1
|
Parker PJ, Lockwood N, Davis K, Kelly JR, Soliman TN, Pardo AL, Marshall JJT, Redmond JM, Vitale M, Silvia Martini. A cancer-associated, genome protective programme engaging PKCε. Adv Biol Regul 2020; 78:100759. [PMID: 33039823 PMCID: PMC7689578 DOI: 10.1016/j.jbior.2020.100759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022]
Abstract
Associated with their roles as targets for tumour promoters, there has been a long-standing interest in how members of the protein kinase C (PKC) family act to modulate cell growth and division. This has generated a great deal of observational data, but has for the most part not afforded clear mechanistic insights into the control mechanisms at play. Here, we review the roles of PKCε in protecting transformed cells from non-disjunction. In this particular cell cycle context, there is a growing understanding of the pathways involved, affording biomarker and interventional insights and opportunities.
Collapse
Affiliation(s)
- Peter J Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, Guy's Campus, London, SE1 1UL, UK.
| | - Nicola Lockwood
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Khalil Davis
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Joanna R Kelly
- Cancer Research UK, Manchester Institute, Alderley Park, SK10 4TG, UK
| | - Tanya N Soliman
- Barts Cancer Institute, Charterhouse Square, London, EC1M 6BE, UK
| | - Ainara Lopez Pardo
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | | | | | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Martini
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
2
|
Protein Kinase C Alpha (PKCα) overexpression leads to a better response to retinoid acid therapy through Retinoic Acid Receptor Beta (RARβ) activation in mammary cancer cells. J Cancer Res Clin Oncol 2020; 146:3241-3253. [PMID: 32865619 DOI: 10.1007/s00432-020-03368-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Retinoids have proved to be effective for hematologic malignancies treatment but till nowadays, their use as single agent for the solid tumor's management is still controversial. All-trans retinoic acid (ATRA), the main active metabolite of vitamin A, exerts non-genomic interactions with different members of the protein kinase C (PKC) family, recognized modulators of different tumor progression pathways. To determine whether a group of patients could become benefited employing a retinoid therapy, in this study we have evaluated whether PKCα expression (a poor prognosis marker in breast cancer) could sensitizes mammary cells to ATRA treatment. METHODS PKCα overexpression was achieved by stable transfection and confirmed by western blot. Transfected PKC functionality was determined by nuclear translocation-induction and confocal microscopy. In vitro proliferation was evaluated by cell counting and cell cycle distribution was analyzed by flow cytometry. In vivo studies were performed to evaluate orthotopic tumor growth and experimental lung colonization. Retinoic acid response elements (RARE) and AP1 sites-dependent activity was studied by gene reporter assays and retinoic acid receptors (RARs) were measured by RT-qPCR. RESULTS Our findings suggest that high PKCα levels improve the differentiation response to ATRA in a RAR signaling-dependent manner. Moreover, RARβ expression appears to be critical to induce ATRA sensitization, throughout AP1 trans-repression. CONCLUSION Here we propose that retinoids could lead a highly personalized anticancer treatment, bringing benefits to patients with aggressive breast tumors resulting from high PKCα expression but, an adequate expression of the RARβ receptor is required to ensure the effect on this process.
