1
|
Deb VK, Jain U. Ti 3C 2 (MXene), an advanced carrier system: role in photothermal, photoacoustic, enhanced drugs delivery and biological activity in cancer therapy. Drug Deliv Transl Res 2024; 14:3009-3031. [PMID: 38713400 DOI: 10.1007/s13346-024-01572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
In the realm of healthcare and the advancing field of medical sciences, the development of efficient drug delivery systems become an immense promise to cure several diseases. Despite considerable advancements in drug delivery systems, numerous challenges persist, necessitating further enhancements to optimize patient outcomes. Smart nano-carriers, for instance, 2D sheets nano-carriers are the recently emerging nanosheets that may garner attention for targeted delivery of bioactive compounds, drugs, and genes to kill cancer cells. Within these advancements, Ti3C2TX-MXene, characterized as a two-dimensional transition metal carbide, has surfaced as a prominent intelligent nanocarrier within nanomedicine. Its noteworthy characteristics facilitated it as an ideal nanocarrier for cancer therapy. In recent advancements in drug delivery research, Ti3C2TX-MXene 2D nanocarriers have been designed to release drugs in response to specific stimuli, guided by distinct physicochemical parameters. This review emphasized the multifaceted role of Ti3C2TX-MXene as a potential carrier for delivering poorly hydrophilic drugs to cancer cells, facilitated by various polymer coatings. Furthermore, beyond drug delivery, this smart nanocarrier demonstrates utility in photoacoustic imaging and photothermal therapy, further highlighting its significant role in cellular mechanisms.
Collapse
Affiliation(s)
- Vishal Kumar Deb
- School of Health Sciences and Technology (SoHST), UPES, Dehradun 248007, Uttarakhand, India
| | - Utkarsh Jain
- School of Health Sciences and Technology (SoHST), UPES, Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
2
|
Phull S, Marx D, Akens MK, Ghert M, Towler MR. In vitroassessment of a gallium-doped glass polyalkenoate cement: chemotherapeutic potential, cytotoxicity and osteogenic effects. Biomed Mater 2024; 19:055006. [PMID: 38917820 DOI: 10.1088/1748-605x/ad5ba5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Metastatic bone lesions are often osteolytic, which causes advanced-stage cancer sufferers to experience severe pain and an increased risk of developing a pathological fracture. Gallium (Ga) ion possesses antineoplastic and anti-bone resorption properties, suggesting the potential for its local administration to impede the growth of metastatic bone lesions. This study investigated the chemotherapeutic potential, cytotoxicity, and osteogenic effects of a Ga-doped glass polyalkenoate cement (GPC) (C-TA2) compared to its non-gallium (C-TA0) counterpart. Ion release profiles revealed a biphasic pattern characterized by an initial burst followed by a gradually declining release of ions. C-TA2 continued to release Ga steadily throughout the experimentation period (7 d) and exhibited prolonged zinc (Zn) release compared to C-TA0. Interestingly, the Zn release from both GPCs appeared to cause a chemotherapeutic effect against H1092 lung cancer cellsin vitro, with the prolonged Zn release from C-TA2 extending this effect. Unfortunately, both GPCs enhanced the viability of HCC2218 breast cancer cells, suggesting that the chemotherapeutic effects of Zn could be tied to cellular differences in preferred Zn concentrations. The utilization of SAOS-2 and MC3T3 cell lines as bone cell models yielded conflicting results, with the substantial decline in MC3T3 viability closely associated with silicon (Si) release, indicating cellular variations in Si toxicity. Despite this ambiguity, both GPCs exhibited harmful effects on the osteogenesis of primary rat osteoblasts, raising concerns about excessive burst Zn release. While Ga/Zn-doped GPCs hold promise for treating metastatic bone lesions caused by lung cancers, further optimization is required to mitigate cytotoxicity on healthy bone.
Collapse
Affiliation(s)
- Sunjeev Phull
- Department of Mechanical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Daniella Marx
- Department of Mechanical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Margarete K Akens
- University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Michelle Ghert
- Department of Surgery, McMaster University, Hamilton L8V 5C2, ON, Canada
| | - Mark R Towler
- Department of Chemical & Biochemical Engineering, Missouri S&T, Rolla, MO, United States of America
| |
Collapse
|
3
|
Zhang K, Feng Y, Qiao X, Yu Y, Song Z, Liu Z, Tian Z, Chen S, Zhang X, Wang X. Experimental research on spinal metastasis with mouse models. Chin Med J (Engl) 2023; 136:3008-3009. [PMID: 37974324 PMCID: PMC10752490 DOI: 10.1097/cm9.0000000000002922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 11/19/2023] Open
Affiliation(s)
- Kun Zhang
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yi Feng
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, China
| | - Xiaochen Qiao
- Department of Orthopedics, JinZhong Hospital Affiliated to Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Yang Yu
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zelong Song
- Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhuohao Liu
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhi Tian
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Song Chen
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xuesong Zhang
- Department of Orthopaedics, the PLA General Hospital, Beijing 100853, China
| | - Xiangyu Wang
- Department of Pain medicine, First Medical Center, the PLA General Hospital, Beijing 100853, China
| |
Collapse
|
4
|
Zhang W, Taheri-Ledari R, Ganjali F, Afruzi FH, Hajizadeh Z, Saeidirad M, Qazi FS, Kashtiaray A, Sehat SS, Hamblin MR, Maleki A. Nanoscale bioconjugates: A review of the structural attributes of drug-loaded nanocarrier conjugates for selective cancer therapy. Heliyon 2022; 8:e09577. [PMID: 35706949 PMCID: PMC9189039 DOI: 10.1016/j.heliyon.2022.e09577] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
Nanobioconjugates are nanoscale drug delivery vehicles that have been conjugated to or decorated with biologically active targeting ligands. These targeting ligands can be antibodies, peptides, aptamers, or small molecules such as vitamins or hormones. Most research studies in this field have been devoted to targeting cancer. Moreover, the nanostructures can be designed with an additional level of targeting by being designed to be stimulus-responsive or "smart" by a judicious choice of materials to be incorporated into the hybrid nanostructures. This stimulus could be an acidic pH, raised temperature, enzyme, ultrasound, redox potential, an externally applied magnetic field, or laser irradiation. In this case, the smart capability can increase the accumulation at the tumor site or the on-demand drug release, while the ligand ensures selective binding to the tumor cells. The present review highlights some interesting studies classified according to the nanostructure material. These materials include natural substances (polysaccharides), multi-walled carbon nanotubes (and halloysite nanotubes), metal-organic frameworks and covalent-organic frameworks, metal nanoparticles (gold and silver), and polymeric micelles.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu 610041, Sichuan Province, PR China
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fereshte Hassanzadeh Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Zoleikha Hajizadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Samin Sadat Sehat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
5
|
Li Z, Nguyen L, Bass DA, Baran TM. Effects of patient-specific treatment planning on eligibility for photodynamic therapy of deep tissue abscess cavities: retrospective Monte Carlo simulation study. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:083007. [PMID: 35146973 PMCID: PMC8831513 DOI: 10.1117/1.jbo.27.8.083007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Antimicrobial photodynamic therapy (PDT) effectively kills bacterial strains found in deep tissue abscess cavities. PDT response hinges on multiple factors, including light dose, which depends on patient optical properties. AIM Computed tomography images for 60 abscess drainage subjects were segmented and used for Monte Carlo (MC) simulation. We evaluated effects of optical properties and abscess morphology on PDT eligibility and generated treatment plans. APPROACH A range of abscess wall absorptions (μa , wall) and intra-cavity Intralipid concentrations were simulated. At each combination, the threshold optical power and optimal Intralipid concentration were found for a fluence rate target, with subjects being eligible for PDT if the target was attainable with <2000 mW of source light. Further simulations were performed with absorption within the cavity (μa , cavity). RESULTS Patient-specific treatment planning substantially increased the number of subjects expected to achieve an efficacious light dose for antimicrobial PDT, especially with Intralipid modification. The threshold optical power and optimal Intralipid concentration increased with increasing μa , wall (p < 0.001). PDT eligibility improved with patient-specific treatment planning (p < 0.0001). With μa , wall = 0.2 cm - 1, eligibility increased from 42% to 92%. Increasing μa , cavity reduced PDT eligibility (p < 0.0001); modifying the delivered optical power had the greatest impact in this case. CONCLUSIONS MC-based treatment planning greatly increases eligibility for PDT of abscess cavities.
