1
|
Sun W, Wang Z, Wen S, Huang A, Li H, Jiang L, Feng Q, Fan D, Tian Q, Han D, Liu X. Technical strategy for monozygotic twin discrimination by single-nucleotide variants. Int J Legal Med 2024; 138:767-779. [PMID: 38197923 DOI: 10.1007/s00414-023-03150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Monozygotic (MZ) twins are theoretically genetically identical. Although they are revealed to accumulate mutations after the zygote splits, discriminating between twin genomes remains a formidable challenge in the field of forensic genetics. Single-nucleotide variants (SNVs) are responsible for a substantial portion of genetic variation, thus potentially serving as promising biomarkers for the identification of MZ twins. In this study, we sequenced the whole genome of a pair of female MZ twins when they were 27 and 33 years old to approximately 30 × coverage using peripheral blood on an Illumina NovaSeq 6000 Sequencing System. Potentially discordant SNVs supported by whole-genome sequencing were validated extensively by amplicon-based targeted deep sequencing and Sanger sequencing. In total, we found nine bona fide post-twinning SNVs, all of which were identified in the younger genomes and found in the older genomes. None of the SNVs occurred within coding exons, three of which were observed in introns, supported by whole-exome sequencing results. A double-blind test was employed, and the reliability of MZ twin discrimination by discordant SNVs was endorsed. All SNVs were successfully detected when input DNA amounts decreased to 0.25 ng, and reliable detection was limited to seven SNVs below 0.075 ng input. This comprehensive analysis confirms that SNVs could serve as cost-effective biomarkers for MZ twin discrimination.
Collapse
Affiliation(s)
- Weifen Sun
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziwei Wang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou, 215123, China
| | - Shubo Wen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou, 215123, China
| | - Ao Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou, 215123, China
| | - Hui Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
| | - Lei Jiang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
| | - Qi Feng
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Danlin Fan
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Qilin Tian
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China.
| |
Collapse
|
2
|
Zakhari S, Hoek JB. Epidemiology of Moderate Alcohol Consumption and Breast Cancer: Association or Causation? Cancers (Basel) 2018; 10:E349. [PMID: 30249004 PMCID: PMC6210419 DOI: 10.3390/cancers10100349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Epidemiological studies have been used to show associations between modifiable lifestyle habits and the incidence of breast cancer. Among such factors, a history of alcohol use has been reported in multiple studies and meta-analyses over the past decades. However, associative epidemiological studies that were interpreted as evidence that even moderate alcohol consumption increases breast cancer incidence have been controversial. In this review, we consider the literature on the relationship between moderate or heavy alcohol use, both in possible biological mechanisms and in variations in susceptibility due to genetic or epigenetic factors. We argue that there is a need to incorporate additional approaches to move beyond the associations that are reported in traditional epidemiological analyses and incorporate information on molecular pathologic signatures as a requirement to posit causal inferences. In particular, we point to the efforts of the transdisciplinary field of molecular pathological epidemiology (MPE) to evaluate possible causal relationships, if any, of alcohol consumption and breast cancer. A wider application of the principles of MPE to this field would constitute a giant step that could enhance our understanding of breast cancer and multiple modifiable risk factors, a step that would be particularly suited to the era of "personalized medicine".
Collapse
Affiliation(s)
- Samir Zakhari
- Science Office, Distilled Spirits Council, Washington, DC 20005, USA.
| | - Jan B Hoek
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
3
|
Large Autosomal Copy-Number Differences within Unselected Monozygotic Twin Pairs are Rare. Twin Res Hum Genet 2015; 18:13-8. [PMID: 25578400 DOI: 10.1017/thg.2014.85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monozygotic (MZ) twins form an important system for the study of biological plasticity in humans. While MZ twins are generally considered to be genetically identical, a number of studies have emerged that have demonstrated copy-number differences within a twin pair, particularly in those discordant for disease. The rate of autosomal copy-number variation (CNV) discordance within MZ twin pairs was investigated using a population sample of 376 twin pairs genotyped on Illumina Human610-Quad arrays. After CNV calling using both QuantiSNP and PennCNV followed by manual annotation, only a single CNV difference was observed within the MZ twin pairs, being a 130 KB duplication of chromosome 5. Five other potential discordant CNV were called by the software, but excluded based on manual annotation of the regions. It is concluded that large CNV discordance is rare within MZ twin pairs, indicating that any CNV difference found within phenotypically discordant MZ twin pairs has a high probability of containing the causal gene(s) involved.
