1
|
Ahmadpour ST, Orre C, Bertevello PS, Mirebeau-Prunier D, Dumas JF, Desquiret-Dumas V. Breast Cancer Chemoresistance: Insights into the Regulatory Role of lncRNA. Int J Mol Sci 2023; 24:15897. [PMID: 37958880 PMCID: PMC10650504 DOI: 10.3390/ijms242115897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a subclass of noncoding RNAs composed of more than 200 nucleotides without the ability to encode functional proteins. Given their involvement in critical cellular processes such as gene expression regulation, transcription, and translation, lncRNAs play a significant role in organism homeostasis. Breast cancer (BC) is the second most common cancer worldwide and evidence has shown a relationship between aberrant lncRNA expression and BC development. One of the main obstacles in BC control is multidrug chemoresistance, which is associated with the deregulation of multiple mechanisms such as efflux transporter activity, mitochondrial metabolism reprogramming, and epigenetic regulation as well as apoptosis and autophagy. Studies have shown the involvement of a large number of lncRNAs in the regulation of such pathways. However, the underlying mechanism is not clearly elucidated. In this review, we present the principal mechanisms associated with BC chemoresistance that can be directly or indirectly regulated by lncRNA, highlighting the importance of lncRNA in controlling BC chemoresistance. Understanding these mechanisms in deep detail may interest the clinical outcome of BC patients and could be used as therapeutic targets to overcome BC therapy resistance.
Collapse
Affiliation(s)
- Seyedeh Tayebeh Ahmadpour
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | - Charlotte Orre
- Inserm U1083, UMR CNRS 6214, Angers University, 49933 Angers, France; (C.O.); (D.M.-P.)
| | - Priscila Silvana Bertevello
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | | - Jean-François Dumas
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | |
Collapse
|
2
|
Mouawad R, Neamati N. Inhibition of Protein Disulfide Isomerase (PDIA1) Leads to Proteasome-Mediated Degradation of Ubiquitin-like PHD and RING Finger Domain-Containing Protein 1 (UHRF1) and Increased Sensitivity of Glioblastoma Cells to Topoisomerase II Inhibitors. ACS Pharmacol Transl Sci 2022; 6:100-114. [PMID: 36654750 PMCID: PMC9841782 DOI: 10.1021/acsptsci.2c00186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, and the prognosis remains poor with current available treatments. PDIA1 is considered a promising therapeutic target in GBM. In this study, we demonstrate that targeting PDIA1 results in increased GBM cell death by topoisomerase II (Top-II) inhibitors resulting in proteasome-mediated degradation of the oncogenic protein UHRF1. Combination of the PDIA1 inhibitor, bepristat-2a, produces strong synergy with doxorubicin, etoposide, and mitoxantrone in GBM and other cancer cell lines. Our bioinformatics analysis of multiple datasets revealed downregulation of UHRF1, upon PDIA1 inhibition. In addition, PDIA1 inhibition results in proteasome-mediated degradation of UHRF1 protein. Interestingly, treatment of GBM cells with bepristat-2a results in increased apoptosis and resistance to ferroptosis. Our findings emphasize the importance of PDIA1 as a therapeutic target in GBM and present a promising new therapeutic approach using Top-II inhibitors for GBM treatment.
Collapse
|
3
|
Xie J, Chen X, wang W, Guan Z, Hou J, Lin J. Long non-coding RNA PCDRlnc1 confers docetaxel resistance in prostate cancer by promoting autophagy. J Cancer 2022; 13:2138-2149. [PMID: 35517427 PMCID: PMC9066218 DOI: 10.7150/jca.65329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 03/06/2022] [Indexed: 12/24/2022] Open
Abstract
Docetaxel resistance seriously affects its clinical application in prostate cancer (PCa). Long noncoding RNAs (lncRNAs) influence the chemosensitivity of various cancers. However, the potential involvement of lncRNAs in docetaxel sensitivity remains largely unknown in PCa. In the present study, we used RNA sequencing to compare the expression profiles of lncRNAs in docetaxel-resistant PCa cells and their parental cells and identified a novel lncRNA, ENSG00000234147, termed as PCa docetaxel resistance-associated lncRNA1 (PCDRlnc1). Our results indicated that PCDRlnc1 is closely associated with docetaxel resistance in PCa, and PCDRlnc1 knockout markedly sensitized the resistant cells to docetaxel in vitro and in vivo. In addition, PCDRlnc1 inhibition markedly suppressed docetaxel-induced autophagy. Conversely, PCDRlnc1 overexpression promoted autophagy. Mechanistically, PCDRlnc1 interacted with UHRF1 (ubiquitin-like with plant homeodomain and ring finger domains 1) and promoted its transcription level in PCa cells, leading to the activation of autophagic Beclin-1 signaling. Together, our data demonstrate that PCDRlnc1 is a novel key regulator of PCa docetaxel resistance, suggesting that it may be used as a potential biomarker of docetaxel resistance and therapeutic target in PCa.