Collapse
Affiliation(s)
- Zihao Li
- University of Rochester, The Institute of Optics, Rochester, New York, United States
| | - Lam Nguyen
- University of Rochester, Department of Biomedical Engineering, Rochester, New York, United States
| | - David A. Bass
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, New York, United States
| | - Timothy M. Baran
- University of Rochester, Department of Biomedical Engineering, Rochester, New York, United States
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, New York, United States
| |
Collapse
|
6
|
Sun J, Xing F, Braun J, Traub F, Rommens PM, Xiang Z, Ritz U. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Int J Mol Sci 2021; 22:ijms222111354. [PMID: 34768789 PMCID: PMC8584114 DOI: 10.3390/ijms222111354] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Bone cancer including primary bone cancer and metastatic bone cancer, remains a challenge claiming millions of lives and affecting the life quality of survivors. Conventional treatments of bone cancer include wide surgical resection, radiotherapy, and chemotherapy. However, some bone cancer cells may remain or recur in the local area after resection, some are highly resistant to chemotherapy, and some are insensitive to radiotherapy. Phototherapy (PT) including photodynamic therapy (PDT) and photothermal therapy (PTT), is a clinically approved, minimally invasive, and highly selective treatment, and has been widely reported for cancer therapy. Under the irradiation of light of a specific wavelength, the photosensitizer (PS) in PDT can cause the increase of intracellular ROS and the photothermal agent (PTA) in PTT can induce photothermal conversion, leading to the tumoricidal effects. In this review, the progress of PT applications in the treatment of bone cancer has been outlined and summarized, and some envisioned challenges and future perspectives have been mentioned. This review provides the current state of the art regarding PDT and PTT in bone cancer and inspiration for future studies on PT.
Collapse
Affiliation(s)
- Jiachen Sun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Joy Braun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Frank Traub
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Pol Maria Rommens
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
- Correspondence: (Z.X.); (U.R.)
| | - Ulrike Ritz
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Correspondence: (Z.X.); (U.R.)
| |
Collapse
|
7
|
Yassine AA, Lo WCY, Saeidi T, Ferguson D, Whyne CM, Akens MK, Betz V, Lilge L. Photodynamic therapy outcome modelling for patients with spinal metastases: a simulation-based study. Sci Rep 2021; 11:17871. [PMID: 34504208 PMCID: PMC8429418 DOI: 10.1038/s41598-021-97407-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal metastases often occur in the advanced stages of breast, lung or prostate cancer, resulting in a significant impact on the patient's quality of life. Current treatment modalities for spinal metastases include both systemic and localized treatments that aim to decrease pain, improve mobility and structural stability, and control tumour growth. With the development of non-toxic photosensitizer drugs, photodynamic therapy (PDT) has shown promise as a minimally invasive non-thermal alternative in oncology, including for spinal metastases. To apply PDT to spinal metastases, predictive algorithms that optimize tumour treatment and minimize the risk of spinal cord damage are needed to assess the feasibility of the treatment and encourage a broad acceptance of PDT in clinical trials. This work presents a framework for PDT modelling and planning, and simulates the feasibility of using a BPD-MA mediated PDT to treat bone metastases at two different wavelengths (690 nm and 565 nm). An open-source software for PDT planning, PDT-SPACE, is used to evaluate different configurations of light diffusers (cut-end and cylindrical) fibres with optimized power allocation in order to minimize the damage to spinal cord or maximize tumour destruction. The work is simulated on three CT images of metastatically involved vertebrae acquired from three patients with spinal metastases secondary to colorectal or lung cancer. Simulation results show that PDT at a 565 nm wavelength has the ability to treat 90% of the metastatic lesion with less than 17% damage to the spinal cord. However, the energy required, and hence treatment time, to achieve this outcome with the 565 nm is infeasible. The energy required and treatment time for the longer wavelength of 690 nm is feasible ([Formula: see text] min), but treatment aimed at 90% of the metastatic lesion would severely damage the proximal spinal cord. PDT-SPACE provides a simulation platform that can be used to optimize PDT delivery in the metastatic spine. While this work serves as a prospective methodology to analyze the feasibility of PDT for tumour ablation in the spine, preclinical studies in an animal model are ongoing to elucidate the spinal cord damage extent as a function of PDT dose, and the resulting short and long term functional impairments. These will be required before there can be any consideration of clinical trials.
Collapse
Affiliation(s)
- Abdul-Amir Yassine
- grid.17063.330000 0001 2157 2938Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - William C. Y. Lo
- grid.38142.3c000000041936754XHarvard Medical School, Boston, MA 02115 USA ,grid.116068.80000 0001 2341 2786Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA 02142 USA
| | - Tina Saeidi
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7 Canada
| | - Dallis Ferguson
- grid.17063.330000 0001 2157 2938Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada ,grid.17063.330000 0001 2157 2938Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Cari M. Whyne
- grid.17063.330000 0001 2157 2938Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada ,grid.17063.330000 0001 2157 2938Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada ,grid.17063.330000 0001 2157 2938Department of Surgery, University of Toronto, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Holland Bone and Joint Research Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Margarete K. Akens
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Department of Surgery, University of Toronto, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Techna Institute, University Health Network, Toronto, ON M5T 1P5 Canada
| | - Vaughn Betz
- grid.17063.330000 0001 2157 2938Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - Lothar Lilge
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
8
|
Ghomashchi S, Whyne CM, Chinnery T, Habach F, Akens MK. Impact of radiofrequency ablation (RFA) on bone quality in a murine model of bone metastases. PLoS One 2021; 16:e0256076. [PMID: 34495961 PMCID: PMC8425524 DOI: 10.1371/journal.pone.0256076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
Thermal therapies such as radiofrequency ablation (RFA) are gaining widespread clinical adoption in the local treatment of skeletal metastases. RFA has been shown to successfully destroy tumor cells, yet the impact of RFA on the quality of the surrounding bone has not been well characterized. RFA treatment was performed on femora of rats with bone metastases (osteolytic and osteoblastic) and healthy age matched rats. Histopathology, second harmonic generation imaging and backscatter electron imaging were used to characterize changes in the structure, organic and mineral components of the bone after RFA. RFA treatment was shown to be effective in targeting tumor cells and promoting subsequent new bone formation without impacting the surrounding bone negatively. Mineralization profiles of metastatic models were significantly improved post-RFA treatment with respect to mineral content and homogeneity, suggesting a positive impact of RFA treatment on the quality of cancer involved bone. Evaluating the impact of RFA on bone quality is important in directing the growth of this minimally invasive therapeutic approach with respect to fracture risk assessment, patient selection, and multimodal treatment planning.
