonzalez-Junca
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - William Chou
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
3
|
Shukla N, Naik A, Moryani K, Soni M, Shah J, Dave H. TGF-β at the crossroads of multiple prognosis in breast cancer, and beyond. Life Sci 2022; 310:121011. [PMID: 36179816 DOI: 10.1016/j.lfs.2022.121011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 10/25/2022]
Abstract
Transforming growth factor β (TGF-β), a pluripotent cytokine and a multifunctional growth factor has a crucial role in varied biological mechanisms like invasion, migration, epithelial-mesenchymal transition, apoptosis, wound healing, and immunosuppression. Moreover, it also has an imperative role both in normal mammary gland development as well as breast carcinogenesis. TGF-β has shown to have a paradoxical role in breast carcinogenesis, by transitioning from a growth inhibitor to a growth promoter with the disease advancement. The inter-communication and crosstalk of TGF-β with different signaling pathways has strengthened the likelihood to explore it as a comprehensive biomarker. In the last two decades, TGF-β has been studied extensively and has been found to be a promising biomarker for early detection, disease monitoring, treatment selection, and tumor progression making it beneficial for disease management. In this review, we focus on the signaling pathways and biological activities of the TGF-β family in breast cancer pathogenesis and its role as a circulatory and independent biomarker for breast cancer progression and metastasis. Moreover, this review highlights TGF-β as a drug target, and the underlying mechanisms through which it is involved in tumorigenesis that will aid in the development of varied therapies targeting the different stages of breast cancer.
Collapse
Affiliation(s)
- Nirali Shukla
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ankit Naik
- Ahmedabad University, Ahmedabad, Gujarat 390009, India
| | - Kamlesh Moryani
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Molisha Soni
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Heena Dave
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
4
|
Lee HM, Lee HJ, Chang JE. Inflammatory Cytokine: An Attractive Target for Cancer Treatment. Biomedicines 2022; 10:biomedicines10092116. [PMID: 36140220 PMCID: PMC9495935 DOI: 10.3390/biomedicines10092116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
The relationship between inflammation and cancer has attracted attention for a long time. The inflammatory tumor microenvironment consists of inflammatory cells, chemokines, cytokines, and signaling pathways. Among them, inflammatory cytokines play an especially pivotal role in cancer development, prognosis, and treatment. Interleukins, tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interferons, and vascular endothelial growth factor (VEGF) are the representative inflammatory cytokines in various cancers, which may promote or inhibit cancer progression. The pro-inflammatory cytokines are associated with advanced cancer stages, resistance to immunotherapy, and poor prognoses, such as in objective response and disease control rates, and progression-free and overall survival. In this review, we selected colorectal, pancreatic, breast, gastric, lung, and prostate cancers, which are well-reported for an association between cancer and inflammatory cytokines. The related cytokines and their effects on each cancer’s development and prognosis were summarized. In addition, the treatment strategies targeting inflammatory cytokines in each carcinoma were also described here. By understanding the biological roles of cancer-related inflammatory cytokines, we may modulate the inflammatory tumor microenvironment for potential cancer treatment.
Collapse
|
5
|
Slattery K, Woods E, Zaiatz-Bittencourt V, Marks S, Chew S, Conroy M, Goggin C, MacEochagain C, Kennedy J, Lucas S, Finlay DK, Gardiner CM. TGFβ drives NK cell metabolic dysfunction in human metastatic breast cancer. J Immunother Cancer 2021; 9:jitc-2020-002044. [PMID: 33568351 PMCID: PMC7878131 DOI: 10.1136/jitc-2020-002044] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Background Natural killer (NK) cells provide important immune protection from cancer and are a key requirement for particular immunotherapies. There is accumulating evidence that NK cells become dysfunctional during cancer. Overcoming NK cell exhaustion would be an important step to allow them to function optimally in a range of NK cell therapies, including those that depend on autologos circulating NK cells. We have previously demonstrated that NK cells undergo a normal metabolic reprogramming in response to cytokine activation and that this is required for optimal function. The objective of this work was to investigate if cellular metabolism of circulating NK cells is dysregulated in patients with metastatic breast cancer and if so, to gain insights into potential mechanisms underpinning this. Such discoveries would provide important insights into how to unleash the full activity of NK cells for maximum immunotherapy output. Methods Single-cell analysis, metabolic flux and confocal analysis of NK cells from patients with metastatic breast cancer and healthy controls Results In addition to reduced interferon-γ production and cytotoxicity, peripheral blood NK cells from patients had clear metabolic deficits including reduced glycolysis and oxidative phosphorylation. There were also distinct morphologically alterations in the mitochondria with increased mitochondrial fragmentation observed. Transforminggrowth factor-β (TGFβ) was identified as a key driver of this phenotype as blocking its activity reversed many metabolic and functional readouts. Expression of glycoprotein-A repetitions predominant (GARP) and latency associated peptide (LAP), which are involved with a novel TGFβ processing pathway, was increased on NK cells from some patients. Blocking the GARP–TGFβ axis recapitulated the effects of TGFβ neutralization, highlighting GARP as a novel NK cell immunotherapy target for the first time. Conclusions TGFβ contributes to metabolic dysfunction of circulating NK cells in patients with metastatic breast cancer. Blocking TGFβ and/or GARP can restore NK cell metabolism and function and is an important target for improving NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Karen Slattery
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Elena Woods
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | - Sam Marks
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | - Sonya Chew
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | - Michael Conroy
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | | | | | - John Kennedy
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | - Sophie Lucas
- Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Kim HA, Lee J. Hispidulin modulates epithelial-mesenchymal transition in breast cancer cells. Oncol Lett 2021; 21:155. [PMID: 33552273 PMCID: PMC7798102 DOI: 10.3892/ol.2020.12416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer worldwide. Despite the use of chemotherapeutic drugs, drug resistance has been observed in numerous patients with breast cancer. Epithelial-mesenchymal transition (EMT) is an important initiation step in the process of metastasis, whereby cancer cells move away from the original tumor site. Therefore, the discovery of new substances that suppress EMT is a promising avenue for cancer treatment. The present study investigated the effect of hispidulin, a polyphenolic flavonoid, on EMT in human breast cancer cells in vitro (MCF-7 and HCC38). The EMT-associated mRNA and protein expression levels were measured using reverse transcription-quantitative PCR or western blot analysis. Hispidulin treatment increased the expression levels of EMT-associated epithelial markers and decreased the expression levels of mesenchymal markers in both cells. Transforming growth factor-β1 (TGF-β1) treatment increased breast cancer cell viability (assessed via MTS assay) and EMT induction. However, hispidulin and TGF-β1 co-treatment increased the expression levels of E-cadherin and occludin, while downregulating vimentin expression. Additionally, hispidulin treatment inhibited TGF-β1-induced Smad2/3 signaling and cell migration in both breast cancer cell lines. Overall, the current findings suggested that hispidulin may inhibit EMT and cell migration by suppressing the Smad2/3 signaling pathway in breast cancer cells.
Collapse
Affiliation(s)
- Hyun A. Kim
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Republic of Korea
| | - Joomin Lee
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
7
|
Stockhammer P, Ploenes T, Theegarten D, Schuler M, Maier S, Aigner C, Hegedus B. Detection of TGF-β in pleural effusions for diagnosis and prognostic stratification of malignant pleural mesothelioma. Lung Cancer 2019; 139:124-132. [PMID: 31778960 DOI: 10.1016/j.lungcan.2019.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Malignant pleural mesothelioma (MPM) is an aggressive malignancy with dismal prognosis but variable course of disease. To support diagnosis and to risk stratify patients, more reliable biomarkers are warranted. Emerging evidence underlines a functional role of transforming growth factor-beta (TGF-β) in MPM tumorigenesis though its utility as a clinical biomarker remains unexplored. MATERIALS AND METHODS Corresponding pleural effusions and serum samples taken at primary diagnosis were analyzed for TGF-β by ELISA, and for mesothelin (SMRP) by chemiluminescence enzyme immunoassay. Tumor load was quantified in MPM patients by volumetric analysis of chest CT scans. All findings were correlated with clinicopathological characteristics. RESULTS In total 48 MPM patients, 24 patients with non-malignant pleural disease (NMPD) and 30 patients with stage IV lung cancer were enrolled in this study. Pleural effusions from MPM patients had significantly higher TGF-β levels than from NMPD or lung cancer patients (p < 0.0001; AUC for MPM vs NMPD: 0.78, p = 0.0001). Both epithelioid and non-epithelioid MPM were associated with higher TGF-β levels (epithelioid: p < 0.05; non-epithelioid: p < 0.0001) and levels of TGF-β correlated with disease stage (p = 0.003) and with tumor volume (p = 0.002). Interestingly, high TGF-β levels in pleural effusion, but not in serum, was significantly associated with inferior overall survival (TGF-beta ≥14.36 ng/mL: HR 3.45, p = 0.0001). This correlation was confirmed by multivariate analysis. In contrast, effusion SMRP levels were exclusively high in epithelioid MPM, negatively correlated with effusion TGF-β levels and did not provide prognostic information. CONCLUSION TGF-β levels determined in pleural effusion may be a promising biomarker for diagnosis and prognostic stratification of MPM.