Collapse
|
3
|
Bacolod MD, Huang J, Giardina SF, Feinberg PB, Mirza AH, Swistel A, Soper SA, Barany F. Prediction of blood-based biomarkers and subsequent design of bisulfite PCR-LDR-qPCR assay for breast cancer detection. BMC Cancer 2020; 20:85. [PMID: 32005108 PMCID: PMC6995062 DOI: 10.1186/s12885-020-6574-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background Interrogation of site-specific CpG methylation in circulating tumor DNAs (ctDNAs) has been employed in a number of studies for early detection of breast cancer (BrCa). In many of these studies, the markers were identified based on known biology of BrCa progression, and interrogated using methyl-specific PCR (MSP), a technique involving bisulfite conversion, PCR, and qPCR. Methods In this report, we are demonstrating the development of a novel assay (Multiplex Bisulfite PCR-LDR-qPCR) which can potentially offer improvements to MSP, by integrating additional steps such as ligase detection reaction (LDR), methylated CpG target enrichment, carryover protection (use of uracil DNA glycosylase), and minimization of primer-dimer formation (use of ribose primers and RNAseH2). The assay is designed to for breast cancer-specific CpG markers identified through integrated analyses of publicly available genome-wide methylation datasets for 31 types of primary tumors (including BrCa), as well as matching normal tissues, and peripheral blood. Results Our results indicate that the PCR-LDR-qPCR assay is capable of detecting ~ 30 methylated copies of each of 3 BrCa-specific CpG markers, when mixed with excess amount unmethylated CpG markers (~ 3000 copies each), which is a reasonable approximation of BrCa ctDNA overwhelmed with peripheral blood cell-free DNA (cfDNA) when isolated from patient plasma. The bioinformatically-identified CpG markers are located in promoter regions of NR5A2 and PRKCB, and a non-coding region of chromosome 1 (upstream of EFNA3). Additional bioinformatic analyses would reveal that these methylation markers are independent of patient race and age, and positively associated with signaling pathways associated with BrCa progression (such as those related to retinoid nuclear receptor, PTEN, p53, pRB, and p27). Conclusion This report demonstrates the potential utilization of bisulfite PCR-LDR-qPCR assay, along with bioinformatically-driven biomarker discovery, in blood-based BrCa detection.
Collapse
Affiliation(s)
- Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Jianmin Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Philip B Feinberg
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Aashiq H Mirza
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alexander Swistel
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Steven A Soper
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS, 66047, USA
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Vydra N, Janus P, Toma-Jonik A, Stokowy T, Mrowiec K, Korfanty J, Długajczyk A, Wojtaś B, Gielniewski B, Widłak W. 17 β-Estradiol Activates HSF1 via MAPK Signaling in ER α-Positive Breast Cancer Cells. Cancers (Basel) 2019; 11:E1533. [PMID: 31614463 PMCID: PMC6826487 DOI: 10.3390/cancers11101533] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022] Open
Abstract
Heat Shock Factor 1 (HSF1) is a key regulator of gene expression during acute environmental stress that enables the cell survival, which is also involved in different cancer-related processes. A high level of HSF1 in estrogen receptor (ER)-positive breast cancer patients correlated with a worse prognosis. Here we demonstrated that 17β-estradiol (E2), as well as xenoestrogen bisphenol A and ERα agonist propyl pyrazole triol, led to HSF1 phosphorylation on S326 in ERα positive but not in ERα-negative mammary breast cancer cells. Furthermore, we showed that MAPK signaling (via MEK1/2) but not mTOR signaling was involved in E2/ERα-dependent activation of HSF1. E2-activated HSF1 was transcriptionally potent and several genes essential for breast cancer cells growth and/or ERα action, including HSPB8, LHX4, PRKCE, WWC1, and GREB1, were activated by E2 in a HSF1-dependent manner. Our findings suggest a hypothetical positive feedback loop between E2/ERα and HSF1 signaling, which may support the growth of estrogen-dependent tumors.
Collapse
Affiliation(s)
- Natalia Vydra
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15, Poland.
| | - Patryk Janus
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15, Poland.
| | - Agnieszka Toma-Jonik
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15, Poland.
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Postboks 7800, 5020 Bergen, Norway.
| | - Katarzyna Mrowiec
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15, Poland.
| | - Joanna Korfanty
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15, Poland.
| | - Anna Długajczyk
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15, Poland.
| | - Bartosz Wojtaś
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, PAS, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Bartłomiej Gielniewski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, PAS, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Wiesława Widłak
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, 44-101 Gliwice, Wybrzeże Armii Krajowej 15, Poland.