Collapse
Affiliation(s)
- Soroush Ghomashchi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cari M. Whyne
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Tricia Chinnery
- Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Fayez Habach
- Department of Physics, University of Toronto, Ontario, Canada
| | - Margarete K. Akens
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Techna Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Price MJ, Baëta C, Dalton TE, Nguyen A, Lavau C, Pennington Z, Sciubba DM, Goodwin CR. Animal Models of Metastatic Lesions to the Spine: a Focus on Epidural Spinal Cord Compression. World Neurosurg 2021; 155:122-134. [PMID: 34343682 DOI: 10.1016/j.wneu.2021.07.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022]
Abstract
Epidural spinal cord compression (ESCC) secondary to spine metastases is one of the most devastating sequelae of primary cancer as it may lead to muscle weakness, paresthesia, pain, and paralysis. Spine metastases occur through a multi-step process that can result in eventual ESCC; however, the lack of a preclinical model to effectively recapitulate each step of this metastatic cascade and the symptom burden of ESCC has limited our understanding of this disease process. In this review, we discuss animal models that best recapitulate ESCC; we start with a broad discussion of commonly used models of bone metastasis and end with a focused discussion of models used to specifically study ESCC. Orthotopic models offer the most authentic recapitulation of metastasis development; however, they rarely result in symptomatic ESCC and are challenging to replicate. Conversely, models that involve injection of tumor cells directly into the bloodstream or bone better mimic the symptoms of ESCC; however, they provide limited insight into the epithelial to mesenchymal transition (EMT) and natural hematogenous spread of tumor cell. Therefore, until an ideal model is created, it is critical to select an animal model that is specifically designed to answer the scientific question of interest.
Collapse
Affiliation(s)
- Meghan J Price
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - César Baëta
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Tara E Dalton
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Annee Nguyen
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Catherine Lavau
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zach Pennington
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra, Long Island Jewish Medical Center and North Shore University Hospital, Northwell Health, Manhasset, New York, USA
| | - C Rory Goodwin
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
10
|
Su CT, Chen CJ, Chen CM, Chen CC, Ma SH, Wu JH. Optical profile: A key determinant of antibacterial efficacy of photodynamic therapy in dentistry. Photodiagnosis Photodyn Ther 2021; 35:102461. [PMID: 34314864 DOI: 10.1016/j.pdpdt.2021.102461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Periodontal disease effects 20-50% of the population worldwide, posing a global health challenge. It has been reported to be more prevalent among adults. Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans) is an important organism associated with localized juvenile periodontitis. Photodynamic therapy (PDT) has been widely utilized for the treatment of periodontal disease; however, the effect of laser (light) profile on the antibacterial efficacy of PDT remains to be established. The quantitative measurement of laser profile is required to confirm the in vitro efficacy of PDT. AIM In the present study, a low cost PDT system comprising of six copper tube waveguides (CTW) was developed to provide more uniform irradiation of the culture plate. METHODS The antibacterial effect of PDT, in combination with 200 μg/mL methylene blue (MB) as photosensitizer and 60 sec of irradiation, was studied on A. actinomycetemcomitans and Streptococcus mutans (S. mutans). In the present case, 660 nm laser guided with unpolished CTW, polished CTW, and optical fiber waveguide (OFW) provided radiant exposure of 0.86, 1.38, and 1.36 J/cm2, respectively, for a 24-well culture plate. RESULTS The designed PDT system provided antimicrobial efficacy of 98% and 91% for A. actinomycetemcomitans and S. mutans, respectively, which was significantly higher as compared to OFW guided PDT. CONCLUSION The results of the study highlighted the importance of laser profile as a key parameter that determines the survival rate of bacteria at the edge of the culture plate. Thus, the dose of PDT at the margin of optical profile is important for antibacterial activity for in vitro evaluation.
Collapse
Affiliation(s)
- Chuan-Tsung Su
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei City, 10617, Taiwan
| | - Chun-Ju Chen
- Institute of Oral Science, Chung Shan Medical University, No. 110, Section 1, Jianguo North Road, Taichung City, 40201, Taiwan
| | - Chung-Ming Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei City, 10617, Taiwan
| | - Chun-Cheng Chen
- Department of Stomatology, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo North Road, Taichung City, 40201, Taiwan; School of Dentistry, Chung Shan Medical University, No. 110, Section 1, Jianguo North Road, Taichung City, 40201, Taiwan
| | - Shih-Hsin Ma
- Department of Photonics, Feng Chia University, No. 100, Wenhwa Road., Seatwen District, Taichung City, 40724, Taiwan
| | - Jih-Huah Wu
- Department of Biomedical Engineering, Ming Chuan University, No. 5, Deming Road., Gweishan District, Taoyuan, 33348, Taiwan.
| |
Collapse
|
11
|
Comprehensive understanding of anchorage-independent survival and its implication in cancer metastasis. Cell Death Dis 2021; 12:629. [PMID: 34145217 PMCID: PMC8213763 DOI: 10.1038/s41419-021-03890-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Detachment is the initial and critical step for cancer metastasis. Only the cells that survive from detachment can develop metastases. Following the disruption of cell-extracellular matrix (ECM) interactions, cells are exposed to a totally different chemical and mechanical environment. During which, cells inevitably suffer from multiple stresses, including loss of growth stimuli from ECM, altered mechanical force, cytoskeletal reorganization, reduced nutrient uptake, and increased reactive oxygen species generation. Here we review the impact of these stresses on the anchorage-independent survival and the underlying molecular signaling pathways. Furthermore, its implications in cancer metastasis and treatment are also discussed.
Collapse
|
12
|
Zhang S, Xu Y, Xie C, Ren L, Wu G, Yang M, Wu X, Tang M, Hu Y, Li Z, Yu R, Liao X, Mo S, Wu J, Li M, Song E, Qi Y, Song L, Li J. RNF219/ α-Catenin/LGALS3 Axis Promotes Hepatocellular Carcinoma Bone Metastasis and Associated Skeletal Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001961. [PMID: 33643786 PMCID: PMC7887580 DOI: 10.1002/advs.202001961] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/18/2020] [Indexed: 05/10/2023]
Abstract
The incidence of bone metastases in hepatocellular carcinoma (HCC) has increased prominently over the past decade owing to the prolonged overall survival of HCC patients. However, the mechanisms underlying HCC bone-metastasis remain largely unknown. In the current study, HCC-secreted lectin galactoside-binding soluble 3 (LGALS3) is found to be significantly upregulated and correlates with shorter bone-metastasis-free survival of HCC patients. Overexpression of LGALS3 enhances the metastatic capability of HCC cells to bone and induces skeletal-related events by forming a bone pre-metastatic niche via promoting osteoclast fusion and podosome formation. Mechanically, ubiquitin ligaseRNF219-meidated α-catenin degradation prompts YAP1/β-catenin complex-dependent epigenetic modifications of LGALS3 promoter, resulting in LGALS3 upregulation and metastatic bone diseases. Importantly, treatment with verteporfin, a clinical drug for macular degeneration, decreases LGALS3 expression and effectively inhibits skeletal complications of HCC. These findings unveil a plausible role for HCC-secreted LGALS3 in pre-metastatic niche and can suggest a promising strategy for clinical intervention in HCC bone-metastasis.