Collapse
Affiliation(s)
- Paul Stockhammer
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany; Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Till Ploenes
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany
| | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122, Essen, Germany
| | - Sandra Maier
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122, Essen, Germany
| | - Balazs Hegedus
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany.
| |
Collapse
|
8
|
Flanders KC, Yang YA, Herrmann M, Chen J, Mendoza N, Mirza AM, Wakefield LM. Quantitation of TGF-β proteins in mouse tissues shows reciprocal changes in TGF-β1 and TGF-β3 in normal vs neoplastic mammary epithelium. Oncotarget 2018; 7:38164-38179. [PMID: 27203217 PMCID: PMC5122380 DOI: 10.18632/oncotarget.9416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-βs (TGF-βs) regulate tissue homeostasis, and their expression is perturbed in many diseases. The three isoforms (TGF-β1, -β2, and -β3) have similar bioactivities in vitro but show distinct activities in vivo. Little quantitative information exists for expression of TGF-β isoform proteins in physiology or disease. We developed an optimized method to quantitate protein levels of the three isoforms, using a Luminex® xMAP®-based multianalyte assay following acid-ethanol extraction of tissues. Analysis of multiple tissues and plasma from four strains of adult mice showed that TGF-β1 is the predominant isoform with TGF-β2 being ~10-fold lower. There were no sex-specific differences in isoform expression, but some tissues showed inter-strain variation, particularly for TGF-β2. The only adult tissue expressing appreciable TGF-β3 was the mammary gland, where its levels were comparable to TGF-β1. In situ hybridization showed the luminal epithelium as the major source of all TGF-β isoforms in the normal mammary gland. TGF-β1 protein was 3-8-fold higher in three murine mammary tumor models than in normal mammary gland, while TGF-β3 protein was 2-3-fold lower in tumors than normal tissue, suggesting reciprocal regulation of these isoforms in mammary tumorigenesis.
Collapse
Affiliation(s)
- Kathleen C Flanders
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Yu-An Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Michelle Herrmann
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - JinQiu Chen
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nerissa Mendoza
- XOMA Corporation, Berkeley, California, United States of America
| | - Amer M Mirza
- XOMA Corporation, Berkeley, California, United States of America
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
9
|
Yingling JM, McMillen WT, Yan L, Huang H, Sawyer JS, Graff J, Clawson DK, Britt KS, Anderson BD, Beight DW, Desaiah D, Lahn MM, Benhadji KA, Lallena MJ, Holmgaard RB, Xu X, Zhang F, Manro JR, Iversen PW, Iyer CV, Brekken RA, Kalos MD, Driscoll KE. Preclinical assessment of galunisertib (LY2157299 monohydrate), a first-in-class transforming growth factor-β receptor type I inhibitor. Oncotarget 2018; 9:6659-6677. [PMID: 29467918 PMCID: PMC5805504 DOI: 10.18632/oncotarget.23795] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/21/2017] [Indexed: 01/29/2023] Open
Abstract
Transforming growth factor-β (TGFβ) is an important driver of tumor growth via intrinsic and extrinsic mechanisms, and is therefore an attractive target for developing cancer therapeutics. Using preclinical models, we characterized the anti-tumor activity of a small molecule inhibitor of TGFβ receptor I (TGFβRI), galunisertib (LY2157299 monohydrate). Galunisertib demonstrated potent and selective inhibition of TGFβRI with corresponding inhibition of downstream signaling via inhibition of SMAD phosphorylation (pSMAD). Galunisertib also inhibited TGFβ-induced pSMAD in vivo, which enabled a pharmacokinetic/pharmacodynamic profile in Calu6 and EMT6-LM2 tumors. Galunisertib demonstrated anti-tumor activity including inhibition of tumor cell migration and mesenchymal phenotype, reversal of TGFβ-mediated immune-suppression, and tumor growth delay. A concentration-effect relationship was established with a dosing schedule to achieve the optimal level of target modulation. Finally, a rat model demonstrated a correlation between galunisertib-dependent inhibition of pSMAD in tumor tissues and in PBMCs, supporting the use of PBMCs for assessing pharmacodynamic effects. Galunisertib has been tested in several clinical studies with evidence of anti-tumor activity observed in subsets of patients. Here, we demonstrate that galunisertib inhibits a number of TGFβ-dependent functions leading to anti-tumor activity. The enhanced understanding of galunisertib provides rationale for further informed clinical development of TGFβ pathway inhibitors.
Collapse
Affiliation(s)
| | - William T. McMillen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Lei Yan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Huocong Huang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J. Scott Sawyer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Jeremy Graff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - David K. Clawson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Karen S. Britt
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Bryan D. Anderson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Douglas W. Beight
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Durisala Desaiah
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Michael M. Lahn
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Karim A. Benhadji
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Maria J. Lallena
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Rikke B. Holmgaard
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Xiaohong Xu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Faming Zhang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Jason R. Manro
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Philip W. Iversen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Chandrasekar V. Iyer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Rolf A. Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael D. Kalos
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| | - Kyla E. Driscoll
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN and New York, NY, USA
| |
Collapse
|
10
|
Prognostic utility of circulating transforming growth factor beta 1 in breast cancer patients. Int J Biol Markers 2018; 27:53-9. [DOI: 10.5301/jbm.2011.8736] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2011] [Indexed: 11/20/2022]
Abstract
Transforming growth factor betas (TGF-βs) are multifunctional cytokines with a biphasic role in breast tumorigenesis, acting as tumor suppressors at early stages while stimulating tumor progression at later stages (TGF-β switch). Among the 3 human isoforms, TGF-β1 is known to be overexpressed in several tumor types including breast tumors. TGF-β signaling and “crosstalk” in the tumor microenvironment presents a unique challenge and an opportunity to develop novel therapies. We assessed circulating TGF-β1 levels by ELISA in blood samples from 117 previously untreated breast cancer patients in this prospective study to explore the TGF-β switch at the forefront. The levels were correlated with clinicopathological prognosticators like age, menopausal status, nodal status, histological type, histological grade, necrosis, stromal involvement, and survival. Higher mean preoperative serum TGF-β1 was observed in early-stage patients than controls (p=0.05) as revealed by receiver operating characteristic (ROC) analysis. Elevation of TGF-β1 was evident in patients with advanced-stage breast cancer compared with those having early-stage disease (p=0.0001). Prognosticators of an aggressive phenotype were associated with higher TGF-β1 levels, and higher levels thus announced the likelihood of relapse, marking the role of TGF-β1 as a tumor promoter and evidencing the existence of a TGF-β switch. Moreover, higher levels of TGF-β1 shortened the overall survival in breast cancer patients (p=0.010). The results indicate that circulating TGF-β1 may be used as a predictive and prognostic marker in breast carcinoma.