| |
Collapse
|
5
|
Dowling CM, Phelan J, Callender JA, Cathcart MC, Mehigan B, McCormick P, Dalton T, Coffey JC, Newton AC, O'Sullivan J, Kiely PA. Protein kinase C beta II suppresses colorectal cancer by regulating IGF-1 mediated cell survival. Oncotarget 2018; 7:20919-33. [PMID: 26989024 PMCID: PMC4991501 DOI: 10.18632/oncotarget.8062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/31/2016] [Indexed: 12/11/2022] Open
Abstract
Despite extensive efforts, cancer therapies directed at the Protein Kinase C (PKC) family of serine/threonine kinases have failed in clinical trials. These therapies have been directed at inhibiting PKC and have, in some cases, worsened disease outcome. Here we examine colon cancer patients and show not only that PKC Beta II is a tumour suppressor, but patients with low levels of this isozyme have significantly decreased disease free survival. Specifically, analysis of gene expression levels of all PKC genes in matched normal and cancer tissue samples from colon cancer patients revealed a striking down-regulation of the gene coding PKC Beta in the cancer tissue (n = 21). Tissue microarray analysis revealed a dramatic down-regulation of PKC Beta II protein levels in both the epithelial and stromal diseased tissue (n = 166). Of clinical significance, low levels of the protein in the normal tissue of patients is associated with a low (10%) 10 year survival compared with a much higher (60%) survival in patients with relatively high levels of the protein. Consistent with PKC Beta II levels protecting against colon cancer, overexpression of PKC Beta II in colon cancer cell lines reveals that PKC Beta II reverses transformation in cell based assays. Further to this, activation of PKC Beta II results in a dramatic downregulation of IGF-I-induced AKT, indicating a role for PKCs in regulating IGF-1 mediated cell survival. Thus, PKC Beta II is a tumour suppressor in colon cancer and low levels serve as a predictor for poor survival outcome.
Collapse
Affiliation(s)
- Catríona M Dowling
- Graduate Entry Medical School and Health Research Institute (HRI), University of Limerick, Limerick, Ireland.,Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.,Stokes Research Institute, University of Limerick, Limerick, Ireland
| | - James Phelan
- Department of Surgery, Trinity College Dublin, Dublin, Ireland
| | - Julia A Callender
- Department of Pharmacology, University of California at San Diego, La Jolla, CA, USA
| | | | | | | | - Tara Dalton
- Stokes Research Institute, University of Limerick, Limerick, Ireland
| | - John C Coffey
- 4i Centre for Interventions in Infection, Inflammation and Immunity, Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA, USA
| | | | - Patrick A Kiely
- Graduate Entry Medical School and Health Research Institute (HRI), University of Limerick, Limerick, Ireland.,Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.,Stokes Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
6
|
Dowling CM, Hayes SL, Phelan JJ, Cathcart MC, Finn SP, Mehigan B, McCormick P, Coffey JC, O'sullivan J, Kiely PA. Expression of protein kinase C gamma promotes cell migration in colon cancer. Oncotarget 2017; 8:72096-72107. [PMID: 29069771 PMCID: PMC5641114 DOI: 10.18632/oncotarget.18916] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/13/2017] [Indexed: 12/24/2022] Open
Abstract
Despite extensive efforts, Protein Kinase Cs (PKCs) have proven to be an intractable target in cancer therapies. Traditionally it was accepted that PKCs act as tumour promoters, however new research suggests that PKCs may play an important role in the suppression of cancer. A challenge in targeting PKCs is the limited data available in patient samples. One of the PKC isozymes, PKC gamma, is thought to be present only in the brain and has been largely neglected in the context of cancer. Analysis of gene expression levels of PKC gamma in patient matched normal and colon cancer tissue samples revealed an up-regulation of the gene in the cancer tissue of 54% of the patients examined. Mechanistically we demonstrate that a reduction in the levels of PKC gamma in the colon cancer cells inhibits cell migration and foci formation. Further to this, we observe an increase in cell adhesion and proliferation following the reduction of PKC gamma levels in the cell. Thus, PKC gamma plays a key role in colon cancer; making it an important isozyme that needs to be reconsidered in the context of cancer therapies.