Collapse
Affiliation(s)
- Shuxia Zhang
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Yingru Xu
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Chan Xie
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Liangliang Ren
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Geyan Wu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Meisongzhu Yang
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Xingui Wu
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Miaoling Tang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Yameng Hu
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ziwen Li
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ruyuan Yu
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Xinyi Liao
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Shuang Mo
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Jueheng Wu
- Department of MicrobiologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Mengfeng Li
- Department of MicrobiologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Erwei Song
- Department of Breast OncologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yanfei Qi
- Centenary InstituteUniversity of SydneySydney2000Australia
| | - Libing Song
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Jun Li
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| |
Collapse
|
13
|
Verteporfin-Loaded Lipid Nanoparticles Improve Ovarian Cancer Photodynamic Therapy In Vitro and In Vivo. Cancers (Basel) 2019; 11:cancers11111760. [PMID: 31717427 PMCID: PMC6896159 DOI: 10.3390/cancers11111760] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced ovarian cancer is the most lethal gynecological cancer, with a high rate of chemoresistance and relapse. Photodynamic therapy offers new prospects for ovarian cancer treatment, but current photosensitizers lack tumor specificity, resulting in low efficacy and significant side-effects. In the present work, the clinically approved photosensitizer verteporfin was encapsulated within nanostructured lipid carriers (NLC) for targeted photodynamic therapy of ovarian cancer. Cellular uptake and phototoxicity of free verteporfin and NLC-verteporfin were studied in vitro in human ovarian cancer cell lines cultured in 2D and 3D-spheroids, and biodistribution and photodynamic therapy were evaluated in vivo in mice. Both molecules were internalized in ovarian cancer cells and strongly inhibited tumor cells viability when exposed to laser light only. In vivo biodistribution and pharmacokinetic studies evidenced a long circulation time of NLC associated with efficient tumor uptake. Administration of 2 mg.kg-1 free verteporfin induced severe phototoxic adverse effects leading to the death of 5 out of 8 mice. In contrast, laser light exposure of tumors after intravenous administration of NLC-verteporfin (8 mg.kg-1) significantly inhibited tumor growth without visible toxicity. NLC-verteporfin thus led to efficient verteporfin vectorization to the tumor site and protection from side-effects, providing promising therapeutic prospects for photodynamic therapy of cancer.
Collapse
|
14
|
Giraud J, Molina-Castro S, Seeneevassen L, Sifré E, Izotte J, Tiffon C, Staedel C, Boeuf H, Fernandez S, Barthelemy P, Megraud F, Lehours P, Dubus P, Varon C. Verteporfin targeting YAP1/TAZ-TEAD transcriptional activity inhibits the tumorigenic properties of gastric cancer stem cells. Int J Cancer 2019; 146:2255-2267. [PMID: 31489619 DOI: 10.1002/ijc.32667] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/07/2019] [Indexed: 12/28/2022]
Abstract
Gastric carcinomas (GC) are heterogeneous tumors, composed of a subpopulation of cluster of differentiation-44 (CD44)+ tumorigenic and chemoresistant cancer stem cells (CSC). YAP1 and TAZ oncoproteins (Y/T) interact with TEA domain family member 1 (TEAD) transcription factors to promote cell survival and proliferation in multiple tissues. Their activity and role in GC remain unclear. This work aimed to analyze Y/T-TEAD activity and molecular signature in gastric CSC, and to assess the effect of verteporfin, a Food and Drug Administration-approved drug preventing Y/T-TEAD interaction, on gastric CSC tumorigenic properties. Y/T-TEAD molecular signature was investigated using bioinformatical (KmPlot database), transcriptomic and immunostaining analyses in patient-derived GC and cell lines. Verteporfin effects on Y/T-TEAD transcriptional activity, CSC proliferation and tumorigenic properties were evaluated using in vitro tumorsphere assays and mouse models of patient-derived GC xenografts. High expressions of YAP1, TAZ, TEAD1, TEAD4 and their target genes were associated with low overall survival in nonmetastatic human GC patients (n = 444). This Y/T-TEAD molecular signature was enriched in CD44+ patient-derived GC cells and in cells resistant to conventional chemotherapy. Verteporfin treatment inhibited Y/T-TEAD transcriptional activity, cell proliferation and CD44 expression, and decreased the pool of tumorsphere-forming CD44+ /aldehyde dehydrogenase (ALDH)high gastric CSC. Finally, verteporfin treatment inhibited GC tumor growth in vivo; the residual tumor cells exhibited reduced expressions of CD44 and ALDH1, and more importantly, they were unable to initiate new tumorspheres in vitro. All these data demonstrate that Y/T-TEAD activity controls gastric CSC tumorigenic properties. The repositioning of verteporfin targeting YAP1/TAZ-TEAD activity could be a promising CSC-based strategy for the treatment of GC.
Collapse
Affiliation(s)
- Julie Giraud
- INSERM U1053 Bordeaux Research in Translational Oncology, University of Bordeaux, Bordeaux, France
| | - Silvia Molina-Castro
- INSERM U1053 Bordeaux Research in Translational Oncology, University of Bordeaux, Bordeaux, France.,INISA/School of Medicine, University of Costa Rica, San José, Costa Rica
| | - Lornella Seeneevassen
- INSERM U1053 Bordeaux Research in Translational Oncology, University of Bordeaux, Bordeaux, France
| | - Elodie Sifré
- INSERM U1053 Bordeaux Research in Translational Oncology, University of Bordeaux, Bordeaux, France
| | - Julien Izotte
- INSERM U1053 Bordeaux Research in Translational Oncology, University of Bordeaux, Bordeaux, France
| | - Camille Tiffon
- INSERM U1053 Bordeaux Research in Translational Oncology, University of Bordeaux, Bordeaux, France
| | - Cathy Staedel
- INSERM U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux, France
| | - Hélène Boeuf
- INSERM U1026 BioTIS, University of Bordeaux, Bordeaux, France
| | - Solène Fernandez
- INSERM U1053 Bordeaux Research in Translational Oncology, University of Bordeaux, Bordeaux, France
| | - Philippe Barthelemy
- INSERM U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux, France
| | - Francis Megraud
- INSERM U1053 Bordeaux Research in Translational Oncology, University of Bordeaux, Bordeaux, France.,CHU de Bordeaux, Bordeaux, France.,National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
| | - Philippe Lehours
- INSERM U1053 Bordeaux Research in Translational Oncology, University of Bordeaux, Bordeaux, France.,CHU de Bordeaux, Bordeaux, France.,National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
| | - Pierre Dubus
- INSERM U1053 Bordeaux Research in Translational Oncology, University of Bordeaux, Bordeaux, France.,CHU de Bordeaux, Bordeaux, France
| | - Christine Varon
- INSERM U1053 Bordeaux Research in Translational Oncology, University of Bordeaux, Bordeaux, France
| |
Collapse
|
15
|
Fisher C, Ali Z, Detsky J, Sahgal A, David E, Kunz M, Akens M, Chow E, Whyne C, Burch S, Wilson BC, Yee A. Photodynamic Therapy for the Treatment of Vertebral Metastases: A Phase I Clinical Trial. Clin Cancer Res 2019; 25:5766-5776. [DOI: 10.1158/1078-0432.ccr-19-0673] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/20/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022]
|
16
|
Liao T, Wei WJ, Wen D, Hu JQ, Wang Y, Ma B, Cao YM, Xiang J, Guan Q, Chen JY, Sun GH, Zhu YX, Li DS, Ji QH. Verteporfin inhibits papillary thyroid cancer cells proliferation and cell cycle through ERK1/2 signaling pathway. J Cancer 2018; 9:1329-1336. [PMID: 29721041 PMCID: PMC5929076 DOI: 10.7150/jca.21915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/09/2017] [Indexed: 02/03/2023] Open
Abstract
Verteporfin, a FDA approved second-generation photosensitizer, has been demonstrated to have anticancer activity in various tumors, but not including papillary thyroid cancer (PTC). In current pre-clinical pilot study, we investigate the effect of verteporfin on proliferation, apoptosis, cell cycle and tumor growth of PTC. Our results indicate verteporfin attenuates cell proliferation, arrests cell cycle in G2/S phase and induces apoptosis of PTC cells. Moreover, treatment of verteporfin dramatically suppresses tumor growth from PTC cells in xenograft mouse model. We further illustrate that exposure to MEK inhibitor U0126 inactivates phosphorylation of ERK1/2 and MEK in verteporfin-treated PTC cells. These data suggest verteporfin exhibits inhibitory effect on PTC cells proliferation and cell cycle partially via ERK1/2 signalling pathway, which strongly encourages the further application of verteporfin in the treatment against PTC.