Collapse
|
11
|
Xue M, Liang H, Tang Q, Xue C, He X, Zhang L, Zhang Z, Liang Z, Bian K, Zhang L, Li Z. The Protective and Immunomodulatory Effects of Fucoidan Against 7,12-Dimethyl benz[a]anthracene-Induced Experimental Mammary Carcinogenesis Through the PD1/PDL1 Signaling Pathway in Rats. Nutr Cancer 2017; 69:1234-1244. [PMID: 29043842 DOI: 10.1080/01635581.2017.1362446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fucoidan is a sulfated polysaccharide that is extracted from brown algae seaweed. This study was designed to evaluate the protective and immunomodulatory effects of dietary fucoidan on 7,12-dimethyl benz[a]anthracene (DMBA)-induced experimental mammary carcinogenesis in rats. Sixty Sprague-Dawley rats were randomly assigned to four equal groups: the control group (control group), the cancer model group (model group), and the F1 and F2 groups, which were fed fucoidan at concentrations of 200 and 400 mg/kg·body weight, respectively. We found that fucoidan treatment decreased the tumor incidence and mean tumor weight and prolonged the tumor latency. Flow cytometric analyses revealed that the number of blood natural killer cells was higher after fucoidan treatment and that the proportions of CD4 and CD8 T cells were also increased. The serum levels of interleukin (IL)-6, IL-12p40, and interferon (IFN)-γ were higher in the rats treated with fucoidan compared to those of model rats. Moreover, the percentage of CD3+ Foxp3+ regulatory T cells in the blood and the levels of IL-10 and transforming growth factor β in the serum were lower in the rats treated with fucoidan. Furthermore, fucoidan treatment decreased the expression of Foxp3 and programmed cell death 1 ligand 1 (PDL1) in tumor tissues. The levels of p-phosphatidyl inositol kinase 3 and p-AKT in tumor tissues were also lower than those of model rats. These results suggest that a fucoidan-supplemented diet can inhibit DMBA-induced tumors in rats. This study provides experimental evidence toward elucidating the immune enhancement induced by fucoidan through the programmed cell death 1/PDL1 signaling pathway. The immunomodulatory effect is one of the possible mechanisms of the protective effect of fucoidan against mammary carcinogenesis.
Collapse
Affiliation(s)
- Meilan Xue
- a Qingdao University of Medicine , Qingdao , PR China
| | - Hui Liang
- a Qingdao University of Medicine , Qingdao , PR China
| | - Qingjuan Tang
- b College of Food Science and Engineering, Ocean University of China , Qingdao , PR China
| | - Chuanxing Xue
- c Qingdao Haixi City Development Ltd , Qingdao , PR China
| | - Xinjia He
- d Oncology Department , The Affiliated Hospital of Qingdao University , Qingdao , PR China
| | - Li Zhang
- a Qingdao University of Medicine , Qingdao , PR China
| | - Zheng Zhang
- a Qingdao University of Medicine , Qingdao , PR China
| | | | - Kang Bian
- a Qingdao University of Medicine , Qingdao , PR China
| | - Lichen Zhang
- a Qingdao University of Medicine , Qingdao , PR China
| | - Zhuxin Li
- a Qingdao University of Medicine , Qingdao , PR China
| |
Collapse
|
12
|
Zhou J, You W, Sun G, Li Y, Chen B, Ai J, Jiang H. The Marine-Derived Oligosaccharide Sulfate MS80, a Novel Transforming Growth Factor β1 Inhibitor, Reverses Epithelial Mesenchymal Transition Induced by Transforming Growth Factor-β1 and Suppresses Tumor Metastasis. J Pharmacol Exp Ther 2016; 359:54-61. [PMID: 27432893 DOI: 10.1124/jpet.116.234799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022] Open
Abstract
Metastasis accounts for the majority of cancer-related deaths. Transforming growth factor β (TGF-β) is believed to promote late-stage cancer progression and metastasis by inducing epithelial-mesenchymal transition (EMT). We previously reported that MS80, a novel oligosaccharide sulfate, inhibits TGF-β1-induced pulmonary fibrosis by binding TGF-β1. In our study MS80 effectively inhibited TGF-β/Smad signaling in lung cancer cells, breast cancer cells, and model cell lines. In addition, MS80 inhibited TGF-β1-induced EMT, motility, and invasion in vitro. Moreover, MS80 significantly inhibited lung metastasis in orthotopic 4T1 xenografts. Notably, the MS80 treatment significantly increased the infiltration of CD8(+) T cells and decreased the infiltration of regulatory T cells in primary tumors and spleens in mice bearing 4T1 xenografts. Therefore, MS80 is a novel and promising candidate for treating metastatic malignancies by targeting TGF-β1-induced EMT and mediating immunosuppression.
Collapse
Affiliation(s)
- Ji Zhou
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (J.Z., G.S., Y.L., J.A.), and Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University (W.Y., B.C., H.J.), Shanghai, People's Republic of China
| | - Wenjie You
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (J.Z., G.S., Y.L., J.A.), and Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University (W.Y., B.C., H.J.), Shanghai, People's Republic of China
| | - Guangqiang Sun
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (J.Z., G.S., Y.L., J.A.), and Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University (W.Y., B.C., H.J.), Shanghai, People's Republic of China
| | - Yixuan Li
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (J.Z., G.S., Y.L., J.A.), and Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University (W.Y., B.C., H.J.), Shanghai, People's Republic of China
| | - Bi Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (J.Z., G.S., Y.L., J.A.), and Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University (W.Y., B.C., H.J.), Shanghai, People's Republic of China
| | - Jing Ai
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (J.Z., G.S., Y.L., J.A.), and Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University (W.Y., B.C., H.J.), Shanghai, People's Republic of China
| | - Handong Jiang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (J.Z., G.S., Y.L., J.A.), and Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University (W.Y., B.C., H.J.), Shanghai, People's Republic of China
| |
Collapse
|
13
|
Li NS, Zou JR, Lin H, Ke R, He XL, Xiao L, Huang D, Luo L, Lv N, Luo Z. LKB1/AMPK inhibits TGF-β1 production and the TGF-β signaling pathway in breast cancer cells. Tumour Biol 2015; 37:8249-58. [PMID: 26718214 PMCID: PMC4875963 DOI: 10.1007/s13277-015-4639-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/10/2015] [Indexed: 12/30/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) acts as a fuel gauge that maintains energy homeostasis in both normal and cancerous cells, and has emerged as a tumor suppressor. The present study aims to delineate the functional relationship between AMPK and transforming growth factor beta (TGF-β). Our results showed that expression of liver kinase B1 (LKB1), an upstream kinase of AMPK, impeded TGF-β-induced Smad phosphorylation and their transcriptional activity in breast cancer cells, whereas knockdown of LKB1 or AMPKα1 subunit by short hairpin RNA (shRNA) enhanced the effect of TGF-β. Furthermore, AMPK activation reduced the promoter activity of TGF-β1. In accordance, type 2 diabetic patients taking metformin displayed a trend of reduction of serum TGF-β1, as compared with those without metformin. A significant reduction of serum TGF-β1 was found in mice after treatment with metformin. These results suggest that AMPK inhibits the transcription of TGF-β1, leading to reduction of its concentration in serum. Finally, metformin suppressed epithelial-to-mesenchymal transition of mammary epithelial cells. Taken together, our study demonstrates that AMPK exerts multiple actions on TGF-β signaling and supports that AMPK can serve as a therapeutic drug target for breast cancer.
Collapse
Affiliation(s)
- Nian-Shuang Li
- Research Institute of Digestive Diseases and Department of Gastroenterology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Graduate Program of Basic Medical Sciences, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Jun-Rong Zou
- Research Institute of Digestive Diseases and Department of Gastroenterology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Lin
- Graduate Program of Basic Medical Sciences, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Rong Ke
- Graduate Program of Basic Medical Sciences, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Xiao-Ling He
- Graduate Program of Basic Medical Sciences, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Lu Xiao
- Graduate Program of Basic Medical Sciences, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Deqiang Huang
- Research Institute of Digestive Diseases and Department of Gastroenterology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Lingyu Luo
- Research Institute of Digestive Diseases and Department of Gastroenterology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Nonghua Lv
- Research Institute of Digestive Diseases and Department of Gastroenterology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.
| | - Zhijun Luo
- Graduate Program of Basic Medical Sciences, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China.