Collapse
Affiliation(s)
- Catríona M Dowling
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland.,Health Research Institute University of Limerick, Limerick, Ireland
| | - Sheri L Hayes
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland.,Health Research Institute University of Limerick, Limerick, Ireland
| | - James J Phelan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Mary Clare Cathcart
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Stephen P Finn
- Department of Histopathology, St James's Hospital, Trinity College Dublin, Ireland
| | | | | | - John C Coffey
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Jacintha O'sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Patrick A Kiely
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland.,Health Research Institute University of Limerick, Limerick, Ireland
| |
Collapse
|
7
|
Protein Kinase C Epsilon Cooperates with PTEN Loss for Prostate Tumorigenesis through the CXCL13-CXCR5 Pathway. Cell Rep 2017; 19:375-388. [PMID: 28402859 DOI: 10.1016/j.celrep.2017.03.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/01/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022] Open
Abstract
PKCε, an oncogenic member of the PKC family, is aberrantly overexpressed in epithelial cancers. To date, little is known about functional interactions of PKCε with other genetic alterations, as well as the effectors contributing to its tumorigenic and metastatic phenotype. Here, we demonstrate that PKCε cooperates with the loss of the tumor suppressor Pten for the development of prostate cancer in a mouse model. Mechanistic analysis revealed that PKCε overexpression and Pten loss individually and synergistically upregulate the production of the chemokine CXCL13, which involves the transcriptional activation of the CXCL13 gene via the non-canonical nuclear factor κB (NF-κB) pathway. Notably, targeted disruption of CXCL13 or its receptor, CXCR5, in prostate cancer cells impaired their migratory and tumorigenic properties. In addition to providing evidence for an autonomous vicious cycle driven by PKCε, our studies identified a compelling rationale for targeting the CXCL13-CXCR5 axis for prostate cancer treatment.
Collapse
|
8
|
Berardi DE, Flumian C, Rodriguez CE, Díaz Bessone MI, Cirigliano SM, Bal de Kier Joffé ED, Fiszman GL, Urtreger AJ, Todaro LB. PKCδ Inhibition Impairs Mammary Cancer Proliferative Capacity But Selects Cancer Stem Cells, Involving Autophagy. J Cell Biochem 2015; 117:730-40. [DOI: 10.1002/jcb.25358] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Damián E. Berardi
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - Carolina Flumian
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - Cristina E. Rodriguez
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - María I. Díaz Bessone
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - Stefano M. Cirigliano
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - Elisa D. Bal de Kier Joffé
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - Gabriel L. Fiszman
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - Alejandro J. Urtreger
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - Laura B. Todaro
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
9
|
Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling. Cancers (Basel) 2015; 7:1271-91. [PMID: 26184315 PMCID: PMC4586769 DOI: 10.3390/cancers7030836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/25/2015] [Accepted: 07/03/2015] [Indexed: 12/11/2022] Open
Abstract
The signaling outputs of Receptor Tyrosine Kinases, G-protein coupled receptors and integrins converge to mediate key cell process such as cell adhesion, cell migration, cell invasion and cell proliferation. Once activated by their ligands, these cell surface proteins recruit and direct a diverse range of proteins to disseminate the appropriate response downstream of the specific environmental cues. One of the key groups of proteins required to regulate these activities is the family of serine/threonine intracellular kinases called Protein Kinase Cs. The activity and subcellular location of PKCs are mediated by a series of tightly regulated events and is dependent on several posttranslational modifications and the availability of second messengers. Protein Kinase Cs exhibit both pro- and anti-tumorigenic effects making them an interesting target for anti-cancer treatment.
Collapse
|
10
|
Gutierrez-Uzquiza A, Lopez-Haber C, Jernigan DL, Fatatis A, Kazanietz MG. PKCε Is an Essential Mediator of Prostate Cancer Bone Metastasis. Mol Cancer Res 2015; 13:1336-46. [PMID: 26023164 DOI: 10.1158/1541-7786.mcr-15-0111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/20/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED The bone is a preferred site for metastatic homing of prostate cancer cells. Once prostate cancer patients develop skeletal metastases, they eventually succumb to the disease; therefore, it is imperative to identify key molecular drivers of this process. This study examines the involvement of protein kinase C epsilon (PKCε), an oncogenic protein that is abnormally overexpressed in human tumor specimens and cell lines, on prostate cancer cell bone metastasis. PC3-ML cells, a highly invasive prostate cancer PC3 derivative with bone metastatic colonization properties, failed to induce skeletal metastatic foci upon inoculation into nude mice when PKCε expression was silenced using shRNA. Interestingly, while PKCε depletion had only marginal effects on the proliferative, adhesive, and migratory capacities of PC3-ML cells in vitro or in the growth of xenografts upon s.c. inoculation, it caused a significant reduction in cell invasiveness. Notably, PKCε was required for transendothelial cell migration (TEM) as well as for the growth of PC3-ML cells in a bone biomimetic environment. At a mechanistic level, PKCε depletion abrogates the expression of IL1β, a cytokine implicated in skeletal metastasis. Taken together, PKCε is a key factor for driving the formation of bone metastasis by prostate cancer cells and is a potential therapeutic target for advanced stages of the disease. IMPLICATIONS This study uncovers an important new function of PKCε in the dissemination of cancer cells to the bone; thus, highlighting the promising potential of this oncogenic kinase as a therapeutic target for skeletal metastasis.