Collapse
Affiliation(s)
- Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen-Jun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Duo Wen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia-Qian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Min Cao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jun Xiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qing Guan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia-Ying Chen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guo-Hua Sun
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yong-Xue Zhu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Duan-Shu Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
Park KE, Noh YW, Kim A, Lim YT. Hyaluronic acid-coated nanoparticles for targeted photodynamic therapy of cancer guided by near-infrared and MR imaging. Carbohydr Polym 2017; 157:476-483. [DOI: 10.1016/j.carbpol.2016.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/29/2016] [Accepted: 10/06/2016] [Indexed: 12/16/2022]
|
18
|
Abstract
The current study was to perform qualitative comparison of photodynamic therapy (PDT), based on previously published articles on spinal disease distribution status before and after treatment. Spinal metastasis, the migration of primary cancer cells and establishment of secondary tumors in the spine. We electronically searched CENTRAL (The Cochrane Library 2012), MEDLINE, EMBASE, CINAHL and AMED (from their beginning to December 31, 2012) to identify published studies assessing the effectiveness of PDT in spinal metastases. Our inclusion criteria resulted in only 4 articles, all in mice models. Due to study limitations and sparse data, the quality of evidence for all outcomes was low. Our analyses shows that effects on stereological and mechanical properties observed at the 1-week time point post-PDT are maintained at a longer 6-week time point, with combined PDT + bisphosphonate treatment being the most beneficial in terms of bone enhancement. Additionally, the combination of PDT + radiation therapy also demonstrated significant increases in stereological parameters, suggesting that previous radiation therapy treatment does not preclude the bone-enhancing effects of PDT and in fact may be synergistic in the longer term. The bone-enhancing effects of PDT in combination with conventional treatments, and its ability to destroy metastatic human breast cancer cells within bone, present PDT as an attractive novel treatment for spinal metastasis. The positive results from these preclinical studies might motivate future clinical translation of PDT for spinal metastasis.
Collapse
|
19
|
In vitro and in vivo effects of photodynamic therapy on metastatic breast cancer cells pre-treated with zoledronic acid. Photodiagnosis Photodyn Ther 2014; 11:426-33. [PMID: 25176573 DOI: 10.1016/j.pdpdt.2014.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT), a non-ionizing, minimally invasive drug-light treatment, has recently been shown to successfully ablate tumor within rat vertebrae with concurrent improvements in bone strength and architecture. The bisphosphonate zoledronic acid (zol), a current drug for patients with skeletal metastases, primarily works by inhibiting osteoclast activity, but direct anti-tumor effects have also been reported. However, it is unknown if or how pre-treatment with zol may alter the tumorcidal effect of PDT. The aim of this study was to evaluate the effect of PDT, both in vitro and in vivo, on zol-pretreated cancer cells. MATERIALS AND METHODS Human metastatic breast cancer cells (MT-1) were cultured in vitro and treated with zol (10μM) for 24h, followed by PDT treatment. Cell viability was assessed by fluorescence microscopy and flow cytometry. In vivo, MT-1 cells were injected (intracardiac) into athymic rats. On day 7, zol (60μg/kg) was administered subcutaneously. On day 14, PDT was applied (1mg/kg verteporfin; 75J; 690nm) to lumbar vertebrae. Histomorphometric assessment of tumor burden was evaluated on day 21. RESULTS The cell viability measured in vitro after PDT treatment decreased in cells pre-incubated with zol up to 20% compared to treatment with PDT alone. Zol alone had no influence on the MT-1 cell viability. In vivo, all treatments, either alone or combined, had a tumorcidal effect. CONCLUSIONS Pre-treatment with zol in vivo did not yield a synergistic effect on tumor ablation in contrast to the in vitro results, but neither did it abrogate the positive tumorcidal effect of PDT, so that those therapies may be applied in combination.
Collapse
|
20
|
Sarabia-Estrada R, Zadnik PL, Molina CA, Jimenez-Estrada I, Groves ML, Gokaslan ZL, Bydon A, Witham TF, Wolinsky JP, Sciubba DM. A rat model of metastatic spinal cord compression using human prostate adenocarcinoma: histopathological and functional analysis. Spine J 2013; 13:1597-606. [PMID: 23810458 DOI: 10.1016/j.spinee.2013.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 09/28/2012] [Accepted: 05/04/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Cancer is a major global public health problem responsible for one in every four deaths in the United States. Prostate cancer alone accounts for 29% of all cancers in men and is the sixth leading cause of death in men. It is estimated that up to 30% of patients with cancer will develop metastatic disease, the spine being one of the most frequently affected sites in patients with prostate cancer. PURPOSE To study this condition in a preclinical setting, we have created a novel animal model of human metastatic prostate cancer to the spine and have characterized it histologically, functionally, and via bioluminescence imaging. STUDY DESIGN Translational science investigation of animal model of human prostate cancer in the spine. METHODS Luciferase-positive human prostate tumor cells PC3 (PC3-Luc) were injected in the flank of athymic male rats. PC3-Luc tumor samples were then implanted into the L5 vertebral body of male athymic rats (5 weeks old). Thirty-two rats were randomized into three surgical groups: experimental, control, and sham. Tumor growth was assessed qualitatively and noninvasively via bioluminescence emission, upon luciferin injection. To determine the functional impact of tumor growth in the spine, rats were evaluated for gait abnormalities during gait locomotion using video-assisted gait analysis. Rats were euthanized 22 days after tumor implantation, and spines were subjected to histopathological analyses. RESULTS Twenty days after tumor implantation, the tumor-implanted rats showed distinct signs of gait disturbances: dragging tail, right- or left-hind limb uncoordination, and absence of toe clearance during forward limb movement. At 20 days, all rats experienced tumor growth, evidenced by bioluminescent signal. Locomotion parameters negatively affected in tumor-implanted rats included stride length, velocity, and duration. At necropsy, all spines showed evidence of tumor growth, and the histological analysis found spinal cord compression and peritumoral osteoblastic reaction characteristic of bony prostate tumors. None of the rats in the sham or control groups demonstrated any evidence of bioluminescence signal or signs of gait disturbances. CONCLUSIONS In this project, we have developed a novel animal model of metastatic spine cancer using human prostate cancer cells. Tumor growth, evaluated via bioluminescence and corroborated by histopathological analyses, affected hind limb locomotion in ways that mimic motor deficits present in humans afflicted with metastatic spine disease. Our model represents a reliable method to evaluate the experimental therapeutic approaches of human tumors of the spine in animals. Gait locomotion and bioluminescence analyses can be used as surrogate noninvasive methods to evaluate tumor growth in this model.