Collapse
Affiliation(s)
- Jianjun Xie
- Department of Urology, The First Affiliated Hospital of Soochow University, China
- Department of Urology, The Affiliated Suzhou Hospital Hospital of Nanjing Medical, University, China
| | - Xiumei Chen
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, China
| | - Weiwan wang
- Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing, Medical University, China
| | - Zhenghui Guan
- Department of Urology, Taizhou Clinical Medical School of Nanjing Medical University, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, China
| | - Jianzhong Lin
- Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing, Medical University, China
- Department of Urology, Taizhou Clinical Medical School of Nanjing Medical University, China
| |
Collapse
|
4
|
Li W, Wu H, Sui S, Wang Q, Xu S, Pang D. Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Front Cell Dev Biol 2021; 9:736935. [PMID: 34595180 PMCID: PMC8476812 DOI: 10.3389/fcell.2021.736935] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Histone modifications (HMs) contribute to maintaining genomic stability, transcription, DNA repair, and modulating chromatin in cancer cells. Furthermore, HMs are dynamic and reversible processes that involve interactions between numerous enzymes and molecular components. Aberrant HMs are strongly associated with tumorigenesis and progression of breast cancer (BC), although the specific mechanisms are not completely understood. Moreover, there is no comprehensive overview of abnormal HMs in BC, and BC therapies that target HMs are still in their infancy. Therefore, this review summarizes the existing evidence regarding HMs that are involved in BC and the potential mechanisms that are related to aberrant HMs. Moreover, this review examines the currently available agents and approved drugs that have been tested in pre-clinical and clinical studies to evaluate their effects on HMs. Finally, this review covers the barriers to the clinical application of therapies that target HMs, and possible strategies that could help overcome these barriers and accelerate the use of these therapies to cure patients.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Hao Wu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shiyao Sui
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Qin Wang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shouping Xu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Da Pang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
5
|
Zaleskis G, Garberytė S, Pavliukevičienė B, Valinčius G, Characiejus D, Mauricas M, Kraśko JA, Žilionytė K, Žvirblė M, Pašukonienė V. Doxorubicin uptake in ascitic lymphoma model: resistance or curability is governed by tumor cell density and prolonged drug retention. J Cancer 2020; 11:6497-6506. [PMID: 33046971 PMCID: PMC7545667 DOI: 10.7150/jca.46066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/13/2020] [Indexed: 01/14/2023] Open
Abstract
Background/Aims: Chemotherapy resistance of malignancies is a universal phenomenon which unfavorably affects therapeutic results. Genetic adaptations as well as epigenetic factors can play an important role in the development of multidrug resistance. Cytotoxic drug content in plasma of cancer patients is known to variate up to one hundred-fold regardless of the same dose injected per m2 body surface. The relationship between plasma concentrations, tissue uptake, and chemotherapy response is not completely understood. The main objective of this study was to investigate how the identical dose of Doxorubicin (Dox) can result in a different therapeutic response pattern depending on tumor size. Study Design: The study was performed on ascitic EL4 lymphoma in an exponential growth phase focusing on the rapidly changing tumor susceptibility to the Dox treatment. Well distinguishable tumor response patterns (curability, remission-relapse, resistance) were selected to unveil Dox intratumoral uptake and drug tissue persistence. Intratumoral Dox content within peritoneal cavity (PerC) in conjunction with systemic toxicity and plasma pharmacokinetics, were monitored at several time points following Dox injection in tumor bearing mice (TBM) with differing patterns of response. Results: Following intraperitoneal (i.p.) transplantation of 5x104 EL4 lymphoma cells rapid exponential proliferation with ascites volume and animal mass increase resulted in median survival of 14.5 days. The increase in tumor cell mass in PerC between day 3 and day 9 was 112.5-fold (0.2±0.03 mg vs 22.5±0.31 mg respectively). However, tumors at this time interval (day 3 to day 9 post-transplantation) were relatively small and constituted less than 0.05% of animal weight. An identical dose of Dox (15 mg/kg) injected intravenously (i.v.) on Day 3 lead to a cure whereas a TBM injected on day 9 exhibited resistance with a median survival time no different from the untreated TBM control. Injection of Dox resulted in noticeable differences of cellular uptake in PerC between all three groups of TBM ("cure", relapse", "resistance"). Larger tumors were consistently taking up less Dox 60 min after the 15 mg/kg i.v. bolus injection. Higher initial uptake resulted also in longer retention of drug in PerC cells. The area under the concentration curve in PerC cells AUC0-10d was 8.2±0.57 µg/g x h, 4.6±0.27 µg/g x h and 1.6±0.02 µg/g x h in "cure", "relapse" and "resistance" TBM respectively (p<0.05 "relapse" vs "cure" and p<0.001 "resistance" vs "cure"). No differences in plasma Dox pharmacokinetics or systemic hematological effects were observed in TBM following a single i.v. Dox push. Hematologic nadir was tested on day 2 and subsequent hematologic recovery was evaluated on day 10 following Dox administration. Hematologic recovery on day 10 coincided with complete drug efflux from PerC and rising tumor cell numbers in PerC of "relapse" TBM. Myelosuppression and hematological recovery patterns were identical in all surviving animal groups regardless of the tumor size on the day of Dox injection. Conclusions: Within a few days of exponential tumor growth, an identical dose of Dox produced dramatically different responses in the TBM with increasing resistance. Systemic toxicity and plasma pharmacokinetics were indistinguishable between all TBM groups. Initial uptake in tumor cells was found to be consistently lower in larger tumors. Drug uptake in tumor cells was regulated locally - a phenomenon known as inoculum effect in vitro. The duration of drug retention in cells was directly related to initial cellular uptake. The magnitude of Dox cellular retention could potentially play a role in determining tumor remission and relapse.
Collapse
Affiliation(s)
- Gintaras Zaleskis
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania
| | - Sima Garberytė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Gintaras Valinčius
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Dainius Characiejus
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Mykolas Mauricas
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | | | - Margarita Žvirblė
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania
| | - Vita Pašukonienė
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania
| |
Collapse
|
6
|
De Bastiani MA, Klamt F. Integrated transcriptomics reveals master regulators of lung adenocarcinoma and novel repositioning of drug candidates. Cancer Med 2019; 8:6717-6729. [PMID: 31503425 PMCID: PMC6825976 DOI: 10.1002/cam4.2493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma is the major cause of cancer-related deaths in the world. Given this, the importance of research on its pathophysiology and therapy remains a key health issue. To assist in this endeavor, recent oncology studies are adopting Systems Biology approaches and bioinformatics to analyze and understand omics data, bringing new insights about this disease and its treatment. METHODS We used reverse engineering of transcriptomic data to reconstruct nontumorous lung reference networks, focusing on transcription factors (TFs) and their inferred target genes, referred as regulatory units or regulons. Afterwards, we used 13 case-control studies to identify TFs acting as master regulators of the disease and their regulatory units. Furthermore, the inferred activation patterns of regulons were used to evaluate patient survival and search drug candidates for repositioning. RESULTS The regulatory units under the influence of ATOH8, DACH1, EPAS1, ETV5, FOXA2, FOXM1, HOXA4, SMAD6, and UHRF1 transcription factors were consistently associated with the pathological phenotype, suggesting that they may be master regulators of lung adenocarcinoma. We also observed that the inferred activity of FOXA2, FOXM1, and UHRF1 was significantly associated with risk of death in patients. Finally, we obtained deptropine, promazine, valproic acid, azacyclonol, methotrexate, and ChemBridge ID compound 5109870 as potential candidates to revert the molecular profile leading to decreased survival. CONCLUSION Using an integrated transcriptomics approach, we identified master regulator candidates involved with the development and prognostic of lung adenocarcinoma, as well as potential drugs for repurposing.