Collapse
Affiliation(s)
- Alvaro Gutierrez-Uzquiza
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cynthia Lopez-Haber
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Danielle L Jernigan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania. Program in Biology of Prostate Cancer, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
11
|
Garg R, Benedetti LG, Abera MB, Wang H, Abba M, Kazanietz MG. Protein kinase C and cancer: what we know and what we do not. Oncogene 2014; 33:5225-37. [PMID: 24336328 DOI: 10.1038/onc.2013.524] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/20/2013] [Accepted: 10/20/2013] [Indexed: 02/08/2023]
Abstract
Since their discovery in the late 1970s, protein kinase C (PKC) isozymes represent one of the most extensively studied signaling kinases. PKCs signal through multiple pathways and control the expression of genes relevant for cell cycle progression, tumorigenesis and metastatic dissemination. Despite the vast amount of information concerning the mechanisms that control PKC activation and function in cellular models, the relevance of individual PKC isozymes in the progression of human cancer is still a matter of controversy. Although the expression of PKC isozymes is altered in multiple cancer types, the causal relationship between such changes and the initiation and progression of the disease remains poorly defined. Animal models developed in the last years helped to better understand the involvement of individual PKCs in various cancer types and in the context of specific oncogenic alterations. Unraveling the enormous complexity in the mechanisms by which PKC isozymes have an impact on tumorigenesis and metastasis is key for reassessing their potential as pharmacological targets for cancer treatment.
Collapse
Affiliation(s)
- R Garg
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L G Benedetti
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M B Abera
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Wang
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - M G Kazanietz
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Berardi DE, Bessone MID, Motter A, Bal de Kier Joffé ED, Urtreger AJ, Todaro LB. Involvement of protein kinase C α and δ activities on the induction of the retinoic acid system in mammary cancer cells. Mol Carcinog 2014; 54:1110-21. [PMID: 24838400 DOI: 10.1002/mc.22181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 03/20/2014] [Accepted: 04/17/2014] [Indexed: 01/26/2023]
Abstract
It has been established that retinoids exert some of their effects on cell differentiation and malignant phenotype reversion through the interaction with different members of the protein kinase C (PKC) family. Till nowadays the nature and extension of this interaction is not well understood. Due to the cytostatic and differentiating effects of retinoids, in the present study we propose to evaluate whether the crosstalk between the retinoid system and the PKC pathway could become a possible target for breast cancer treatment. We could determine that ATRA (all-trans retinoic) treatment showed a significant growth inhibition due to (G1 or G2) cell cycle arrest both in LM3 and SKBR3, a murine and human mammary cell line respectively. ATRA also induced a remarkable increase in PKCα and PKCδ expression and activity. Interestingly, the pharmacological inhibition of these two PKC isoforms prevented the activation of retinoic acid receptors (RARs) by ATRA, indicating that both PKC isoforms are required for RARs activation. Moreover, PKCδ inhibition also impaired ATRA-induced RARα translocation to the nucleus. In vivo assays revealed that a combined treatment using ATRA and PKCα inhibitors prevented lung metastatic dissemination in an additive way. Our results clearly indicate that ATRA modulates the expression and activity of different PKCs. Besides inducing cell arrest, the activity of both PKC is necessary for the induction of the retinoic acid system. The combined ATRA and PKCα inhibitors could be an option for the hormone-independent breast cancer treatment.