Collapse
|
4
|
Abstract
Monozygotic (MZ) twins are genetically identical at conception, making them informative subjects for studies on somatic mutations. Copy number variants (CNVs) are responsible for a substantial part of genetic variation, have relatively high mutation rates, and are likely to be involved in phenotypic variation. We conducted a genome-wide survey for post-twinning de novo CNVs in 1,097 MZ twin pairs. Comparisons between MZ twins were made by CNVs measured in DNA from blood or buccal epithelium with the Affymetrix 6.0 microarray and two calling algorithms. In addition, CNV concordance rates were compared between the different sources of DNA, and gene-enrichment association analyses were conducted for thought problems (TP) and attention problems (AP) using CNVs concordant within MZ pairs. We found a total of 153 putative post-twinning de novo CNVs >100 kb, of which the majority resided in 15q11.2. Based on the discordance of raw intensity signals a selection was made of 20 de novo CNVs for a qPCR validation experiments. Two out of 20 post-twinning de novo CNVs were validated with qPCR in the same twin pair. The 13-year-old MZ twin pair that showed two discordances in CN in 15q11.2 in their buccal DNA did not show large phenotypic differences. From the remaining 18 putative de novo CNVs, 17 were deletions or duplications that were concordant within MZ twin pairs. Concordance rates within twin pairs of CNV calls with CN ≠ 2 were ~80%. Buccal epithelium-derived DNA showed a slightly but significantly higher concordance rate, and blood-derived DNA showed significantly more concordant CNVs per twin pair. The gene-enrichment analyses on concordant CNVs showed no significant associations between CNVs overlapping with genes involved in neuronal processes and TP or AP after accounting for the source of DNA.
Collapse
|
5
|
Zakhari S, Hoek JB. Alcohol and breast cancer: reconciling epidemiological and molecular data. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 815:7-39. [PMID: 25427899 DOI: 10.1007/978-3-319-09614-8_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most diagnosed cancer in women worldwide. Epidemiological studies have suggested a possible causative role of alcohol consumption as a risk factor for breast cancer. However, such conclusions should be interpreted with considerable caution for several reasons. While epidemiological studies can help identify the roots of health problems and disease incidence in a community, they are by necessity associative and cannot determine cause and effect relationships. In addition, all these studies rely on self-reporting to determine the amount and type of alcoholic beverage consumed, which introduces recall bias. This is documented in a recent study which stated that the apparent increased risk of cancer among light-moderate drinkers may be "substantially due to underreporting of intake." Another meta-analysis about alcohol and breast cancer declared "the modest size of the association and variation in results across studies leave the causal role of alcohol in question." Furthermore, breast cancer develops over decades; thus, correlations between alcohol consumption and breast cancer cannot be determined in epidemiological studies with windows of alcohol exposure that captures current or recent alcohol intake, after clinical diagnosis. Numerous risk factors are involved in breast carcinogenesis; some are genetic and beyond the control of a woman; others are influenced by lifestyle factors. Breast cancer is a heterogeneous and polygenic disease which is further influenced by epigenetic mechanisms that affect the transciptomes, proteomes and metabolomes, and ultimately breast cancer evolution. Environmental factors add another layer of complexity by their interactions with the susceptibility genes for breast cancer and metabolic diseases. The current state-of-knowledge about alcohol and breast cancer association is ambiguous and confusing to both a woman and her physician. Confronting the huge global breast cancer issue should be addressed by sound science. It is advised that women with or without a high risk for breast cancer should avoid overconsumption of alcohol and should consult with their physician about risk factors involved in breast cancer. Since studies associating moderate alcohol consumption and breast cancer are contradictory, a woman and her physician should weigh the risks and benefits of moderate alcohol consumption.
Collapse
Affiliation(s)
- Samir Zakhari
- Former Director, Division of Metabolism and Health Effects, NIAAA, NIH, Bethesda, MD, 20852, USA,
| | | |
Collapse
|
6
|
Abstract
Chromosome 17q21.31 microdeletion syndrome is a genomic disorder caused by a recurrent 600 kb long deletion. The deletion affects the region of a common inversion present in about 20% of Europeans. The inversion is associated with the H2 haplotype carrying additional low-copy repeats susceptible to non-allelic homologous recombination, and this haplotype is prone to deletion. No instances of 17q21.31 deletions inherited from an affected parent have been reported, and the deletions always affected a parental chromosome with the H2 haplotype. The syndrome is characterized clinically by intellectual disability, hypotonia, friendly behavior and specific facial dysmorphism with long face, large tubular or pear-shaped nose and bulbous nasal tip. We present monozygotic twin sisters showing the typical clinical picture of the syndrome. The phenotype of the sisters was very similar, with a slightly more severe presentation in Twin B. The 17q21.31 microdeletion was confirmed in both patients but in neither of their parents. Potential copy number differences between the genomes of the twins were subsequently searched using high-resolution single nucleotide polymorphism (SNP) and comparative genome hybridisation (CGH) arrays. However, these analyses identified no additional aberrations or genomic differences that could potentially be responsible for the subtle phenotypic differences. These could possibly be related to the more severe perinatal history of Twin B, or to the variable expressivity of the disorder. In accord with the expectations, one of the parents (the mother) was shown to carry the H2 haplotype, and the maternal allele of chromosome 17q21.31 was missing in the twins.