Collapse
Affiliation(s)
- Rachel Sarabia-Estrada
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lo VCK, Akens MK, Wise-Milestone L, Yee AJM, Wilson BC, Whyne CM. The benefits of photodynamic therapy on vertebral bone are maintained and enhanced by combination treatment with bisphosphonates and radiation therapy. J Orthop Res 2013; 31:1398-405. [PMID: 23625821 DOI: 10.1002/jor.22373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 03/18/2013] [Indexed: 02/04/2023]
Abstract
Photodynamic therapy (PDT) has been shown to ablate tumors within vertebral bone and yield short-term improvements in vertebral architecture and biomechanical strength, in particular when combined with bisphosphonate (BP) treatment. Longer-term outcomes of PDT combined with current treatments for skeletal metastases are essential to understand its therapeutic potential. The objective of this study is to evaluate the response of vertebrae to PDT after a longer (6-week) time period, alone and combined with previous BP or radiation treatment (RT). Sixty-three female rnu/rnu rats were randomized to six treatment groups: untreated control, BP-only, RT-only, PDT-only, combined BP + PDT and combined RT + PDT. L2 vertebrae were structurally analyzed through µCT-based analysis, axial compressive load-to-failure testing and histological analysis of morphology, osteoid formation and osteoclast activity. Combined BP + PDT treatment yielded the largest improvements in bone architecture with combined RT + PDT treatment yielding similar findings, but of a lesser magnitude. Mechanically, ultimate force and stress were correlated to stereological parameters that demonstrated a positive structural effect from combinatory treatment. Increased osteoid formation was observed in both combination therapies without any significant differences in osteoclast activity. Overall, multimodality treatment demonstrated a sustained positive effect on vertebral structural integrity, motivating PDT as a minimally-invasive adjuvant treatment for spinal metastases.
Collapse
Affiliation(s)
- Victor C K Lo
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, UB-55, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Hibberd C, Cossigny DAF, Quan GMY. Animal cancer models of skeletal metastasis. CANCER GROWTH AND METASTASIS 2013; 6:23-34. [PMID: 24665205 PMCID: PMC3941154 DOI: 10.4137/cgm.s11284] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The bony skeleton is one of the most common sites of metastatic spread of cancer and is a significant source of morbidity in cancer patients, causing pain and pathologic fracture, impaired ambulatory ability, and poorer quality of life. Animal cancer models of skeletal metastases are essential for better understanding of the molecular pathways behind metastatic spread and local growth and invasion of bone, to enable analysis of host-tumor cell interactions, identify barriers to the metastatic process, and to provide platforms to develop and test novel therapies prior to clinical application in human patients. Thus, the ideal model should be clinically relevant, reproducible and representative of the human condition. This review summarizes the current in vivo animal models used in the study of cancer metastases of the skeleton.
Collapse
Affiliation(s)
- Catherine Hibberd
- Spinal Biology Research Laboratory, University of Melbourne, Department of Surgery, Austin Health, Heidelberg Victoria 3084, Australia. ; Department of Spinal Surgery, Austin Health, Heidelberg Victoria 3084, Australia
| | - Davina A F Cossigny
- Spinal Biology Research Laboratory, University of Melbourne, Department of Surgery, Austin Health, Heidelberg Victoria 3084, Australia
| | - Gerald M Y Quan
- Spinal Biology Research Laboratory, University of Melbourne, Department of Surgery, Austin Health, Heidelberg Victoria 3084, Australia. ; Department of Spinal Surgery, Austin Health, Heidelberg Victoria 3084, Australia
| |
Collapse
|
23
|
Abstract
The vertebral column is the commonest site for skeletal metastases, with breast, prostate and lung cancers being the most common primary sources. The spine has structural and neural-protective properties thus involvement by metastatic cancer often causes bony instability and fracture, intractable pain and neurological deficit. In vivo animal models which resemble the human condition are essential in order to improve understanding of the pathophysiology behind the spread of metastatic cancer to the spine and its subsequent local growth and invasion, to enable in-depth analysis of the interaction between host and tumour cells and the molecular processes behind local cancer invasion and barriers to invasion as well as to allow assessment of novel treatment modalities for spinal metastases. This review summarizes the current status of the animal models specifically used for the study of spinal metastasis, their relevance, advantages and limitations, and important considerations for the development of future in vivo animal models.
Collapse
Affiliation(s)
- Davina Cossigny
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
24
|
Roet KCD, Eggers R, Verhaagen J. Noninvasive Bioluminescence Imaging of Olfactory Ensheathing Glia and Schwann Cells following Transplantation into the Lesioned Rat Spinal Cord. Cell Transplant 2012; 21:1853-65. [DOI: 10.3727/096368911x627471] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this study, we assess the feasibility of bioluminescence imaging to monitor the survival of Schwann cells (SCs) and olfactory ensheathing glia cells (OECs) after implantation in the lesioned spinal cord of adult rats. To this end, purified SCs and OECs were genetically modified with lentiviral vectors encoding luciferase-2 and GFP and implanted in the lesioned dorsal column. The bioluminescent signal was monitored for over 3 months, and at 7 and 98 days postsurgery, the signal was compared to standard histological analysis of GFP expression in the spinal cords. The temporal profile of the bioluminescent signal showed three distinct phases for both cell types. (I) A relatively stable signal in the first week. (II) A progressive decline in signal strength in the second and third week. (III) After the third week, the average bioluminescent signal stabilized for both cell types. Interestingly, in the first week, the peak of the bioluminescent signal after luciferin injection was delayed when compared to later time points. Similar to in vitro, our data indicated a linear relationship between the in vivo bioluminescent signal and the GFP signal of the SCs and OECs in the spinal cords when the results of both the 7 and 98 day time points are combined. This is the first report of the use of in vivo bioluminescence to monitor cell survival in the lesioned rat spinal cord. Bioluminescence could be a potentially powerful, non-invasive strategy to examine the efficacy of treatments that aim to improve the survival of proregenerative cells transplanted in the injured rat spinal cord.
Collapse
Affiliation(s)
- Kasper C. D. Roet
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Ruben Eggers
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Beyond radiation therapy: photodynamic therapy maintains structural integrity of irradiated healthy and metastatically involved vertebrae in a pre-clinical in vivo model. Breast Cancer Res Treat 2012; 135:391-401. [PMID: 22791364 DOI: 10.1007/s10549-012-2146-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/16/2012] [Indexed: 10/28/2022]
Abstract
Spinal metastasis commonly occurs in advanced breast cancer. Treatment is often multimodal including radiation therapy (RT), bisphosphonates (BPs), and surgery, yet alternative minimally invasive local treatments are needed. Photodynamic therapy (PDT) has been shown to ablate tumor cells and enhance bone formation secondary to metastatic breast cancer, demonstrating potential as a treatment for spinal metastasis. Combined with previous BP treatment, bone formation was further enhanced by PDT. This study aimed to determine the effects of PDT in combination with previous RT on healthy and metastatically involved vertebrae. Forty-six athymic rats underwent RT (4 Gy on day-7), twenty-three of them were inoculated with MT-1 human breast cancer cells on day 0. Thirteen healthy and ten metastatically involved rats underwent PDT treatment on day 14. All rats were sacrificed on day 21. L2 vertebrae were analyzed using μCT imaging, mechanical testing, and histological methods. In healthy vertebrae, while modest increases in trabecular structure were found in RT + PDT compared to RT only, mechanical stability was negatively affected. The 4 Gy RT dose was found to ablate all tumor cells and prevent further vertebral metastasis. As such, in metastatically involved rats, no differences in stereological or mechanical properties were detected. RT + PDT and RT-only treatment resulted in greatly improved vertebral structural and mechanical properties versus untreated or PDT-only treatment in metastatically involved rats, due to early tumor destruction in RT-treated groups. Increased amounts of woven bone and osteoid volume were found in PDT-treated vertebrae. Further investigation is needed to understand if structural improvements seen in RT + PDT treatment can translate into longer-term improvements in strength to support the potential of PDT as a viable adjuvant treatment for spinal metastasis postradiation.
