1
|
Shan M, Cheng Q, Parris AB, Kong L, Yang X, Shi Y. Metformin reduces basal subpopulation and attenuates mammary epithelial cell stemness in FVB/N mice. Front Cell Dev Biol 2024; 12:1427395. [PMID: 39055652 PMCID: PMC11269140 DOI: 10.3389/fcell.2024.1427395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Metformin shows promise in breast cancer prevention, but its underlying mechanisms remain unclear. This study investigated the impact of metformin on the repopulation dynamics of mammary epithelial cells (MECs) and the signaling pathways in non-tumorigenic FVB/N mice. This study aimed to enhance our understanding of the role of metformin in reducing the susceptibility of MECs in premalignant tissues to oncogenic factors. In this study, female mice were administered 200 mg/kg/day of metformin via intraperitoneal (i.p.) injection from 8 to 18 weeks of age. After this treatment period, morphogenesis, flow cytometry, analyses of MEC stemness, and RNA sequencing were performed. The study findings indicated that metformin treatment in adult mice reduced mammary gland proliferation, as demonstrated by decreased Ki67+ cells and lateral bud formation. Additionally, metformin significantly reduced both basal and mammary repopulating unit subpopulations, indicating an impact on mammary epithelial cell repopulation. Mammosphere, colony-forming cell, and 3D culture assays revealed that metformin adversely affected mammary epithelial cell stemness. Furthermore, metformin downregulated signaling in key pathways including AMPK/mTOR, MAPK/Erk, PI3K/Akt, and ER, which contribute to its inhibitory effects on mammary proliferation and stemness. Transcriptome analysis with RNA sequencing indicated that metformin induced significant downregulation of genes involved in multiple critical pathways. KEGG-based pathway analysis indicated that genes in PI3K/Akt, focal adhesion, ECM-receptor, small cell lung cancer and immune-modulation pathways were among the top groups of differentially regulated genes. In summary, our research demonstrates that metformin inhibits MEC proliferation and stemness, accompanied by the downregulation of intrinsic signaling. These insights suggest that the regulatory effects of metformin on premalignant mammary tissues could potentially delay or prevent the onset of breast cancer, offering a promising avenue for developing new preventive strategies.
Collapse
Affiliation(s)
- Minghui Shan
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiong Cheng
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Amanda B. Parris
- Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Research Campus, North Carolina Central University, Kannapolis, NC, United States
| | - Lingfei Kong
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohe Yang
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Research Campus, North Carolina Central University, Kannapolis, NC, United States
| | - Yujie Shi
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Yan Z, Huang H, Wang Q, Kong Y, Liu X. Function and mechanism of action of the TRPV1 channel in the development of triple-negative breast cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 56:957-962. [PMID: 38734935 PMCID: PMC11322878 DOI: 10.3724/abbs.2024068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/25/2024] [Indexed: 05/13/2024] Open
Abstract
Transient receptor potential channel subfamily vanilloid 1 (TRPV1) is a member of the transient receptor potential family of nonselective cationic transmembrane channel proteins that are involved in the regulation of calcium homeostasis. It is expressed in various tumor types and has been implicated in the regulation of cancer growth, metastasis, apoptosis, and cancer-related pain. TRPV1 is highly expressed in triple-negative breast cancer (TNBC), and both its agonists and antagonists may exert anti-cancer effects. In this review, we provide an overview of the effect of TRPV1 on TNBC development and its influence on immunotherapy in an attempt to facilitate the development of future treatment strategies.