Collapse
|
7
|
Burga A, Lehner B. Beyond genotype to phenotype: why the phenotype of an individual cannot always be predicted from their genome sequence and the environment that they experience. FEBS J 2012; 279:3765-75. [DOI: 10.1111/j.1742-4658.2012.08810.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/07/2012] [Accepted: 08/24/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Alejandro Burga
- Genetic Systems; EMBL/CRG Systems Biology Research Unit; Centre for Genomic Regulation (CRG) and UPF; Barcelona; Spain
| | | |
Collapse
|
8
|
Czyz W, Morahan JM, Ebers GC, Ramagopalan SV. Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences. BMC Med 2012; 10:93. [PMID: 22898292 PMCID: PMC3566971 DOI: 10.1186/1741-7015-10-93] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/17/2012] [Indexed: 03/16/2023] Open
Abstract
Genetic-epidemiological studies on monozygotic (MZ) twins have been used for decades to tease out the relative contributions of genes and the environment to a trait. Phenotypic discordance in MZ twins has traditionally been ascribed to non-shared environmental factors acting after birth, however recent data indicate that this explanation is far too simple. In this paper, we review other reasons for discordance, including differences in the in utero environment, genetic mosaicism, and stochastic factors, focusing particularly on epigenetic discordance. Epigenetic differences are gaining increasing recognition. Although it is clear that in specific cases epigenetic alterations provide a causal factor in disease etiology, the overall significance of epigenetics in twin discordance remains unclear. It is also challenging to determine the causality and relative contributions of environmental, genetic, and stochastic factors to epigenetic variability. Epigenomic profiling studies have recently shed more light on the dynamics of temporal methylation change and methylome heritability, yet have not given a definite answer regarding their relevance to disease, because of limitations in establishing causality. Here, we explore the subject of epigenetics as another component in human phenotypic variability and its links to disease focusing particularly on evidence from MZ twin studies.
Collapse
Affiliation(s)
- Witold Czyz
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences (Clinical Neurology), University of Oxford, Oxford, UK
| | - Julia M Morahan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences (Clinical Neurology), University of Oxford, Oxford, UK
| | - George C Ebers
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences (Clinical Neurology), University of Oxford, Oxford, UK
| | - Sreeram V Ramagopalan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences (Clinical Neurology), University of Oxford, Oxford, UK
- Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
9
|
Breckpot J, Thienpont B, Gewillig M, Allegaert K, Vermeesch JR, Devriendt K. Differences in Copy Number Variation between Discordant Monozygotic Twins as a Model for Exploring Chromosomal Mosaicism in Congenital Heart Defects. Mol Syndromol 2012; 2:81-87. [PMID: 22511896 DOI: 10.1159/000335284] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2011] [Indexed: 12/21/2022] Open
Abstract
Studies addressing the role of somatic copy number variation (CNV) in the genesis of congenital heart defects (CHDs) are scarce, as cardiac tissue is difficult to obtain, especially in non-affected individuals. We explored the occurrence of copy number differences in monozygotic (MZ) twins discordant for the presence of a CHD, as an illustrative model for chromosomal mosaicism in CHDs. Array comparative genomic hybridization was performed on peripheral blood-derived DNA obtained from 6 discordant MZ twin pairs and on sex-matched reference samples. To identify CNV differences between both twin members as well as potential CNVs in both twins contributing to the phenotype, DNA from each twin was hybridized against its co-twin, and against a normal control. Three copy number differences in 1 out of 6 MZ twin pairs were detected, confirming the occurrence of somatic CNV events in MZ twins. Further investigation by copy number and (epi)genome sequencing analyses in MZ twins, discordant for the presence of CHDs, is required to improve our knowledge on how postzygotic genetic, environmental and stochastic factors can affect human heart development.
Collapse
Affiliation(s)
- J Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
10
|
Bataille V, Lens M, Spector T. The use of the twin model to investigate the genetics and epigenetics of skin diseases with genomic, transcriptomic and methylation data. J Eur Acad Dermatol Venereol 2012; 26:1067-73. [DOI: 10.1111/j.1468-3083.2011.04444.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|