Collapse
Affiliation(s)
- Damián E Berardi
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Buenos Aires, Argentina
| | - María I Díaz Bessone
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Buenos Aires, Argentina
| | - Andrea Motter
- Scientific Coordination, Operative Unit Biological Containment Center (UOCCB) ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Elisa D Bal de Kier Joffé
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J Urtreger
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Buenos Aires, Argentina
| | - Laura B Todaro
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
13
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
14
|
Jain K, Basu A. The Multifunctional Protein Kinase C-ε in Cancer Development and Progression. Cancers (Basel) 2014; 6:860-78. [PMID: 24727247 PMCID: PMC4074807 DOI: 10.3390/cancers6020860] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 12/31/2022] Open
Abstract
The protein kinase C (PKC) family proteins are important signal transducers and have long been the focus of cancer research. PKCɛ, a member of this family, is overexpressed in most solid tumors and plays critical roles in different processes that lead to cancer development. Studies using cell lines and animal models demonstrated the transforming potential of PKCɛ. While earlier research established the survival functions of PKCɛ, recent studies revealed its role in cell migration, invasion and cancer metastasis. PKCɛ has also been implicated in epithelial to mesenchymal transition (EMT), which may be the underlying mechanism by which it contributes to cell motility. In addition, PKCɛ affects cell-extracellular matrix (ECM) interactions by direct regulation of the cytoskeletal elements. Recent studies have also linked PKCɛ signaling to cancer stem cell functioning. This review focuses on the role of PKCɛ in different processes that lead to cancer development and progression. We also discussed current literatures on the pursuit of PKCɛ as a target for cancer therapy.
Collapse
Affiliation(s)
- Kirti Jain
- Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Institute for Cancer Research, and Focused on Resources for her Health Education and Research, Fort Worth, TX 76107, USA.
| | - Alakananda Basu
- Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Institute for Cancer Research, and Focused on Resources for her Health Education and Research, Fort Worth, TX 76107, USA.
| |
Collapse
|
15
|
Abstract
OBJECTIVE This study aimed to investigate whether the overexpression of protein kinase C β1 (PKCβ1) is able to modulate the malignant phenotype displayed by the human ductal pancreatic carcinoma cell line PANC1. METHODS PKCβ1 overexpression was achieved using a stable transfection approach. PANC1-PKCβ1 and control cells were analyzed both in vitro and in vivo. RESULTS PANC1-PKCβ1 cells displayed a lower growth capacity associated with the down-regulation of the MEK/ERK pathway and cyclin expression. Furthermore, PKCβ1 overexpression was associated with an enhancement of cell adhesion to fibronectin and with reduced migratory and invasive phenotypes. In agreement with these results, PANC1-PKCβ1 cells showed an impaired ability to secrete proteolytic enzymes. We also found that PKCβ1 overexpressing cells were more resistant to cell death induced by serum deprivation, an event associated with G0/G1 arrest and the modulation of PI3K/Akt and NF-κB pathways. Most notably, the overexpression of PKCβ1 completely abolished the ability of PANC1 cells to induce tumors in nude mice. CONCLUSIONS Our results established an important role for PKCβ1 in PANC1 cells suggesting it would act as a suppressor of tumorigenic behavior in pancreatic cancer.
Collapse
|
16
|
Protein kinase C epsilon and genetic networks in osteosarcoma metastasis. Cancers (Basel) 2013; 5:372-403. [PMID: 24216982 PMCID: PMC3730329 DOI: 10.3390/cancers5020372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of the bone, and pulmonary metastasis is the most frequent cause of OS mortality. The aim of this study was to discover and characterize genetic networks differentially expressed in metastatic OS. Expression profiling of OS tumors, and subsequent supervised network analysis, was performed to discover genetic networks differentially activated or organized in metastatic OS compared to localized OS. Broad trends among the profiles of metastatic tumors include aberrant activity of intracellular organization and translation networks, as well as disorganization of metabolic networks. The differentially activated PRKCε-RASGRP3-GNB2 network, which interacts with the disorganized DLG2 hub, was also found to be differentially expressed among OS cell lines with differing metastatic capacity in xenograft models. PRKCε transcript was more abundant in some metastatic OS tumors; however the difference was not significant overall. In functional studies, PRKCε was not found to be involved in migration of M132 OS cells, but its protein expression was induced in M112 OS cells following IGF-1 stimulation.