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
| |
Collapse
|
14
|
Chen C, Zhao KN, Masci PP, Lakhani SR, Antonsson A, Simpson PT, Vitetta L. TGFβ isoforms and receptors mRNA expression in breast tumours: prognostic value and clinical implications. BMC Cancer 2015; 15:1010. [PMID: 26703884 PMCID: PMC4690401 DOI: 10.1186/s12885-015-1993-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 12/10/2015] [Indexed: 02/03/2023] Open
Abstract
Background Transforming growth factor beta (TGFβ) signalling is involved in both tumour suppression and tumour progression. The mRNA expression levels of the TGFβ isoforms and receptors in breast tumours may have prognostic value and clinical implications. Methods The mRNA levels of TGFB1, TGFB2, TGFB3, TGFBR1 and TGFBR2 were analysed in primary breast tumours and adjacent normal breast tissues, and the associations with tumour characteristics and patients’ overall and relapse-free survival were evaluated, using the public gene expression microarray data from The Cancer Genome Atlas (n = 520) and the Gene Expression Omnibus (four datasets) and our quantitative real-time PCR validation data (n = 71). Results Significantly higher TGFB1 and TGFB3 mRNA levels and lower TGFBR2 mRNA levels were observed in primary tumours compared with their paired normal tissues. TGFB1 mRNA expression was seemly lower in triple-negative tumours and in tumours from lymph node-negative patients. TGFB3 mRNA expression was significantly lower in estrogen receptor-negative/progesterone receptor-negative/Basal-like/Grade 3 tumours. High TGFB2, TGFB3 and TGFBR2 mRNA levels in tumours were generally associated with better prognosis for patients, especially those diagnosed with lymph node-negative diseases. High TGFBR1 mRNA levels in tumours were associated with poorer clinical outcomes for patients diagnosed with small (diameter ≤2 cm) tumours. Conclusions The results indicate a reduced responsiveness of tumour cells to TGFβ, a preferential up-regulation of TGFB1 in malignant tumours and a preferential up-regulation of TGFB3 in premalignant tumours. The results may not only provide prognostic value for patients but also assist in classifying tumours according to their potential responses to TGFβ and selecting patients for TGFβ signalling pathway targeted therapies.
Collapse
Affiliation(s)
- Chenfeng Chen
- The University of Queensland, School of Medicine, Level 5, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia.
| | - Kong-Nan Zhao
- The University of Queensland, School of Medicine, Level 5, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia.
| | - Paul P Masci
- The University of Queensland, School of Medicine, Level 5, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia.
| | - Sunil R Lakhani
- The University of Queensland, School of Medicine, Level 5, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia. .,The University of Queensland, UQ Centre for Clinical Research, Brisbane, Australia. .,Pathology Queensland, The Royal Brisbane & Women's Hospital, Brisbane, Australia.
| | | | - Peter T Simpson
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Australia.
| | - Luis Vitetta
- The University of Queensland, School of Medicine, Level 5, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia. .,Medlab Clinical, Sydney, Australia. .,The University of Sydney, Sydney Medical School, Sydney, Australia.
| |
Collapse
|
15
|
Bahhnassy A, Mohanad M, Shaarawy S, Ismail MF, El-Bastawisy A, Ashmawy AM, Zekri AR. Transforming growth factor-β, insulin-like growth factor I/insulin-like growth factor I receptor and vascular endothelial growth factor-A: prognostic and predictive markers in triple-negative and non-triple-negative breast cancer. Mol Med Rep 2015; 12:851-64. [PMID: 25824321 PMCID: PMC4438878 DOI: 10.3892/mmr.2015.3560] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/15/2015] [Indexed: 12/20/2022] Open
Abstract
In the current study, the prognostic and predictive values of serum transforming growth factor-β1 (TGF-β1), insulin-like growth factor I (IGF-I)/IGF-I receptor (IGF-IR) and vascular endothelial growth factor-A (VEGF-A) were evaluated in triple-negative and non-triple-negative breast cancer (TNBC and non-TNBC). The aim was to identify a group of serological biomarkers and to identify possible candidates for targeted therapy in patients with TNBC and non-TNBC. Protein levels of TGF-β1, IGF-I/IGF-IR and VEGF-A in the serum were measured in 43 TNBC, 53 non-TNBC and 20 normal control participants using quantitative ELISA assays. Results were correlated against standard prognostic factors, response to treatment and survival. TNBC was identified to be associated with poor prognosis and serum levels of VEGF-A and IGF/IGF-IR were significantly higher in the TNBC group compared with the non-TNBC group. IGF-IR and VEGF-A overexpression was observed to be correlated with TGF-β1 expression and all of the markers investigated were associated with metastasis and disease progression. In the multivariate analysis, VEGF-A, IGF-I and IGF-IR were observed to be independent predictors for overall survival, whereas TGF-β1 and lymph node status were identified as independent predictors for disease-free survival. The overall response rate was significantly lower in patients with TNBC and those with high levels of TGF-β1, IGF-I/IGF-IR and VEGF-A. In view of the present results, it was concluded that TGF-β1, IGF-I/IGF-IR and VEGF-A overexpression is associated with the presence of aggressive tumors, which exhibit an increased probability of metastasis, a poor response to treatment and reduced survival rate. This indicates that VEGF-A, IGF-IR and IGF-I have the potential to be used as surrogate biomarkers and are promising candidates for targeted therapy, particularly in patients with TNBC.
Collapse
Affiliation(s)
- Abeer Bahhnassy
- Molecular Pathology Unit, Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Marwa Mohanad
- Department of Biochemistry, Faculty of Pharmacy, Misr University for Science and Technology, Cairo 11796, Egypt
| | - Sabry Shaarawy
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Manal F Ismail
- Faculty of Pharmacy, Cairo University, Cairo 11796, Egypt
| | - Ahmed El-Bastawisy
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Abeer M Ashmawy
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Abdel-Rahman Zekri
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| |
Collapse
|
16
|
Nienhuis H, Gaykema S, Timmer-Bosscha H, Jalving M, Brouwers A, Lub-de Hooge M, van der Vegt B, Overmoyer B, de Vries E, Schröder C. Targeting breast cancer through its microenvironment: Current status of preclinical and clinical research in finding relevant targets. Pharmacol Ther 2015; 147:63-79. [DOI: 10.1016/j.pharmthera.2014.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 12/31/2022]
|
17
|
Yamashita K, Sakuramoto S, Mieno H, Nemoto M, Shibata T, Katada N, Ohtsuki S, Sakamoto Y, Hoshi K, Wang G, Hemmi O, Satoh T, Kikuchi S, Watanabe M. Preoperative administration of polysaccharide Kureha and reduced plasma transforming growth factor-β in patients with advanced gastric cancer: A randomized clinical trial. Mol Clin Oncol 2015; 3:471-478. [PMID: 26137253 DOI: 10.3892/mco.2015.488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 12/10/2014] [Indexed: 12/29/2022] Open
Abstract
Systemic abrogation of TGF-β signaling results in tumor reduction through cytotoxic T lymphocytes activity in a mouse model. The administration of polysaccharide-Kureha (PSK) into tumor-bearing mice also showed tumor regression with reduced TGF-β. However, there have been no studies regarding the PSK administration to cancer patients and the association with plasma TGF-β. PSK (3 g/day) was administered as a neoadjuvant therapy for 2 weeks before surgery. In total, 31 advanced gastric cancer (AGC) patients were randomly assigned to group A (no neoadjuvant PSK; n=14) or B (neoadjuvant PSK therapy; n=17). Plasma TGF-β was measured pre- and postoperatively. The allocation factors were clinical stage (cStage) and gender. Plasma TGF-β ranged from 1.85-43.5 ng/ml (average, 9.50 ng/ml) in AGC, and 12 patients (38.7%) had a high value, >7.0 ng/ml. These patients were largely composed of poorly-differentiated adenocarcinoma with pathological stage III/IV. All the six elevated cases in group B showed a significant reduction of plasma TGF-β (from 21.6 to 4.5 ng/ml, on average), whereas this was not exhibited in group A. The cases within the normal limits of TGF-β remained unchanged irrespective of PSK treatment. Analysis of variance showed a statistically significant reduction in the difference of plasma TGF-β between groups A and B (P=0.019). PSK reduced the plasma TGF-β in AGC patients when the levels were initially high. The clinical advantage of PSK may, however, be restricted to specific histological types of AGC. Perioperative suppression of TGF-β by PSK may antagonize cancer immune evasion and improve patient prognosis in cases of AGC.