Collapse
Affiliation(s)
- Marco Antônio De Bastiani
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,National Institute of Science and Technology for Translational Medicine (INCT-TM), Porto Alegre, RS, Brazil
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,National Institute of Science and Technology for Translational Medicine (INCT-TM), Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Polepalli S, George SM, Valli Sri Vidya R, Rodrigues GS, Ramachandra L, Chandrashekar R, M DN, Rao PP, Pestell RG, Rao M. Role of UHRF1 in malignancy and its function as a therapeutic target for molecular docking towards the SRA domain. Int J Biochem Cell Biol 2019; 114:105558. [DOI: 10.1016/j.biocel.2019.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 01/07/2023]
|
8
|
Yang Y, Liu G, Qin L, Ye L, Zhu F, Ying Y. Overexpression of UHRF1 and its potential role in the development of invasive ductal breast cancer validated by integrative bioinformatics and immunohistochemistry analyses. Transl Cancer Res 2019; 8:1086-1096. [PMID: 35116851 PMCID: PMC8797458 DOI: 10.21037/tcr.2019.06.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Increasing evidence has highlighted the role of ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1) in the development of cancers, including hepatocellular carcinoma, pancreatic cancer, and bladder cancer. However, the correlation between UHRF1 and breast cancer remains unclear. The present study aimed to analyze the expression of UHRF1 and its role in the development of invasive ductal breast cancer (IDC) by integrating multilevel expression data and immunohistochemistry analysis. METHODS The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to gather UHRF1 expression data on IDC. Additionally, immunohistochemistry analysis was used to investigate the correlations between UHRF1 expression and the clinical characteristics of IDC. RESULTS The GEO and TCGA databases indicated that UHRF1 was up-regulated in IDC. Consistently, the immunohistochemical specimens showed that the significant overexpression of UHRF1 in IDC, and its expression level showed an increasing trend from ductal carcinomas in situ to IDC. Notably, the increased levels of UHRF1 were closely correlated with estrogen receptor expression, pathological grade, and the prognosis of the disease. In addition, patients with a high UHRF1 expression had a poorer prognosis. CONCLUSIONS In conclusion, our findings suggested that UHRF1 plays a promoting role in breast tumorigenesis, and the over-expression of UHRF1 could serve as a biomarker for the prognosis in invasive ductal carcinomas in breast cancer.
Collapse
Affiliation(s)
- Yichen Yang
- Department of Pathophysiology, Jiangxi Medical College of Nanchang University, Nanchang 330006, China
| | - Guanjun Liu
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Lifang Qin
- Department of Pathology, Xinxiang Center Hospital, Xinxiang 450003, China
| | - Li Ye
- Department of Pathology, Xinxiang Center Hospital, Xinxiang 450003, China
| | - Fangheng Zhu
- Department of Pathology, Xinxiang Center Hospital, Xinxiang 450003, China
| | - Ying Ying
- Department of Pathophysiology, Jiangxi Medical College of Nanchang University, Nanchang 330006, China
| |
Collapse
|
9
|
Mahmood N, Rabbani SA. DNA Methylation Readers and Cancer: Mechanistic and Therapeutic Applications. Front Oncol 2019; 9:489. [PMID: 31245293 PMCID: PMC6579900 DOI: 10.3389/fonc.2019.00489] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a major epigenetic process that regulates chromatin structure which causes transcriptional activation or repression of genes in a context-dependent manner. In general, DNA methylation takes place when methyl groups are added to the appropriate bases on the genome by the action of "writer" molecules known as DNA methyltransferases. How these methylation marks are read and interpreted into different functionalities represents one of the main mechanisms through which the genes are switched "ON" or "OFF" and typically involves different types of "reader" proteins that can recognize and bind to the methylated regions. A tightly balanced regulation exists between the "writers" and "readers" in order to mediate normal cellular functions. However, alterations in normal methylation pattern is a typical hallmark of cancer which alters the way methylation marks are written, read and interpreted in different disease states. This unique characteristic of DNA methylation "readers" has identified them as attractive therapeutic targets. In this review, we describe the current state of knowledge on the different classes of DNA methylation "readers" identified thus far along with their normal biological functions, describe how they are dysregulated in cancer, and discuss the various anti-cancer therapies that are currently being developed and evaluated for targeting these proteins.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
10
|
Yin L, Liu Y, Peng Y, Peng Y, Yu X, Gao Y, Yuan B, Zhu Q, Cao T, He L, Gong Z, Sun L, Fan X, Li X. PARP inhibitor veliparib and HDAC inhibitor SAHA synergistically co-target the UHRF1/BRCA1 DNA damage repair complex in prostate cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:153. [PMID: 30012171 PMCID: PMC6048811 DOI: 10.1186/s13046-018-0810-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
Background The poly ADP ribose polymerase (PARP) inhibitor olaparib has been approved for treating prostate cancer (PCa) with BRCA mutations, and veliparib, another PARP inhibitor, is being tested in clinical trials. However, veliparib only showed a moderate anticancer effect, and combination therapy is required for PCa patients. Histone deacetylase (HDAC) inhibitors have been tested to improve the anticancer efficacy of PARP inhibitors for PCa cells, but the exact mechanisms are still elusive. Methods Several types of PCa cells and prostate epithelial cell line RWPE-1 were treated with veliparib or SAHA alone or in combination. Cell viability or clonogenicity was tested with violet crystal assay; cell apoptosis was detected with Annexin V-FITC/PI staining and flow cytometry, and the cleaved PARP was tested with western blot; DNA damage was evaluated by staining the cells with γH2AX antibody, and the DNA damage foci were observed with a fluorescent microscopy, and the level of γH2AX was tested with western blot; the protein levels of UHRF1 and BRCA1 were measured with western blot or cell immunofluorescent staining, and the interaction of UHRF1 and BRCA1 proteins was detected with co-immunoprecipitation when cells were treated with drugs. The antitumor effect of combinational therapy was validated in DU145 xenograft models. Results PCa cells showed different sensitivity to veliparib or SAHA. Co-administration of both drugs synergistically decreased cell viability and clonogenicity, and synergistically induced cell apoptosis and DNA damage, while had no detectable toxicity to normal prostate epithelial cells. Mechanistically, veliparib or SAHA alone reduced BRCA1 or UHRF1 protein levels, co-treatment with veliparib and SAHA synergistically reduced BRCA1 protein levels by targeting the UHRF1/BRCA1 protein complex, the depletion of UHRF1 resulted in the degradation of BRCA1 protein, while the elevation of UHRF1 impaired co-treatment-reduced BRCA1 protein levels. Co-administration of both drugs synergistically decreased the growth of xenografts. Conclusions Our studies revealed that the synergistic lethality of HDAC and PARP inhibitors resulted from promoting DNA damage and inhibiting HR DNA damage repair pathways, in particular targeting the UHRF1/BRCA1 protein complex. The synergistic lethality of veliparib and SAHA shows great potential for future PCa clinical trials. Electronic supplementary material The online version of this article (10.1186/s13046-018-0810-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linglong Yin
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Youhong Liu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuchong Peng
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongbo Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Xiaohui Yu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxue Gao
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Bowen Yuan
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Qianling Zhu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Tuoyu Cao
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Leye He
- Research Institute for Prostate Disease, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuegong Fan
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. .,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China. .,Research Institute for Prostate Disease, Central South University, Changsha, China.