Collapse
|
26
|
Hardisty MR, Akens MK, Hojjat SP, Yee A, Whyne CM. Quantification of the effect of osteolytic metastases on bone strain within whole vertebrae using image registration. J Orthop Res 2012; 30:1032-9. [PMID: 22213180 DOI: 10.1002/jor.22045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 11/29/2011] [Indexed: 02/04/2023]
Abstract
The vertebral column is the most frequent site of metastatic involvement of the skeleton with up to 1/3 of all cancer patients developing spinal metastases. Longer survival times for patients, particularly secondary to breast cancer, have increased the need for better understanding the impact of skeletal metastases on structural stability. This study aims to apply image registration to calculate strain distributions in metastatically involved rodent vertebrae utilizing µCT imaging. Osteolytic vertebral lesions were developed in five rnu/rnu rats 2-3 weeks post intracardiac injection with MT-1 human breast cancer cells. An image registration algorithm was used to calculate and compare strain fields due to axial compressive loading in metastatically involved and control vertebrae. Tumor-bearing vertebrae had greatly increased compressive strains, double the magnitude of strain compared to control vertebrae (p=0.01). Qualitatively strain concentrated within the growth plates in both tumor bearing and control vertebrae. Most interesting was the presence of strain concentrations at the dorsal wall in metastatically involved vertebrae, suggesting structural instability. Strain distributions, quantified by image registration were consistent with known consequences of lytic involvement. Metastatically involved vertebrae had greater strain magnitude than control vertebrae. Strain concentrations at the dorsal wall in only the metastatic vertebrae, were consistent with higher incidence of burst fracture secondary to this pathology. Future use of image registration of whole vertebrae will allow focused examination of the efficacy of targeted and systemic treatments in reducing strains and the related risk of fracture in pathologic bones under simple and complex loading.
Collapse
Affiliation(s)
- Michael R Hardisty
- Orthopaedic Biomechanics Laboratory, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Room UB-19, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
27
|
Wise-Milestone L, Akens MK, Rosol TJ, Hojjat SP, Grynpas MD, Whyne CM. Evaluating the effects of mixed osteolytic/osteoblastic metastasis on vertebral bone quality in a new rat model. J Orthop Res 2012; 30:817-23. [PMID: 22025272 DOI: 10.1002/jor.21577] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/06/2011] [Indexed: 02/04/2023]
Abstract
Spinal metastases often show mixed areas of enhanced (osteoblastic) bone growth adjacent to areas of thinning (osteolytic) bone. This study aims to quantitatively characterize bone quality and tumor burden within a new rat model of mixed osteolytic/osteoblastic spinal metastases. Mixed vertebral metastases were analyzed in nude rats 21-days post intracardiac injection of Ace-1 canine prostate cancer cells. Vertebral micro-architecture was assessed in µCT images. Histologic processing quantified tumor burden (PTHrP), osteoclast activity (TRAP), and osteoid formation (Goldner's Trichrome) in ½ of all samples. Remaining samples were mechanically tested to failure in compression. Metastatically involved vertebrae exhibited extreme osteolysis, evident through an increase in osteoclasts leading to significantly reduced trabecular bone volume. Metastatically involved vertebrae also exhibited increased osteoid characteristic of osteoblastic lesions. While mechanical properties in tumor-bearing vertebrae were not significantly decreased compared to controls, a strong correlation was found between trabecular volumetric BMD and ultimate force. The highly aggressive Ace-1 skeletal metastases demonstrated predominant osteolysis with some areas of immature, new osteoblastic bone formation. Bone quality resulting from these lesions consisted of decreased structural properties, but without a significant impact on mechanical integrity.
Collapse
Affiliation(s)
- Lisa Wise-Milestone
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, UB-19, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5
| | | | | | | | | | | |
Collapse
|
28
|
Wise-Milestone L, Akens MK, Lo VCK, Yee AJ, Wilson BC, Whyne CM. Local treatment of mixed osteolytic/osteoblastic spinal metastases: is photodynamic therapy effective? Breast Cancer Res Treat 2011; 133:899-908. [PMID: 22058005 DOI: 10.1007/s10549-011-1854-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/25/2011] [Indexed: 11/24/2022]
Abstract
The widespread use of systemic and local therapies aimed at spinal metastatic lesions secondary to breast cancer has increased the incidence of mixed osteolytic/osteoblastic patterns of bony disease. The complex structure of these lesions requires novel therapeutic approaches to both reduce tumor burden and restore structural stability. In photodynamic therapy (PDT), a minimally invasive approach can be used to employ light to activate a photosensitizing agent that preferentially accumulates in tumor tissue, leading to cell toxicity and death. Previous work in an osteolytic rat model (MT-1) demonstrated that PDT effectively ablates tumor and improves vertebral structural properties. The aim of this study was to assess the efficacy of PDT in a rat model of mixed osteolytic/osteoblastic spinal metastases. Mixed spinal metastases were generated through intracardiac injection of Ace-1 canine prostate cancer cells into female athymic rats (day 0). A single PDT treatment was applied to lumbar vertebra L2 of tumor-bearing and healthy control rats (day 14). PDT-treated and untreated control rats were euthanized and excised spines imaged with μCT to assess bone quality (day 21). Spines were mechanically tested or histologically processed to assess mechanical integrity, tumor burden, and remodelling properties. Untreated tumor-bearing vertebrae showed large areas of osteolysis and areas of immature, new bone formation. The overall bone quality resulting from these lesions consisted of decreased structural properties but without a significant reduction in mechanical integrity. PDT was shown to significantly decrease tumor burden and osteoclastic activity, thereby improving vertebral bone structural properties. While non-tumor-bearing vertebrae exhibited significantly more new bone formation following PDT, the already heightened level of new bone formation in the mixed tumor-bearing vertebrae was not further increased. As such, the effect of PDT on mixed metastases may be more influenced by suppression of osteoclastic resorption as opposed to the triggering of new bone formation.
Collapse
Affiliation(s)
- L Wise-Milestone
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, UB-19, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Funayama T, Sakane M, Abe T, Ochiai N. Photodynamic therapy with indocyanine green injection and near-infrared light irradiation has phototoxic effects and delays paralysis in spinal metastasis. Photomed Laser Surg 2011; 30:47-53. [PMID: 22043821 DOI: 10.1089/pho.2011.3080] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The purpose of this study was to investigate the phototoxic effects of photodynamic therapy (PDT) with indocyanine green (ICG) and near-infrared light irradiation on rat mammary adenocarcinoma cells, and its therapeutic efficacy in a rat model of spinal metastasis. BACKGROUND DATA Although PDT has been successfully used as a non-radiation treatment for many malignancies, it has not yet been clinically applied for treating spinal metastasis. METHODS For the phototoxicity study, CRL-1666 cells were treated with PDT and cell viability was measured by WST-1 assay. For the efficacy study, 26 female Fischer 344 rats with spinal metastasis in the L6 vertebra were divided into three treatment groups: PDT with local injection of ICG (9 rats), PDT with systemic injection of ICG (10 rats), and no treatment or control (7 rats). Both the PDT groups received near-infrared light irradiation with a total energy of 10 J (1 W for 10 sec). The light was delivered directly through a single silica probe which was set on the left side of the L6 vertebral body. Hindlimb motor function was monitored according to the Basso-Beattie-Bresnahan (BBB) scale. Further, the observation periods were calculated to determine the survival time. RESULTS The PDT exerted immediate and persistent phototoxic effects. Furthermore, the PDT with local injection of ICG as well as systemic injection of ICG delayed the deterioration of paralysis and prolonged the observation period. CONCLUSIONS PDT with ICG injection and near-infrared light irradiation could be an effective local adjuvant treatment for spinal metastasis.