Collapse
Affiliation(s)
- Keishi Yamashita
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Shinichi Sakuramoto
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroaki Mieno
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Masayuki Nemoto
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Tomotaka Shibata
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Natsuya Katada
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Shigeaki Ohtsuki
- Statistic Division, Kureha Special Laboratory Co., Ltd., Fukushima 974-8232, Japan
| | - Yasutoshi Sakamoto
- Kitasato Clinical Research Center, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Keika Hoshi
- Department of Preventive Medicine, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Guoqin Wang
- Kitasato Clinical Research Center, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Osamu Hemmi
- Kitasato Clinical Research Center, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Toshihiko Satoh
- Kitasato Clinical Research Center, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Shiro Kikuchi
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
18
|
Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI, Morales-Montor J. The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res 2015; 35:1-16. [PMID: 25068787 PMCID: PMC4291218 DOI: 10.1089/jir.2014.0026] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/23/2014] [Indexed: 12/12/2022] Open
Abstract
Cytokines are highly inducible, secretory proteins that mediate intercellular communication in the immune system. They are grouped into several protein families that are referred to as tumor necrosis factors, interleukins, interferons, and colony-stimulating factors. In recent years, it has become clear that some of these proteins as well as their receptors are produced in the organisms under physiological and pathological conditions. The exact initiation process of breast cancer is unknown, although several hypotheses have emerged. Inflammation has been proposed as an important player in tumor initiation, promotion, angiogenesis, and metastasis, all phenomena in which cytokines are prominent players. The data here suggest that cytokines play an important role in the regulation of both induction and protection in breast cancer. This knowledge could be fundamental for the proposal of new therapeutic approaches to particularly breast cancer and other cancer-related disorders.
Collapse
Affiliation(s)
- Marcela Esquivel-Velázquez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Pedro Ostoa-Saloma
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | | | - Karen E. Nava-Castro
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, SSA, Cuernavaca, Morelos, México
| | - Julieta Ivonne Castro
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, SSA, Cuernavaca, Morelos, México
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
19
|
Increased pSmad2 expression and cytoplasmic predominant presence of TGF-βRII in breast cancer tissue are associated with poor prognosis: results from the Shanghai Breast Cancer Study. Breast Cancer Res Treat 2014; 149:467-77. [PMID: 25542272 DOI: 10.1007/s10549-014-3251-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
Perturbations of transforming growth factor-beta (TGF-β) signaling are pivotal to tumorigenesis and tumor progression through their effects on cell proliferation and cell invasion. This study aims to evaluate the association of TGF-βRII and pSmad2 protein expressions in breast tissue with clinicopathological factors and prognosis of breast cancer. Expression of the TGF-βRII and pSmad2 proteins was assessed in breast tissue of 1,045 breast cancer cases in the Shanghai Breast Cancer Study using a double immunofluorescence staining method, which was validated with standard single immunostains. TGF-βRII expression intensity was positively associated with younger age at diagnosis (P = 0.03), pre-menopausal status (P = 0.03), and lower TNM stage (P = 0.04). Cytoplasmic predominant expression pattern of TGF-βRII was associated with older age at diagnosis (P = 0.04) and invasive histological type (P = 0.03). Increased pSmad2 expression was associated with higher breast cancer grade (P < 0.01). Higher pSmad2 expression [HR (95 % CI):1.48 (1.07-2.04), P = 0.02] and cytoplasmic predominant TGF-βRII expression [HR (95 % CI): 1.80 (1.08-3.00), P = 0.02] were significantly associated with reduced cancer-free survival. Our data suggest that TGF-βRII and pSmad2 expressions are associated with certain clinical and pathologic features of breast cancer. A cytoplasmic predominant TGF-βRII expression pattern and a higher pSmad2 expression were associated with decreased breast cancer survival. Our study provides additional evidence to support the important role of TGF-β signaling in breast cancer prognosis.
Collapse
|
20
|
Alqumber MA, Dar SA, Haque S, Wahid M, Singh R, Akhter N. No Association of the TGF-β1 29T/C Polymorphism with Breast Cancer Risk in Caucasian and Asian Populations: Evidence from a Meta-Analysis Involving 55, 841 Subjects. Asian Pac J Cancer Prev 2014; 15:8725-34. [DOI: 10.7314/apjcp.2014.15.20.8725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Ciftci R, Tas F, Yasasever CT, Aksit E, Karabulut S, Sen F, Keskin S, Kilic L, Yildiz I, Bozbey HU, Duranyildiz D, Vatansever S. High serum transforming growth factor beta 1 (TGFB1) level predicts better survival in breast cancer. Tumour Biol 2014; 35:6941-8. [PMID: 24740564 DOI: 10.1007/s13277-014-1932-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/03/2014] [Indexed: 12/24/2022] Open
Abstract
The transforming growth factor beta 1 (TGFB1) is a regulatory cytokine with both tumor suppressor and tumor-promoting effects in breast cancer (BC) cell lines and tissue. Data about level of circulating TGFB1 and its prognostic significance in BC patients is conflicting. The objective of this study is to determine the clinical significance of the serum TGFB1 levels in BC patients. We enrolled 96 female patients with histopathologically diagnosed BC who did not receive chemotherapy (CT) or radiotherapy. Serum TGFB1 levels were measured by ELISA method and compared with 30 healthy controls. The mean serum TGFB1 level of BC patients was significantly higher than controls (0.08 vs. 0.04 ng/ml, p < 0.001). There was no significant difference according to known disease-related clinicopathological or laboratory parameters. Serum TGFB1 level had a significant impact on overall survival in both univariate (p = 0.01) and multivariate analysis (p = 0.013). Serum TGFB1 level is elevated in BC patients and has a favorable prognostic value. However, it has no predictive role on CT response.
Collapse
Affiliation(s)
- Rumeysa Ciftci
- Medical Oncology Department, Institute of Oncology, Istanbul University, Capa, Istanbul, Turkey,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Loss of Dab2 expression in breast cancer cells impairs their ability to deplete TGF-β and induce Tregs development via TGF-β. PLoS One 2014; 9:e91709. [PMID: 24638085 PMCID: PMC3956763 DOI: 10.1371/journal.pone.0091709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 02/14/2014] [Indexed: 11/19/2022] Open
Abstract
Dab2 is a multifunctional adapter protein which is frequently under-expressed in a variety of cancers. It is implicated in many critical functions, including several signaling pathways, cell arrangement, differentiation of stem cells, and receptor endocytosis. Transforming growth factor-β (TGF-β) is a secreted multifunctional protein that controls several developmental processes and pathogenesis of many diseases. It has been documented that Dab2 played an important role in TGF-β receptors endocytosis. Here, we present evidence that re-expression of Dab2 in SK-BR-3 cell partially restored its ability to deplete TGF-β in surrounding medium by normalizing the trafficking of TGF-β receptors. We also demonstrate that the difference in TGF-β depletions produced by Dab2 expression was sufficient to impact on the conversion of naive CD4+ T cells to regulatory T cells (Tregs), and thus inhibited the proliferation of T cells. This work revealed a critical result that breast cancer cell was deficient in Dab2 expression and related receptor endocytosis-mediated TGF-β depletion, which may contribute to the accumulation of TGF-β in tumor microenvironment and the induction of immune tolerance.