| |
Collapse
|
11
|
FOXM1 contributes to taxane resistance by regulating UHRF1-controlled cancer cell stemness. Cell Death Dis 2018; 9:562. [PMID: 29752436 PMCID: PMC5948215 DOI: 10.1038/s41419-018-0631-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/22/2018] [Accepted: 04/26/2018] [Indexed: 12/18/2022]
Abstract
Therapy-induced expansion of cancer stem cells (CSCs) has been identified as one of the most critical factors contributing to therapeutic resistance, but the mechanisms of this adaptation are not fully understood. UHRF1 is a key epigenetic regulator responsible for therapeutic resistance, and controls the self-renewal of stem cells. In the present study, taxane-resistant cancer cells were established and stem-like cancer cells were expanded. UHRF1 was overexpressed in the taxane-resistant cancer cells, which maintained CSC characteristics. UHRF1 depletion overcame taxane resistance in vitro and in vivo. Additionally, FOXM1 has been reported to play a role in therapeutic resistance and the self-renewal of CSCs. FOXM1 and UHRF1 are highly correlated in prostate cancer tissues and cells, FOXM1 regulates CSCs by regulating uhrf1 gene transcription in an E2F-independent manner, and FOXM1 protein directly binds to the FKH motifs at the uhrf1 gene promoter. This present study clarified a novel mechanism by which FOXM1 controls CSCs and taxane resistance through a UHRF1-mediated signaling pathway, and validated FOXM1 and UHRF1 as two potential therapeutic targets to overcome taxane resistance.
Collapse
|
12
|
Interaction of WBP2 with ERα increases doxorubicin resistance of breast cancer cells by modulating MDR1 transcription. Br J Cancer 2018; 119:182-192. [PMID: 29937544 PMCID: PMC6048156 DOI: 10.1038/s41416-018-0119-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Surgery combined with new adjuvant chemotherapy is the primary treatment for early stage invasive and advanced stage breast cancer. Growing evidence indicates that patients with ERα-positive breast cancer show poor response to chemotherapeutics. However, ERα-mediated drug-resistant mechanisms remain unclear. METHODS Levels of WW domain-binding protein 2 (WBP2) and drug-resistant gene were determined by western blotting and RT-PCR, respectively. Cell viability was measured by preforming MTT assay. CD243 expression and apoptosis rate were evaluated by flow cytometry. Interactions of WBP2/ERα and ERα/MDR1 were detected by co-immunoprecipitation and chromatin immunoprecipitation (ChIP) assay, respectively. RESULTS There was an intrinsic link between WBP2 and ERα in drug-resistant cancer cells. Upregulation of WBP2 in MCF7 cells increased the chemoresistance to doxorubicin, while RNAi-mediated knockdown of WBP2 in MCF7/ADR cells sensitised the cancer cells to doxorubicin. Further investigation in in vitro and in vivo models demonstrated that WBP2 expression was directly correlated with MDR1, and WBP2 could directly modulate MDR1 transcription through binding to ERα, resulting in increased chemotherapy drug resistance. CONCLUSIONS Our finding provides a new mechanism for the chemotherapy response of ERα-positive breast tumours, and WBP2 might be a key molecule for developing new therapeutic strategies to treat chemoresistance in breast cancer patients.
Collapse
|
13
|
Saei AA, Sabatier P, Tokat ÜG, Chernobrovkin A, Pirmoradian M, Zubarev RA. Comparative Proteomics of Dying and Surviving Cancer Cells Improves the Identification of Drug Targets and Sheds Light on Cell Life/Death Decisions. Mol Cell Proteomics 2018; 17:1144-1155. [PMID: 29572246 DOI: 10.1074/mcp.ra118.000610] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/20/2018] [Indexed: 01/05/2023] Open
Abstract
Chemotherapeutics cause the detachment and death of adherent cancer cells. When studying the proteome changes to determine the protein target and mechanism of action of anticancer drugs, the still-attached cells are normally used, whereas the detached cells are usually ignored. To test the hypothesis that proteomes of detached cells contain valuable information, we separately analyzed the proteomes of detached and attached HCT-116, A375, and RKO cells treated for 48 h with 5-fluorouracil, methotrexate and paclitaxel. Individually, the proteomic data on attached and detached cells had comparable performance in target and drug mechanism deconvolution, whereas the combined data significantly improved the target ranking for paclitaxel. Comparative analysis of attached versus detached proteomes provided further insight into cell life and death decision making. Six proteins consistently up- or downregulated in the detached versus attached cells regardless of the drug and cell type were discovered; their role in cell death/survival was tested by silencing them with siRNA. Knocking down USP11, CTTN, ACAA2, and EIF4H had anti-proliferative effects, affecting UHRF1 additionally sensitized the cells to the anticancer drugs, while knocking down RNF-40 increased cell survival against the treatments. Therefore, adding detached cells to the expression proteomics analysis of drug-treated cells can significantly increase the analytical value of the approach. The data have been deposited to the ProteomeXchange with identifier PXD007686.