Collapse
Affiliation(s)
- Toru Funayama
- Department of Orthopaedic Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
30
|
Hojjat SP, Won E, Hardisty MR, Akens MK, Wise-Milestone LM, Whyne CM. Non-Destructive Evaluation of the Effects of Combined Bisphosphonate and Photodynamic Therapy on Bone Strain in Metastatic Vertebrae Using Image Registration. Ann Biomed Eng 2011; 39:2816-22. [DOI: 10.1007/s10439-011-0370-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 07/23/2011] [Indexed: 11/29/2022]
|
31
|
Liu TW, Akens MK, Chen J, Wise-Milestone L, Wilson BC, Zheng G. Imaging of specific activation of photodynamic molecular beacons in breast cancer vertebral metastases. Bioconjug Chem 2011; 22:1021-30. [PMID: 21585206 DOI: 10.1021/bc200169x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Breast cancer is the second leading cause of cancer-related death in women. Approximately 85% of patients with advanced cases will develop spinal metastases. The vertebral column is the most common site of breast cancer metastases, where overexpression of matrix metalloproteinases (MMPs) promotes the spread of cancer. Current therapies have significant limitations due to the high associated risk of damaging the spinal cord. An attractive alternative is photodynamic therapy providing noninvasive and site-selective treatment. However, current photosensitizers are limited by their nonspecific accumulation. Photodynamic molecular beacons (PP(MMP)B), activated by MMPs, offer another level of PDT selectivity and image-guidance preserving criticial tissues, specifically the spinal cord. Metastatic human breast carcinoma cells, MT-1, were used to model the metastatic behavior of spinal lesions. In vitro and in vivo evidence demonstrates MMP specific activation of PP(MMP)B in MT-1 cells. Using a clinically relevant metastatic model, fluorescent imaging establishes the specific activation of PP(MMP)B by vertebral metastases versus normal tissue (i.e., spinal cord) demonstrating the specificity of these beacons. Here, we validate that the metastasis-selective mechanism of PP(MMP)Bs can specifically image breast cancer vertebral metastases, thereby differentiating tumor and healthy tissue.
Collapse
Affiliation(s)
- Tracy W Liu
- Department of Medical Biophysics, University of Toronto, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Gutwein LG, Rule MC, Singh AK, Hahn MA, Brown SC, Moudgil B, Grobmyer SR. The ‘Gator’ Mouse Suit for early bioluminescent metastatic breast cancer detection and nanomaterial signal enhancement during live animal imaging. LUMINESCENCE 2010; 26:390-6. [DOI: 10.1002/bio.1241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/07/2010] [Accepted: 07/14/2010] [Indexed: 12/13/2022]
|
33
|
Hu Z, Rao B, Chen S, Duanmu J. Targeting tissue factor on tumour cells and angiogenic vascular endothelial cells by factor VII-targeted verteporfin photodynamic therapy for breast cancer in vitro and in vivo in mice. BMC Cancer 2010; 10:235. [PMID: 20504328 PMCID: PMC2882923 DOI: 10.1186/1471-2407-10-235] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 05/26/2010] [Indexed: 12/17/2022] Open
Abstract
Background The objective of this study was to develop a ligand-targeted photodynamic therapy (tPDT) by conjugating factor VII (fVII) protein with photosensitiser verteporfin in order to overcome the poor selectivity and enhance the effect of non-targeted PDT (ntPDT) for cancer. fVII is a natural ligand for receptor tissue factor (TF) with high affinity and specificity. The reason for targeting receptor TF for the development of tPDT is that TF is a common but specific target on angiogenic tumour vascular endothelial cells (VEC) and many types of tumour cells, including solid tumours and leukaemia. Methods Murine factor VII protein (mfVII) containing a mutation (Lys341Ala) was covalently conjugated via a cross linker EDC with Veterporfin (VP) that was extracted from liposomal Visudyne, and then free VP was separated by Sephadex G50 spin columns. fVII-tPDT using mfVII-VP conjugate, compared to ntPDT, was tested in vitro for the killing of breast cancer cells and VEGF-stimulated VEC and in vivo for inhibiting the tumour growth of breast tumours in a mouse xenograft model. Results We showed that: (i) fVII protein could be conjugated with VP without affecting its binding activity; (ii) fVII-tPDT could selectively kill TF-expressing breast cancer cells and VEGF-stimulated angiogenic HUVECs but had no side effects on non-TF expressing unstimulated HUVEC, CHO-K1 and 293 cells; (iii) fVII targeting enhanced the effect of VP PDT by three to four fold; (iii) fVII-tPDT induced significantly stronger levels of apoptosis and necrosis than ntPDT; and (iv) fVII-tPDT had a significantly stronger effect on inhibiting breast tumour growth in mice than ntPDT. Conclusions We conclude that the fVII-targeted VP PDT that we report here is a novel and effective therapeutic with improved selectivity for the treatment of breast cancer. Since TF is expressed on many types of cancer cells including leukaemic cells and selectively on angiogenic tumour VECs, fVII-tPDT could have broad therapeutic applications for other solid cancers and leukaemia.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
34
|
Beyond bisphosphonates: photodynamic therapy structurally augments metastatically involved vertebrae and destroys tumor tissue. Breast Cancer Res Treat 2010; 124:111-9. [PMID: 20066491 DOI: 10.1007/s10549-009-0712-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
Abstract
Breast cancer patients commonly develop metastases in the spine, which compromises its mechanical stability and can lead to skeletal related events. The current clinical standard of treatment includes the administration of systemic bisphosphonates (BP) to reduce metastatically induced bone destruction. However, response to BPs can vary both within and between patients, which motivates the need for additional treatment options for spinal metastasis. Photodynamic therapy (PDT) has been shown to be effective at treating metastatic lesions secondary to breast cancer in an athymic rat model, and is proposed as a treatment for spinal metastasis. The objective of this study was to determine the effect of PDT, alone or in combination with previously administered systemic BPs, on the structural and mechanical integrity of both healthy and metastatically involved vertebrae. Human breast carcinoma cells (MT-1) were inoculated into athymic rats (day 0). At 14 days, a single PDT treatment was administered, with and without previous BP treatment at day 7. In addition to causing tumor necrosis in metastatically involved vertebrae, PDT significantly reduced bone loss, resulting in strengthening of the vertebrae compared to untreated controls. Combined treatment with BP + PDT further enhanced bone architecture and strength in both metastatically involved and healthy bone. Overall, the ability of PDT to both ablate malignant tissue and improve the structural integrity of vertebral bone motivates its consideration as a local minimally invasive treatment for spinal metastasis secondary to breast cancer.
Collapse
|
35
|
Sigal IA, Whyne CM. Mesh morphing and response surface analysis: quantifying sensitivity of vertebral mechanical behavior. Ann Biomed Eng 2009; 38:41-56. [PMID: 19859809 DOI: 10.1007/s10439-009-9821-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 10/10/2009] [Indexed: 10/20/2022]
Abstract
Vertebrae provide essential biomechanical stability to the skeleton. In this work novel morphing techniques were used to parameterize three aspects of the geometry of a specimen-specific finite element (FE) model of a rat caudal vertebra (process size, neck size, and end-plate offset). Material properties and loading were also parameterized using standard techniques. These parameterizations were then integrated within an RSM framework and used to produce a family of FE models. The mechanical behavior of each model was characterized by predictions of stress and strain. A metamodel was fit to each of the responses to yield the relative influences of the factors and their interactions. The direction of loading, offset, and neck size had the largest influences on the levels of vertebral stress and strain. Material type was influential on the strains, but not the stress. Process size was substantially less influential. A strong interaction was identified between dorsal-ventral offset and dorsal-ventral off-axis loading. The demonstrated approach has several advantages for spinal biomechanical analysis by enabling the examination of the sensitivity of a specimen to multiple variations in shape, and of the interactions between shape, material properties, and loading.
Collapse
Affiliation(s)
- Ian A Sigal
- Orthopaedic Biomechanics Laboratory, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, UB19, Toronto, ON, M4N 3M5, Canada.
| | | |
Collapse
|