Collapse
|
23
|
De Wever O, Van Bockstal M, Mareel M, Hendrix A, Bracke M. Carcinoma-associated fibroblasts provide operational flexibility in metastasis. Semin Cancer Biol 2014; 25:33-46. [PMID: 24406210 DOI: 10.1016/j.semcancer.2013.12.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 01/11/2023]
Abstract
Malignant cancer cells do not act as lone wolves to achieve metastasis, as they exist within a complex ecosystem consisting of an extracellular matrix scaffold populated by carcinoma-associated fibroblasts (CAFs), endothelial cells and immune cells. We recognize local (primary tumor) and distant ecosystems (metastasis). CAFs, also termed myofibroblasts, may have other functions in the primary tumor versus the metastasis. Cellular origin and tumor heterogeneity lead to the expression of specific markers. The molecular characteristics of a CAF remain in evolution since CAFs show operational flexibility. CAFs respond dynamically to a cancer cell's fluctuating demands by shifting profitable signals necessary in metastasis. Local, tissue-resident fibroblasts and mesenchymal stem cells (MSCs) coming from reservoir sites such as bone marrow and adipose tissue are the main progenitor cells of CAFs. CAFs may induce awakening from metastatic dormancy, a major cause of cancer-specific death. Cancer management protocols influence CAF precursor recruitment and CAF activation. Since CAF signatures represent early changes in metastasis, including formation of pre-metastatic niches, we discuss whether liquid biopsies, including exosomes, may detect and monitor CAF reactions allowing optimized prognosis of cancer patients.
Collapse
Affiliation(s)
- Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium.
| | | | - Marc Mareel
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
24
|
Chiechi A, Waning DL, Stayrook KR, Buijs JT, Guise TA, Mohammad KS. Role of TGF- β in breast cancer bone metastases. ACTA ACUST UNITED AC 2013; 4:15-30. [PMID: 24558636 PMCID: PMC3928102 DOI: 10.4236/abb.2013.410a4003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Breast cancer is the most prevalent cancer among females worldwide leading to approximately 350,000 deaths each year. It has long been known that cancers preferentially metastasize to particular organs, and bone metastases occur in ~70% of patients with advanced breast cancer. Breast cancer bone metastases are predominantly osteolytic and accompanied by increased fracture risk, pain, nerve compression and hypercalcemia, causing severe morbidity. In the bone matrix, transforming growth factor-β (TGF-β) is one of the most abundant growth factors, which is released in active form upon tumor-induced osteoclastic bone resorption. TGF-β, in turn, stimulates bone metastatic tumor cells to secrete factors that further drive osteolytic bone destruction adjacent to the tumor. Thus, TGF-β is a crucial factor responsible for driving the feed-forward vicious cycle of cancer growth in bone. Moreover, TGF-β activates epithelial-to-mesenchymal transition, increases tumor cell invasiveness and angiogenesis and induces immunosuppression. Blocking the TGF-β signaling pathway to interrupt this vicious cycle between breast cancer and bone offers a promising target for therapeutic intervention to decrease skeletal metastasis. This review will describe the role of TGF-β in breast cancer and bone metastasis, and pre-clinical and clinical data will be evaluated for the potential use of TGF-β inhibitors in clinical practice to treat breast cancer bone metastases.
Collapse
Affiliation(s)
- Antonella Chiechi
- Division of Endocrinology, Department of Internal Medicine, Indiana University, Indianapolis, USA
| | - David L Waning
- Division of Endocrinology, Department of Internal Medicine, Indiana University, Indianapolis, USA
| | - Keith R Stayrook
- Division of Endocrinology, Department of Internal Medicine, Indiana University, Indianapolis, USA
| | - Jeroen T Buijs
- Division of Endocrinology, Department of Internal Medicine, Indiana University, Indianapolis, USA ; Department of Urology, Medical Center, Leiden University, Leiden, The Netherlands
| | - Theresa A Guise
- Division of Endocrinology, Department of Internal Medicine, Indiana University, Indianapolis, USA
| | - Khalid S Mohammad
- Division of Endocrinology, Department of Internal Medicine, Indiana University, Indianapolis, USA
| |
Collapse
|
25
|
Buijs JT, Stayrook KR, Guise TA. TGF-β in the Bone Microenvironment: Role in Breast Cancer Metastases. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2011; 4:261-81. [PMID: 21748439 PMCID: PMC3234330 DOI: 10.1007/s12307-011-0075-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/28/2011] [Indexed: 01/29/2023]
Abstract
Breast cancer is the most prevalent cancer among females worldwide. It has long been known that cancers preferentially metastasize to particular organs, and bone metastases occur in ∼70% of patients with advanced breast cancer. Breast cancer bone metastases are predominantly osteolytic and accompanied by bone destruction, bone fractures, pain, and hypercalcemia, causing severe morbidity and hospitalization. In the bone matrix, transforming growth factor-β (TGF-β) is one of the most abundant growth factors, which is released in active form upon tumor-induced osteoclastic bone resorption. TGF-β, in turn, stimulates bone metastatic cells to secrete factors that further drive osteolytic destruction of the bone adjacent to the tumor, categorizing TGF-β as a crucial factor responsible for driving the feed-forward vicious cycle of cancer growth in bone. Moreover, TGF-β activates epithelial-to-mesenchymal transition, increases tumor cell invasiveness and angiogenesis and induces immunosuppression. Blocking the TGF-β signaling pathway to interrupt this vicious cycle between breast cancer and bone offers a promising target for therapeutic intervention to decrease skeletal metastasis. This review will describe the role of TGF-β in breast cancer and bone metastasis, and pre-clinical and clinical data will be evaluated for the potential use of TGF-β inhibitors in clinical practice to treat breast cancer bone metastases.
Collapse
Affiliation(s)
- Jeroen T. Buijs
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, 980 West Walnut Street, Walther Hall R3, #C132, Indianapolis, IN USA
| | - Keith R. Stayrook
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, 980 West Walnut Street, Walther Hall R3, #C132, Indianapolis, IN USA
| | - Theresa A. Guise
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, 980 West Walnut Street, Walther Hall R3, #C132, Indianapolis, IN USA
| |
Collapse
|
26
|
Zu X, Zhang Q, Cao R, Liu J, Zhong J, Wen G, Cao D. Transforming growth factor-β signaling in tumor initiation, progression and therapy in breast cancer: an update. Cell Tissue Res 2011; 347:73-84. [PMID: 21845401 DOI: 10.1007/s00441-011-1225-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/22/2011] [Indexed: 01/06/2023]
Abstract
Transforming growth factor-β (TGF-β) is a ubiquitous cytokine playing an essential role in cell proliferation, differentiation, apoptosis, adhesion and invasion, as well as in cellular microenvironment. In malignant diseases, TGF-β signaling features a growth inhibitory effect at an early stage but aggressive oncogenic activity at the advanced malignant state. Here, we update the current understanding of TGF-β signaling in cancer development and progression with a focus on breast cancer. We also review the current approaches of TGF-β signaling-targeted therapeutics for human malignancies.
Collapse
Affiliation(s)
- Xuyu Zu
- Clinical Research Institution, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Transforming growth factor-β (TGF-β) is a multifunctional cytokine, with important roles in maintaining tissue homeostasis. TGF-β signals via transmembrane serine/threonine kinase receptors and intracellular Smad transcriptional regulators. Perturbed TGF-β signaling has been implicated in a large variety of pathological conditions. Increased TGF-β levels have been found in patients with cancer, fibrosis, and systemic sclerosis, and were correlated with disease severity. In cancer, TGF-β mediates tumor invasion and metastasis by affecting both tumor cells and the tumor microenvironment including fibroblast activation and immune suppression. Furthermore, TGF-β is a strong stimulator of extracellular matrix deposition. On the basis of these observations, small molecule inhibitors of the TGF-β receptor kinases, neutralizing antibodies that interfere with ligand?receptor interactions, antisense oligonucleotides reducing TGF-β expression, and soluble receptor ectodomains that sequester TGF-β have been developed to intervene with excessive TGF-β signaling activity in the aforementioned disorders. Here, we review the current state of anti-TGF-β therapy in clinical trials.