Collapse
Affiliation(s)
- Amir Ata Saei
- From the ‡Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelesväg 2, SE-17 177 Stockholm, Sweden
| | - Pierre Sabatier
- From the ‡Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelesväg 2, SE-17 177 Stockholm, Sweden
| | - Ülkü Güler Tokat
- From the ‡Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelesväg 2, SE-17 177 Stockholm, Sweden
| | - Alexey Chernobrovkin
- From the ‡Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelesväg 2, SE-17 177 Stockholm, Sweden
| | - Mohammad Pirmoradian
- From the ‡Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelesväg 2, SE-17 177 Stockholm, Sweden
| | - Roman A Zubarev
- From the ‡Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelesväg 2, SE-17 177 Stockholm, Sweden
| |
Collapse
|
14
|
Gao L, Tan XF, Zhang S, Wu T, Zhang ZM, Ai HW, Song J. An Intramolecular Interaction of UHRF1 Reveals Dual Control for Its Histone Association. Structure 2018; 26:304-311.e3. [PMID: 29395786 DOI: 10.1016/j.str.2017.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/17/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) is one of the essential components of mammalian DNA methylation machinery. Chromatin association of UHRF1 is controlled via an interplay between its intramolecular interaction and dual recognition of histone H3 trimethylated at lysine 9 (H3K9me3) and hemimethylated DNA. Here, we report the crystal structure of the N-terminal tandem Tudor domain (TTD) of UHRF1 in complex with the C-terminal polybasic region (PBR). Structural analysis reveals that PBR binding leads to displacement of the TTD-plant homeodomain (PHD) linker, as well as blockage of the H3K9me3-engaging cage, both of which contribute to a chromatin-occluded UHRF1 conformation. Disruption of the TTD-PBR interaction, which is facilitated by the binding of UHRF1 to hemimethylated DNA or regulatory protein USP7, shifts the UHRF1 conformation toward an open state, allowing for efficient H3K9me3 binding. Together, this study provides structural basis for the allosteric regulation of UHRF1.
Collapse
Affiliation(s)
- Linfeng Gao
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Xiao-Feng Tan
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Shen Zhang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Tianchen Wu
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Hui-Wang Ai
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA; Department of Chemistry, University of California, Riverside, CA 92521, USA; Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, and Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Jikui Song
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA; Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
15
|
Wang RH, Bai J, Deng J, Fang CJ, Chen X. TAT-Modified Gold Nanoparticle Carrier with Enhanced Anticancer Activity and Size Effect on Overcoming Multidrug Resistance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5828-5837. [PMID: 28124900 DOI: 10.1021/acsami.6b15200] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Highly efficient targeted delivery is crucial for successful anticancer chemotherapy. In this study, we developed a drug delivery system ANS-TAT-AuNP that loads anticancer molecule 2-(9-anthracenylmethylene)-hydrazinecarbothioamide (ANS) via conjugation with cell-penetrating peptide TAT modified AuNPs. The in vitro study showed that the IC50 value of ANS-TAT-AuNPs3.8 nm reduced by 11.28- (24 h) and 12.64-fold (48 h) after incubation with liver hepatocellular carcinoma HepG2 cells compared to that of free ANS, suggesting that TAT modified AuNPs could enhance the antiproliferative activity of ANS. Also, ANS-TAT-AuNPs showed a size effect on overcoming multidrug resistance (MDR). The potential of ANS-TAT-AuNPs in overcoming MDR was assessed with MCF-7/ADR drug-resistant cell line, the drug resistance index (DRI) of which was extremely high (>190). The DRI of ANS-TAT-AuNPs22.1 nm decreased dramatically to 1.48 (24 h) and 2.20 (48 h), while that of ANS-TAT-AuNPs3.8 nm decreased to 7.64 (24 h) and 7.77 (48 h), indicating that ANS-TAT-AuNPs22.1 nm could treat extremely resistant MCF-7/ADR cancer cells as drug sensitive ones. The data suggest that the larger AuNPs had more profound effect on overcoming MDR, which could effectively prevent drug efflux due to their size being much larger than that of the p-glycoprotein channel (9-25 Å).
Collapse
Affiliation(s)
| | | | | | | | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
16
|
Hirota T, Tanaka T, Takesue H, Ieiri I. Epigenetic regulation of drug transporter expression in human tissues. Expert Opin Drug Metab Toxicol 2016; 13:19-30. [DOI: 10.1080/17425255.2017.1230199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Schulenburg A, Blatt K, Cerny-Reiterer S, Sadovnik I, Herrmann H, Marian B, Grunt TW, Zielinski CC, Valent P. Cancer stem cells in basic science and in translational oncology: can we translate into clinical application? J Hematol Oncol 2015; 8:16. [PMID: 25886184 PMCID: PMC4345016 DOI: 10.1186/s13045-015-0113-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/14/2015] [Indexed: 02/08/2023] Open
Abstract
Since their description and identification in leukemias and solid tumors, cancer stem cells (CSC) have been the subject of intensive research in translational oncology. Indeed, recent advances have led to the identification of CSC markers, CSC targets, and the preclinical and clinical evaluation of the CSC-eradicating (curative) potential of various drugs. However, although diverse CSC markers and targets have been identified, several questions remain, such as the origin and evolution of CSC, mechanisms underlying resistance of CSC against various targeted drugs, and the biochemical basis and function of stroma cell-CSC interactions in the so-called ‘stem cell niche.’ Additional aspects that have to be taken into account when considering CSC elimination as primary treatment-goal are the genomic plasticity and extensive subclone formation of CSC. Notably, various cell fractions with different combinations of molecular aberrations and varying proliferative potential may display CSC function in a given neoplasm, and the related molecular complexity of the genome in CSC subsets is considered to contribute essentially to disease evolution and acquired drug resistance. In the current article, we discuss new developments in the field of CSC research and whether these new concepts can be exploited in clinical practice in the future.
Collapse
Affiliation(s)
- Axel Schulenburg
- Bone Marrow Transplantation Unit, Department of Internal Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, A-1090, Wien, Austria. .,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Wien, Austria.
| | - Katharina Blatt
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Sabine Cerny-Reiterer
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Irina Sadovnik
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Harald Herrmann
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Radiation Therapy, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria.
| | - Brigitte Marian
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Institute for Cancer Research, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Thomas W Grunt
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Clinical Oncology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Christoph C Zielinski
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Clinical Oncology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Peter Valent
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| |
Collapse
|
18
|
Up-regulation of UHRF1 by oncogenic Ras promoted the growth, migration, and metastasis of pancreatic cancer cells. Mol Cell Biochem 2014; 400:223-32. [PMID: 25416862 DOI: 10.1007/s11010-014-2279-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 11/15/2014] [Indexed: 12/16/2022]
Abstract
Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) has been reported as a marker for the differential diagnosis of pancreatic cancer and chronic pancreatitis. However, the expression pattern and biological functions of UHRF1 in the progression of pancreatic cancer are not fully understood. In this study, it was found that the expression of UHRF1 was significantly up-regulated in pancreatic cancer samples compared to their adjacent normal tissues. Meanwhile, the expression of UHRF1 was inversely correlated with the survival of pancreatic cancer patients. Moreover, in the biological function studies, UHRF1 was shown to promote the growth, migration, and metastasis of pancreatic cancer cells in vitro and in vivo. Mechanistically, the expression of UHRF1 was induced by oncogenic Ras in both pancreatic cancer mouse model and cultured cells. Taken together, our study demonstrated that UHRF1 played an oncogenic role in the progression of pancreatic cancer, and UHRF1 might be a promising target for the treatment of pancreatic cancer.