Collapse
|
17
|
Tan Y, Li X, Prabhu SD, Brittian KR, Chen Q, Yin X, McClain CJ, Zhou Z, Cai L. Angiotensin II plays a critical role in alcohol-induced cardiac nitrative damage, cell death, remodeling, and cardiomyopathy in a protein kinase C/nicotinamide adenine dinucleotide phosphate oxidase-dependent manner. J Am Coll Cardiol 2012; 59:1477-86. [PMID: 22497828 DOI: 10.1016/j.jacc.2011.12.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/12/2011] [Accepted: 12/15/2011] [Indexed: 10/28/2022]
Abstract
OBJECTIVES The purpose of this study was to examine the cellular and molecular mechanisms underlying alcoholic cardiomyopathy. BACKGROUND The mechanism for alcoholic cardiomyopathy remains largely unknown. METHODS The chronic cardiac effects of alcohol were examined in mice feeding with alcohol or isocaloric control diet for 2 months. Signaling pathways of alcohol-induced cardiac cell death were examined in H9c2 cells. RESULTS Compared with controls, hearts from alcohol-fed mice exhibited increased apoptosis, along with significant nitrative damage, demonstrated by 3-nitrotyrosine abundance. Alcohol exposure to H9c2 cells induced apoptosis, accompanied by 3-nitrotyrosine accumulation and nicotinamide adenine dinucleotide phosphate oxidase (NOX) activation. Pre-incubation of H9c2 cells with urate (peroxynitrite scavenger), N(G)-nitro-L-arginine methyl ester (a nitric oxide synthase inhibitor), manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (a superoxide dismutase mimetic), and apocynin (NOX inhibitor) abrogated alcohol-induced apoptosis. Furthermore, alcohol exposure significantly increased the expression of angiotensin II and its type 1 receptor (AT1). A protein kinase C (PKC)-α/β1 inhibitor or PKC-β1 small interfering RNA and an AT1 blocker prevented alcohol-induced activation of NOX, and the AT1 blocker losartan significantly inhibited the expression of PKC-β1, indicating that alcohol-induced activation of NOX is mediated by PKC-β1 via AT1. To define the role of AT1-mediated PKC/NOX-derived superoxide generation in alcohol-induced cardiotoxicity, mice with knockout of the AT1 gene and wild-type mice were simultaneously treated with alcohol for 2 months. The knockout AT1 gene completely prevented cardiac nitrative damage, cell death, remodeling, and dysfunction. More importantly, pharmacological treatment of alcoholic mice with superoxide dismutase mimetic also significantly prevented cardiac nitrative damage, cell death, and remodeling. CONCLUSIONS Alcohol-induced nitrative stress and apoptosis, which are mediated by angiotensin II interaction with AT1 and subsequent activation of a PKC-β1-dependent NOX pathway, are a causal factor in the development of alcoholic cardiomyopathy.
Collapse
Affiliation(s)
- Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Caino MC, Lopez-Haber C, Kissil JL, Kazanietz MG. Non-small cell lung carcinoma cell motility, rac activation and metastatic dissemination are mediated by protein kinase C epsilon. PLoS One 2012; 7:e31714. [PMID: 22384062 PMCID: PMC3288050 DOI: 10.1371/journal.pone.0031714] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
Background Protein kinase C (PKC) ε, a key signaling transducer implicated in mitogenesis, survival, and cancer progression, is overexpressed in human primary non-small cell lung cancer (NSCLC). The role of PKCε in lung cancer metastasis has not yet been established. Principal Findings Here we show that RNAi-mediated knockdown of PKCε in H358, H1299, H322, and A549 NSCLC impairs activation of the small GTPase Rac1 in response to phorbol 12-myristate 13-acetate (PMA), serum, or epidermal growth factor (EGF). PKCε depletion markedly impaired the ability of NSCLC cells to form membrane ruffles and migrate. Similar results were observed by pharmacological inhibition of PKCε with εV1-2, a specific PKCε inhibitor. PKCε was also required for invasiveness of NSCLC cells and modulated the secretion of extracellular matrix proteases and protease inhibitors. Finally, we found that PKCε-depleted NSCLC cells fail to disseminate to lungs in a mouse model of metastasis. Conclusions Our results implicate PKCε as a key mediator of Rac signaling and motility of lung cancer cells, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- M Cecilia Caino
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | | |
Collapse
|
19
|
Urtreger AJ, Kazanietz MG, Bal de Kier Joffé ED. Contribution of individual PKC isoforms to breast cancer progression. IUBMB Life 2011; 64:18-26. [DOI: 10.1002/iub.574] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/10/2011] [Indexed: 12/20/2022]
|