Collapse
Affiliation(s)
- Lukas J A C Hawinkels
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
28
|
Hartmann MC, Dwyer RM, Costello M, Potter SM, Curran C, Hennessy E, Newell J, Griffin DG, Kerin MJ. Relationship between CCL5 and transforming growth factor-β1 (TGFβ1) in breast cancer. Eur J Cancer 2011; 47:1669-75. [PMID: 21658938 DOI: 10.1016/j.ejca.2011.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/18/2011] [Accepted: 05/06/2011] [Indexed: 01/22/2023]
Abstract
PURPOSE Investigate circulating CCL5 in breast cancer patients and healthy controls, along with gene expression levels in corresponding tumour tissue and isolated primary stromal cells. Hormonal control of CCL5, and a potential relationship with TGFβ1, was also investigated. METHODS Circulating levels of CCL5 and TGFβ1 were measured in 102 breast cancer patients and 66 controls using ELISA. Gene expression levels (CCL5, CCR5, TGFβ1, TGFβRII) were quantified in corresponding tumour tissue (n = 43), normal tissue (n = 16), and isolated tumour (n = 22) and normal (n = 3) stromal cells using RQ-PCR. CCL5 and circulating menstrual hormones (LH, FSH, Oestradiol, Progesterone) were analysed in serum samples from healthy, premenopausal volunteers (n = 60). RESULTS TGFβ1 was significantly higher in breast cancer patients (Mean(SEM) 27.4(0.9)ng/ml) compared to controls (14.9(0.9)ng/ml). CCL5 levels decreased in the transition from node negative (59.6(3.7)ng/ml) to node positive disease (40.5(6.3)ng/ml) and increased again as the number of positive lymph nodes increased (⩾3 positive 50.95(9.8)ng/ml). A significant positive correlation between circulating CCL5 and TGFβ1 (r = 0.423, p<0.0001) was observed, and mirrored at the gene expression level in tumour tissue from the same patients (r = 0.44, p<0.001). CCL5, CCR5 and TGFβ1 expression was significantly higher in tumour compared to normal breast tissue (p < 0.001). A significant negative correlation was observed between circulating CCL5, Oestradiol and Progesterone (r = -0.50, r = -0.39, respectively, p < 0.05). CONCLUSION CCL5 expression is elevated in the tumour microenvironment. The data support a role for hormonal control of circulating CCL5 and also highlight a potentially important relationship between CCL5 and TGFβ1 in breast cancer.
Collapse
Affiliation(s)
- M C Hartmann
- Division of Surgery, School of Medicine, National University of Ireland Galway, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Babyshkina N, Malinovskaya E, Stakheyeva M, Volkomorov V, Slonimskaya E, Maximov V, Cherdyntseva N. Association of functional -509C>T polymorphism in the TGF-β1 gene with infiltrating ductal breast carcinoma risk in a Russian Western Siberian population. Cancer Epidemiol 2011; 35:560-3. [PMID: 21470928 DOI: 10.1016/j.canep.2011.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/31/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Transforming growth factor β1 (TGF-β1) is a multifunctional cytokine that plays an important role in human mammary carcinogenesis. The purpose of this study was to investigate the association between -509C>T single nucleotide polymorphism (SNP) of the TGF-β1 gene and infiltrating ductal breast carcinoma risk in Russian patients of Western Siberian region. MATERIALS AND METHODS Blood samples collected from 218 women with histologically confirmed infiltrating ductal breast carcinoma and 290 healthy female controls were analyzed through polymerase chain reaction-restriction fragment length polymorphism methods. RESULTS The -509TT genotype was significantly associated with a decreased risk for ductal breast carcinoma (OR=0.47, CI: 0.26-0.82, P=0.004). Similarly, the -509T was significantly less in ductal breast cancer patients (34.4%) than in control individuals (41.6%; OR=0.74, CI: 0.57-0.96, P=0.02). With the exception of association between the -509TT genotype and large tumor size (P=0.01), there was no significant association between the studied polymorphism and clinicopathological characteristics. CONCLUSION The results of this study suggest that polymorphism of TGF-β1 -509C>T gene may modify individual susceptibility to infiltrating ductal breast carcinoma in Russian women of Western Siberian region.
Collapse
Affiliation(s)
- Nataliya Babyshkina
- Department of Experimental Oncology, Cancer Research Institute of Siberian Branch of Russian Academy of Medical Sciences, Tomsk 634001, Russian Federation.
| | | | | | | | | | | | | |
Collapse
|
30
|
Van Laere S, Limame R, Van Marck EA, Vermeulen PB, Dirix LY. Is there a role for mammary stem cells in inflammatory breast carcinoma?: a review of evidence from cell line, animal model, and human tissue sample experiments. Cancer 2010; 116:2794-805. [PMID: 20503411 DOI: 10.1002/cncr.25180] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Stem cells are pluripotent cells, with a large replicative potential, which perform normal physiological functions such as tissue renewal and damage repair. However, because of their long lifespan and high replicative potential, stem cells are ideal targets to accumulate multiple mutations. Therefore, they can be regarded as being responsible for the initiation of tumor formation. In the past, numerous studies have shown that the presence of an elaborate stem cell compartment within a tumor is associated with aggressive tumor cell behavior, frequent formation of metastases, resistance to therapy, and poor patient survival. From this perspective, tumors from patients with inflammatory breast cancer (IBC), an aggressive breast cancer subtype with a dismal clinical course, are most likely to be associated with stem cell biology. To date, this hypothesis is corroborated by evidence resulting from in vitro and in vivo experiments. Both gene and microRNA expression profiles highlighted several stem cell-specific signal transduction pathways that are hyperactivated in IBC. Also, these stem cell-specific signal transduction pathways seem to converge in the activation of nuclear factor-kappa B, a molecular hallmark of IBC, and induction of epithelial-to-mesenchymal transition. Recently, the latter mechanism was identified as a prerequisite for the induction of stem cell characteristics in breast cancer cells.
Collapse
Affiliation(s)
- Steven Van Laere
- Translational Cancer Research Group, Laboratory of Pathology, University of Antwerp/University Hospital Antwerp, Edegem, Belgium.
| | | | | | | | | |
Collapse
|
31
|
Ganapathy V, Ge R, Grazioli A, Xie W, Banach-Petrosky W, Kang Y, Lonning S, McPherson J, Yingling JM, Biswas S, Mundy GR, Reiss M. Targeting the Transforming Growth Factor-beta pathway inhibits human basal-like breast cancer metastasis. Mol Cancer 2010; 9:122. [PMID: 20504320 PMCID: PMC2890606 DOI: 10.1186/1476-4598-9-122] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 05/26/2010] [Indexed: 05/26/2023] Open
Abstract
Background Transforming Growth Factor β (TGF-β) plays an important role in tumor invasion and metastasis. We set out to investigate the possible clinical utility of TGF-β antagonists in a human metastatic basal-like breast cancer model. We examined the effects of two types of the TGF-β pathway antagonists (1D11, a mouse monoclonal pan-TGF-β neutralizing antibody and LY2109761, a chemical inhibitor of TGF-β type I and II receptor kinases) on sublines of basal cell-like MDA-MB-231 human breast carcinoma cells that preferentially metastasize to lungs (4175TR, 4173) or bones (SCP2TR, SCP25TR, 2860TR, 3847TR). Results Both 1D11 and LY2109761 effectively blocked TGF-β-induced phosphorylation of receptor-associated Smads in all MDA-MB-231 subclones in vitro. Moreover, both antagonists inhibited TGF-β stimulated in vitro migration and invasiveness of MDA-MB-231 subclones, indicating that these processes are partly driven by TGF-β. In addition, both antagonists significantly reduced the metastatic burden to either lungs or bones in vivo, seemingly independently of intrinsic differences between the individual tumor cell clones. Besides inhibiting metastasis in a tumor cell autonomous manner, the TGF-β antagonists inhibited angiogenesis associated with lung metastases and osteoclast number and activity associated with lytic bone metastases. In aggregate, these studies support the notion that TGF-β plays an important role in both bone-and lung metastases of basal-like breast cancer, and that inhibiting TGF-β signaling results in a therapeutic effect independently of the tissue-tropism of the metastatic cells. Targeting the TGF-β pathway holds promise as a novel therapeutic approach for metastatic basal-like breast cancer. Conclusions In aggregate, these studies support the notion that TGF-β plays an important role in both bone-and lung metastases of basal-like breast cancer, and that inhibiting TGF-β signaling results in a therapeutic effect independently of the tissue-tropism of the metastatic cells. Targeting the TGF-β pathway holds promise as a novel therapeutic approach for metastatic basal-like breast cancer.