Collapse
|
19
|
Kim Y, Kim H, Park H, Park D, Lee H, Lee YS, Choe J, Kim YM, Jeoung D. miR-326-histone deacetylase-3 feedback loop regulates the invasion and tumorigenic and angiogenic response to anti-cancer drugs. J Biol Chem 2014; 289:28019-39. [PMID: 25138213 DOI: 10.1074/jbc.m114.578229] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone modification is known to be associated with multidrug resistance phenotypes. Cancer cell lines that are resistant or have been made resistant to anti-cancer drugs showed lower expression levels of histone deacetylase-3 (HDAC3), among the histone deacetylase(s), than cancer cell lines that were sensitive to anti-cancer drugs. Celastrol and Taxol decreased the expression of HDAC3 in cancer cell lines sensitive to anti-cancer drugs. HDAC3 negatively regulated the invasion, migration, and anchorage-independent growth of cancer cells. HDAC3 conferred sensitivity to anti-cancer drugs in vitro and in vivo. TargetScan analysis predicted miR-326 as a negative regulator of HDAC3. ChIP assays and luciferase assays showed a negative feedback loop between HDAC3 and miR-326. miR-326 decreased the apoptotic effect of anti-cancer drugs, and the miR-326 inhibitor increased the apoptotic effect of anti-cancer drugs. miR-326 enhanced the invasion and migration potential of cancer cells. The miR-326 inhibitor negatively regulated the tumorigenic, metastatic, and angiogenic potential of anti-cancer drug-resistant cancer cells. HDAC3 showed a positive feedback loop with miRNAs such as miR-200b, miR-217, and miR-335. miR-200b, miR-217, and miR-335 negatively regulated the expression of miR-326 and the invasion and migration potential of cancer cells while enhancing the apoptotic effect of anti-cancer drugs. TargetScan analysis predicted miR-200b and miR-217 as negative regulators of cancer-associated gene, a cancer/testis antigen, which is known to regulate the response to anti-cancer drugs. HDAC3 and miR-326 acted upstream of the cancer-associated gene. Thus, we show that the miR-326-HDAC3 feedback loop can be employed as a target for the development of anti-cancer therapeutics.
Collapse
Affiliation(s)
| | - Hyuna Kim
- From the Departments of Biochemistry and
| | | | | | - Hansoo Lee
- Biological Sciences, College of Natural Sciences, and
| | - Yun Sil Lee
- the College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jongseon Choe
- Graduate School of Medicine, Kangwon National University, Chunchon 200-701 and
| | - Young Myeong Kim
- Graduate School of Medicine, Kangwon National University, Chunchon 200-701 and
| | | |
Collapse
|
20
|
Shi JF, Yang N, Ding HJ, Zhang JX, Hu ML, Leng Y, Han X, Sun YJ. ERα directly activated the MDR1 transcription to increase paclitaxel-resistance of ERα-positive breast cancer cells in vitro and in vivo. Int J Biochem Cell Biol 2014; 53:35-45. [PMID: 24786296 DOI: 10.1016/j.biocel.2014.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 01/14/2023]
Abstract
Chemotherapy is commonly used to treat early-stage invasive and advanced-stage breast cancer either before or after surgery. Increasing evidence from clinical analysis and in vitro studies has shown that ER-positive breast cancer cells are insensitive to chemotherapy. Complete understanding of how ERα mediates drug resistance is prerequisite to improvement of the chemotherapeutic efficacy. Over-expression of P-glycoprotein (P-gp) encoded by MDR1 gene is one of the major causes of drug resistance. The association between ERα and MDR1 in breast cancer is still unclear and the limited reports are conflict. This study systematically explored intrinsic link between ERα and the P-gp over-expression in paclitaxel-resistant ERα(+) breast cancer cell lines and mouse model in molecular details. Our data showed that ERα activated the MDR1 transcription in MCF-7/PTX breast cancer cells by binding to ERE1/2 and interacting with Sp1 that bridged to the downstream CG-rich element within the MDR1 promoter. Knockdown of MDR1 restrained the effect of ERα in MCF-7 cells and sensitized the cells to paclitaxel. Treatment of ICI 182,780 that selectively suppressed ERα significantly decreased the MDR1 expression and increased the sensitivity of drug resistant breast cancer cells and xenograft tumors to paclitaxel. Our data strongly demonstrated that ERα was able to increase drug resistance of breast cancer cells through activating MDR1 transcription. This novel mechanism provides new insight to how the ERα signaling regulates response of ERα(+) breast tumors to chemotherapy, which may be exploited for developing novel therapeutic strategies for breast cancer in the future.
Collapse
Affiliation(s)
- Jun-Feng Shi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China; Department of Cell Biology, Nanjing Medical University, Nanjing, China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Hai-Jian Ding
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China; Department of Cell Biology, Nanjing Medical University, Nanjing, China
| | - Jie-Xin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Mei-Ling Hu
- Department of Cell Biology, Nanjing Medical University, Nanjing, China
| | - Yan Leng
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China; Department of Cell Biology, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yu-Jie Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China; Department of Cell Biology, Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Komatsu M, Yoshimaru T, Matsuo T, Kiyotani K, Miyoshi Y, Tanahashi T, Rokutan K, Yamaguchi R, Saito A, Imoto S, Miyano S, Nakamura Y, Sasa M, Shimada M, Katagiri T. Molecular features of triple negative breast cancer cells by genome-wide gene expression profiling analysis. Int J Oncol 2012; 42:478-506. [PMID: 23254957 DOI: 10.3892/ijo.2012.1744] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 11/06/2012] [Indexed: 11/06/2022] Open
Abstract
Triple negative breast cancer (TNBC) has a poor outcome due to the lack of beneficial therapeutic targets. To clarify the molecular mechanisms involved in the carcinogenesis of TNBC and to identify target molecules for novel anticancer drugs, we analyzed the gene expression profiles of 30 TNBCs as well as 13 normal epithelial ductal cells that were purified by laser-microbeam microdissection. We identified 301 and 321 transcripts that were significantly upregulated and downregulated in TNBC, respectively. In particular, gene expression profile analyses of normal human vital organs allowed us to identify 104 cancer-specific genes, including those involved in breast carcinogenesis such as NEK2, PBK and MELK. Moreover, gene annotation enrichment analysis revealed prominent gene subsets involved in the cell cycle, especially mitosis. Therefore, we focused on cell cycle regulators, asp (abnormal spindle) homolog, microcephaly-associated (Drosophila) (ASPM) and centromere protein K (CENPK) as novel therapeutic targets for TNBC. Small-interfering RNA-mediated knockdown of their expression significantly attenuated TNBC cell viability due to G1 and G2/M cell cycle arrest. Our data will provide a better understanding of the carcinogenesis of TNBC and could contribute to the development of molecular targets as a treatment for TNBC patients.
Collapse
Affiliation(s)
- Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Geng Y, Gao Y, Ju H, Yan F. Diagnostic and prognostic value of plasma and tissue ubiquitin-like, containing PHD and RING finger domains 1 in breast cancer patients. Cancer Sci 2012; 104:194-9. [PMID: 23107467 DOI: 10.1111/cas.12052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/23/2012] [Accepted: 10/23/2012] [Indexed: 12/31/2022] Open
Abstract
Ubiquitin-like, containing PHD and RING finger domains 1 (UHRF1) has been reported to play an important role in breast carcinogenesis. This work investigated the correlation of UHRF1 DNA level in plasma with clinical characteristics of breast cancer and its clinical significance in breast cancer diagnosis. The expression of UHRF1 in primary breast cancer tissue was examined by Western blot. The UHRF1 DNA levels in plasma and UHRF1 mRNA expression in tissues were determined by accurate real-time quantitative PCR. The associations of UHRF1 levels with clinical variables were evaluated using standard statistical methods. The UHRF1 DNA in plasma of 229 breast cancer patients showed higher expression than healthy controls, which showed high specificity up to 76.2% at a sensitivity of 79.2%, and was significantly associated with c-erbB2 positive status, cancer stage and lymph node metastasis. High UHRF1 DNA level in plasma was significantly associated with short progression-free survival. The UHRF1 DNA level in plasma is highly correlative with breast cancer and its status and stage, and may be a potential independent diagnostic and prognostic factor for both breast cancer and the survival of breast cancer patients.
Collapse
Affiliation(s)
- Yao Geng
- Department of Chemistry, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | | | | | | |
Collapse
|
23
|
Wang J, Zeng X, Luo T, Jin W, Chen S. Involvement of V-Ets erythroblastosis virus E26 oncogene homolog 2 in regulation of transcription activity of MDR1 gene. Acta Biochim Biophys Sin (Shanghai) 2012; 44:752-8. [PMID: 22819965 DOI: 10.1093/abbs/gms058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over-expression of MDR1 confers multidrug resistance (MDR) in cancers and remains a major cause for the failure of chemotherapy. In the present study, we found that V-Ets erythroblastosis virus E26 oncogene homolog 2 (ETS2) could activate MDR1 transcription and P-glycoprotein (P-gp) expression in SGC7901 cells. Knockdown of ETS2 attenuated MDR1 transcription and P-gp expression, and increased the sensitivity of MDR cancer cells to cytotoxic drugs that were transported by P-gp in SGC7901/VCR cells. ETS2 could bind to the ETS2 sites on the MDR1 promoter and activate its transcription. The regulation of MDR1 expression by ETS2 may provide potential ways to overcome MDR in cancer treatment.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents/pharmacology
- Base Sequence
- Binding Sites/genetics
- Blotting, Western
- Cell Line, Tumor
- Cell Survival/drug effects
- Cisplatin/pharmacology
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- Microscopy, Fluorescence
- Mutation
- Paclitaxel/pharmacology
- Promoter Regions, Genetic/genetics
- Protein Binding
- Proto-Oncogene Protein c-ets-2/genetics
- Proto-Oncogene Protein c-ets-2/metabolism
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic/genetics
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Jian Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | | | | | | | | |
Collapse
|
24
|
Toth M, Boros IM, Balint E. Elevated level of lysine 9-acetylated histone H3 at the MDR1 promoter in multidrug-resistant cells. Cancer Sci 2012; 103:659-69. [PMID: 22320423 DOI: 10.1111/j.1349-7006.2012.02215.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/20/2011] [Accepted: 12/29/2011] [Indexed: 12/15/2022] Open
Abstract
Failure of chemotherapy in breast cancer presents a major problem and is often due to elevated expression of ATP binding cassette (ABC)-type transporters, such as MDR1 protein. It has been shown that MDR1/ABCB1 gene expression is regulated at the chromatin level by DNA methylation and histone acetylation. However, the modified histone residues have not been identified and the role of various histone acetyl transferases (HATs) is not fully understood. By studying a breast carcinoma model cell line and its MDR1-overexpressing derivative, we show that the histone 3 lysine 9 (H3K9) acetylation level is elevated 100-fold in the promoter and first exon of the MDR1 gene in the drug-resistant cell line compared to the drug-sensitive cell line. The acetylation level of the other examined lysine residues (H3K4, H3K14, H4K8, and H4K12) is weakly or not at all elevated in the MDR1 locus, although their acetylation is generally increased genome-wide in the drug-resistant cell. Downregulation of the expression of HATs PCAF and GCN5 by RNAi effectively reduces the expression of MDR1. Unexpectedly, treatment with a p300-selective inhibitor (HAT inhibitor II) further increases MDR1 expression and drug efflux in the drug-resistant cells. Our data suggest that repeated exposure to chemotherapy may result in deregulated histone acetylation genome-wide and in the MDR1 promoter.