Collapse
Affiliation(s)
- Vidya Ganapathy
- Division of Medical Oncology, Department of Internal Medicine, UMDNJRobert Wood Johnson Medical School and The Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Transforming growth factor-beta1 polymorphisms and breast cancer risk: a meta-analysis based on 27 case-control studies. Breast Cancer Res Treat 2010; 122:273-9. [PMID: 20309626 DOI: 10.1007/s10549-010-0847-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 03/10/2010] [Indexed: 10/19/2022]
Abstract
The association between transforming growth factor-beta1 (TGF-beta1) gene polymorphisms and breast cancer risk has been widely reported, but results were somewhat controversial and underpowered. To derive a more precise estimation of the relationship between TGF-beta1 polymorphisms and breast cancer risk, we conducted a meta-analysis of all available case-control studies relating the T869C and/or C-509T polymorphisms of the TGF-beta1 gene to the risk of developing breast cancer. Eligible articles were identified by search of databases including MEDLINE, PubMed, Web of Science, EMBASE, and Chinese Biomedical Literature database (CBM) for the period up to March 2010. Finally, a total of 17 articles involving 27 case-control studies were identified, 25 with 20,022 cases and 24,423 controls for T869C polymorphism and eight with 10,633 cases and 13,648 controls for C-509T polymorphism. The pooled ORs were performed for the allele contrasts, additive genetic model, dominant genetic model and recessive genetic model, respectively. Subgroup analysis was also performed by ethnicity for T869C polymorphism. With respect to T869C polymorphism, no association was found in overall analysis (C vs. T: OR = 1.033, 95% CI = 0.996-1.072). In the subgroup analysis by ethnicity, significantly increased risk was found in Caucasian population (C vs. T: OR = 1.051, 95% CI = 1.018-1.085; CC vs. TT + TC: OR = 1.083, 95% CI = 1.019-1.151), but not in Asian population (C vs. T: OR = 1.054, 95% CI = 0.983-1.130). With respect to C-509T polymorphism, no significant association with breast cancer risk was demonstrated in overall analysis (T vs. C: OR = 0.986, 95% CI = 0.936-1.039). It can be concluded that potentially functional TGF-Beta1 T869C polymorphism may play a low penetrance role in breast cancer susceptibility in an ethnicity-specific manner.
Collapse
|
33
|
Disis ML, Wallace DR, Gooley TA, Dang Y, Slota M, Lu H, Coveler AL, Childs JS, Higgins DM, Fintak PA, dela Rosa C, Tietje K, Link J, Waisman J, Salazar LG. Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J Clin Oncol 2009; 27:4685-92. [PMID: 19720923 DOI: 10.1200/jco.2008.20.6789] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE The primary objectives of this phase I/II study were to evaluate the safety and immunogenicity of combination therapy consisting of concurrent trastuzumab and human epidermal growth factor receptor 2 (HER2)/neu-specific vaccination in patients with HER2/neu-overexpressing metastatic breast cancer. PATIENTS AND METHODS Twenty-two patients with stage IV HER2/neu-positive breast cancer receiving trastuzumab therapy were vaccinated with an HER2/neu T-helper peptide-based vaccine. Toxicity was graded according to National Cancer Institute criteria, and antigen specific T-cell immunity was assessed by interferon gamma enzyme-linked immunosorbent spot assay. Data on progression-free and overall survival were collected. RESULTS Concurrent trastuzumab and HER2/neu vaccinations were well tolerated, with 15% of patients experiencing an asymptomatic decline in left ventricular ejection fraction below the normal range during combination therapy. Although many patients had pre-existing immunity specific for HER2/neu and other breast cancer antigens while treated with trastuzumab alone, that immunity could be significantly boosted and maintained with vaccination. Epitope spreading within HER2/neu and to additional tumor-related proteins was stimulated by immunization, and the magnitude of the T-cell response generated was significantly inversely correlated with serum transforming growth factor beta levels. At a median follow-up of 36 months from the first vaccine, the median overall survival in the study population has not been reached. CONCLUSION Combination therapy with trastuzumab and a HER2/neu vaccine is associated with minimal toxicity and results in prolonged, robust, antigen-specific immune responses in treated patients.
Collapse
Affiliation(s)
- Mary L Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, WA 98195-8050, USa.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Stage-related plasma values of transforming growth factor-beta1 are steroid receptors dependent. Clin Exp Med 2009; 9:313-7. [DOI: 10.1007/s10238-009-0055-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 04/19/2009] [Indexed: 11/26/2022]
|
35
|
Serum levels of angiogenic factors in early breast cancer remain close to normal. Breast 2009; 18:26-9. [DOI: 10.1016/j.breast.2008.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 11/23/2022] Open
|
36
|
Genetic polymorphisms in the transforming growth factor-beta signaling pathways and breast cancer risk and survival. Methods Mol Biol 2009; 472:265-77. [PMID: 19107437 DOI: 10.1007/978-1-60327-492-0_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The transforming growth factor (TGF)-beta signaling pathway plays a critical role in breast cancer development and progression. Limited data from human studies, however, are currently available to link biomarkers in this pathway directly to the risk and survival of breast cancer. Most of the previous epidemiologic studies have focused on evaluating polymorphisms in the TGFB1 gene (T+29C, rs1982073) and the TGFBR1 gene (9A/6A), and the results have been inconsistent. The present review summarizes epidemiologic evidence regarding the association of genetic polymorphisms in the TGF beta pathway genes with breast cancer risk and survival and provides rationale and new approaches to continuing the research in this area.
Collapse
|
37
|
Tan AR, Alexe G, Reiss M. Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat 2008; 115:453-95. [PMID: 18841463 DOI: 10.1007/s10549-008-0184-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 09/02/2008] [Indexed: 12/24/2022]
Abstract
In most human breast cancers, lowering of TGFbeta receptor- or Smad gene expression combined with increased levels of TGFbetas in the tumor microenvironment is sufficient to abrogate TGFbetas tumor suppressive effects and to induce a mesenchymal, motile and invasive phenotype. In genetic mouse models, TGFbeta signaling suppresses de novo mammary cancer formation but promotes metastasis of tumors that have broken through TGFbeta tumor suppression. In mouse models of "triple-negative" or basal-like breast cancer, treatment with TGFbeta neutralizing antibodies or receptor kinase inhibitors strongly inhibits development of lung- and bone metastases. These TGFbeta antagonists do not significantly affect tumor cell proliferation or apoptosis. Rather, they de-repress anti-tumor immunity, inhibit angiogenesis and reverse the mesenchymal, motile, invasive phenotype characteristic of basal-like and HER2-positive breast cancer cells. Patterns of TGFbeta target genes upregulation in human breast cancers suggest that TGFbeta may drive tumor progression in estrogen-independent cancer, while it mediates a suppressive host cell response in estrogen-dependent luminal cancers. In addition, TGFbeta appears to play a key role in maintaining the mammary epithelial (cancer) stem cell pool, in part by inducing a mesenchymal phenotype, while differentiated, estrogen receptor-positive, luminal cells are unresponsive to TGFbeta because the TGFBR2 receptor gene is transcriptionally silent. These same cells respond to estrogen by downregulating TGFbeta, while antiestrogens act by upregulating TGFbeta. This model predicts that inhibiting TGFbeta signaling should drive the differentiation of mammary stem cells into ductal cells. Consequently, TGFbeta antagonists may convert basal-like or HER2-positive cancers to a more epithelioid, non-proliferating (and, perhaps, non-metastatic) phenotype. Conversely, these agents might antagonize the therapeutic effects of anti-estrogens in estrogen-dependent luminal cancers. These predictions need to be addressed prospectively in clinical trials and should inform the selection of patient populations most likely to benefit from this novel anti-metastatic therapeutic approach.
Collapse
Affiliation(s)
- Antoinette R Tan
- Division of Medical Oncology, Department of Internal Medicine, UMDNJ-Robert Wood Johnson Medical School and The Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | | | | |
Collapse
|