Collapse
Affiliation(s)
- Monika Toth
- Institute for Plant Genomics, Human Biotechnology and Bioenergy (BAYGEN), Bay Zoltan Foundation for Applied Research, Szeged, Hungary
| | | | | |
Collapse
|
25
|
Gene therapy with RNAi targeting UHRF1 driven by tumor-specific promoter inhibits tumor growth and enhances the sensitivity of chemotherapeutic drug in breast cancer in vitro and in vivo. Cancer Chemother Pharmacol 2011; 69:1079-87. [DOI: 10.1007/s00280-011-1801-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
|
26
|
Abstract
The methyl-CpG binding proteins (MBPs) interpret the methylation of DNA and its components. The number of MBPs in the human body currently stands at 15, which are split into 3 branches, a reflection of the intricate mechanisms of gene regulation. Each branch utilizes a different mechanism for interacting with methylated DNA or its components. These interactions function to direct gene expression and maintain or alter DNA architecture. It is these functions that are commonly exploited in human disease. For this review, we will focus on each protein and any roles it may have in initiating, promoting, progressing, or inhibiting cancer. This will highlight common threads in the roles of these proteins, which will allow us to speculate on potentially productive directions for future research.
Collapse
Affiliation(s)
- Lee Parry
- School of Biosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
27
|
Yan F, Tan XY, Geng Y, Ju HX, Gao YF, Zhu MC. Inhibition Effect of siRNA-Downregulated UHRF1 on Breast Cancer Growth. Cancer Biother Radiopharm 2011; 26:183-9. [DOI: 10.1089/cbr.2010.0886] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Feng Yan
- Department of Clinical Laboratory, Jiangsu Institute of Cancer Prevention and Cure, Nanjing, People's Republic of China
| | - Xu-Yan Tan
- Department of Clinical Laboratory, Jiangsu Institute of Cancer Prevention and Cure, Nanjing, People's Republic of China
| | - Yao Geng
- MOE Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, People's Republic of China
| | - Huang-Xian Ju
- MOE Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, People's Republic of China
| | - Yan-Fang Gao
- The First Clinic Medical College of Nanjing Medical University, Nanjing, People's Republic of China
| | - Ming-Chen Zhu
- Department of Clinical Laboratory, Jiangsu Institute of Cancer Prevention and Cure, Nanjing, People's Republic of China
| |
Collapse
|
28
|
Ke W, Yu P, Wang J, Wang R, Guo C, Zhou L, Li C, Li K. MCF-7/ADR cells (re-designated NCI/ADR-RES) are not derived from MCF-7 breast cancer cells: a loss for breast cancer multidrug-resistant research. Med Oncol 2010; 28 Suppl 1:S135-41. [PMID: 21116879 DOI: 10.1007/s12032-010-9747-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/10/2010] [Indexed: 12/21/2022]
Abstract
MCF-7/ADR cells have been widely used as a multidrug-resistant breast cancer cell model in cancer research. The origin of MCF-7/ADR has been a matter of debate since MCF-7/ADR cells were re-designated NCI/ADR-RES in 1998. Many recent studies still describe MCF-7/ADR cells as originating from the breast cancer cell line MCF-7. Thus, the real origin of MCF-7/ADR cells remains more unclear. In this study, a new adriamycin (ADR)-resistant cell line MCF-7/ADR' was reproduced using the same procedure employed during the initial establishment of MCF-7/ADR. Since the MCF-7/ADR' cell line was definitely derived from parental MCF-7 cells, we were able to directly compare these cell lines together with MCF-7/ADR using immunocytochemical, morphological, and consecutive DNA fingerprinting analyses to determine the true origin of MCF-7/ADR. Both ADR-resistant cell lines displayed some similar phenotypic characteristics, such as high levels of P-glycoprotein (P-gp) expression, increased vacuolation, abundant filamentous material, and irregular pseudopodia. With increasing concentrations of ADR, the DNA fingerprints of MCF-7/ADR' cells were always identical to the parental MCF-7 cells. However, the DNA fingerprints of MCF-7/ADR cells did not relate to MCF-7 or MCF-7/ADR'. MCF-7/ADR and the breast cancer cell line MCF-7 are not of the same origin. Long-time culture in the presence of ADR does not cause significant changes in DNA fingerprint patterns.
Collapse
Affiliation(s)
- Weifeng Ke
- Department of General Surgery, First People's Hospital Affiliated to Shanghai Jiaotong University, No 100 Haining Road, Hongkou District, Shanghai 200080, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mistry H, Tamblyn L, Butt H, Sisgoreo D, Gracias A, Larin M, Gopalakrishnan K, Hande MP, McPherson JP. UHRF1 is a genome caretaker that facilitates the DNA damage response to gamma-irradiation. Genome Integr 2010; 1:7. [PMID: 20678257 PMCID: PMC2914011 DOI: 10.1186/2041-9414-1-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 06/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background DNA double-strand breaks (DSBs) caused by ionizing radiation or by the stalling of DNA replication forks are among the most deleterious forms of DNA damage. The ability of cells to recognize and repair DSBs requires post-translational modifications to histones and other proteins that facilitate access to lesions in compacted chromatin, however our understanding of these processes remains incomplete. UHRF1 is an E3 ubiquitin ligase that has previously been linked to events that regulate chromatin remodeling and epigenetic maintenance. Previous studies have demonstrated that loss of UHRF1 increases the sensitivity of cells to DNA damage however the role of UHRF1 in this response is unclear. Results We demonstrate that UHRF1 plays a critical role for facilitating the response to DSB damage caused by γ-irradiation. UHRF1-depleted cells exhibit increased sensitivity to γ-irradiation, suggesting a compromised cellular response to DSBs. UHRF1-depleted cells show impaired cell cycle arrest and an impaired accumulation of histone H2AX phosphorylation (γH2AX) in response to γ-irradiation compared to control cells. We also demonstrate that UHRF1 is required for genome integrity, in that UHRF1-depleted cells displayed an increased frequency of chromosomal aberrations compared to control cells. Conclusions Our findings indicate a critical role for UHRF1 in maintenance of chromosome integrity and an optimal response to DSB damage.
Collapse
Affiliation(s)
- Helena Mistry
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5 S 1A8, Canada
| | - Laura Tamblyn
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5 S 1A8, Canada
| | - Hussein Butt
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5 S 1A8, Canada
| | - Daniel Sisgoreo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5 S 1A8, Canada
| | - Aileen Gracias
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5 S 1A8, Canada
| | - Meghan Larin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5 S 1A8, Canada
| | - Kalpana Gopalakrishnan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - John Peter McPherson
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5 S 1A8, Canada
| |
Collapse
|