Collapse
Affiliation(s)
- Ziling Yan
- />Pathology Departmentthe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s HospitalShenzhen518035China
| | - Haihui Huang
- />Pathology Departmentthe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s HospitalShenzhen518035China
| | - Qianqian Wang
- />Pathology Departmentthe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s HospitalShenzhen518035China
| | - Yanjie Kong
- />Pathology Departmentthe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s HospitalShenzhen518035China
| | - Xia Liu
- />Pathology Departmentthe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s HospitalShenzhen518035China
| |
Collapse
|
3
|
Guo H, Lv X, Li Y, Li M. Attention-based GCN integrates multi-omics data for breast cancer subtype classification and patient-specific gene marker identification. Brief Funct Genomics 2023; 22:463-474. [PMID: 37114942 DOI: 10.1093/bfgp/elad013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer is a heterogeneous disease and can be divided into several subtypes with unique prognostic and molecular characteristics. The classification of breast cancer subtypes plays an important role in the precision treatment and prognosis of breast cancer. Benefitting from the relation-aware ability of a graph convolution network (GCN), we present a multi-omics integrative method, the attention-based GCN (AGCN), for breast cancer molecular subtype classification using messenger RNA expression, copy number variation and deoxyribonucleic acid methylation multi-omics data. In the extensive comparative studies, our AGCN models outperform state-of-the-art methods under different experimental conditions and both attention mechanisms and the graph convolution subnetwork play an important role in accurate cancer subtype classification. The layer-wise relevance propagation (LRP) algorithm is used for the interpretation of model decision, which can identify patient-specific important biomarkers that are reported to be related to the occurrence and development of breast cancer. Our results highlighted the effectiveness of the GCN and attention mechanisms in multi-omics integrative analysis and the implement of the LRP algorithm can provide biologically reasonable insights into model decision.
Collapse
Affiliation(s)
- Hui Guo
- College of Chemistry at Sichuan University
| | - Xiang Lv
- College of Chemistry at Sichuan University
| | - Yizhou Li
- College of Cyber Science and Engineering at Sichuan University
| | | |
Collapse
|
4
|
Lin L, Wu Q, Lu F, Lei J, Zhou Y, Liu Y, Zhu N, Yu Y, Ning Z, She T, Hu M. Nrf2 signaling pathway: current status and potential therapeutic targetable role in human cancers. Front Oncol 2023; 13:1184079. [PMID: 37810967 PMCID: PMC10559910 DOI: 10.3389/fonc.2023.1184079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
Cancer is a borderless global health challenge that continues to threaten human health. Studies have found that oxidative stress (OS) is often associated with the etiology of many diseases, especially the aging process and cancer. Involved in the OS reaction as a key transcription factor, Nrf2 is a pivotal regulator of cellular redox state and detoxification. Nrf2 can prevent oxidative damage by regulating gene expression with antioxidant response elements (ARE) to promote the antioxidant response process. OS is generated with an imbalance in the redox state and promotes the accumulation of mutations and genome instability, thus associated with the establishment and development of different cancers. Nrf2 activation regulates a plethora of processes inducing cellular proliferation, differentiation and death, and is strongly associated with OS-mediated cancer. What's more, Nrf2 activation is also involved in anti-inflammatory effects and metabolic disorders, neurodegenerative diseases, and multidrug resistance. Nrf2 is highly expressed in multiple human body parts of digestive system, respiratory system, reproductive system and nervous system. In oncology research, Nrf2 has emerged as a promising therapeutic target. Therefore, certain natural compounds and drugs can exert anti-cancer effects through the Nrf2 signaling pathway, and blocking the Nrf2 signaling pathway can reduce some types of tumor recurrence rates and increase sensitivity to chemotherapy. However, Nrf2's dual role and controversial impact in cancer are inevitable consideration factors when treating Nrf2 as a therapeutic target. In this review, we summarized the current state of biological characteristics of Nrf2 and its dual role and development mechanism in different tumor cells, discussed Keap1/Nrf2/ARE signaling pathway and its downstream genes, elaborated the expression of related signaling pathways such as AMPK/mTOR and NF-κB. Besides, the main mechanism of Nrf2 as a cancer therapeutic target and the therapeutic strategies using Nrf2 inhibitors or activators, as well as the possible positive and negative effects of Nrf2 activation were also reviewed. It can be concluded that Nrf2 is related to OS and serves as an important factor in cancer formation and development, thus provides a basis for targeted therapy in human cancers.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qing Wu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Feifei Lu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Jiaming Lei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - You Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhifeng Ning
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Tonghui She
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
5
|
Zhang J, Zhang J, Zhao W, Li Q, Cheng W. Low expression of NR1H3 correlates with macrophage infiltration and indicates worse survival in breast cancer. Front Genet 2023; 13:1067826. [PMID: 36699456 PMCID: PMC9868774 DOI: 10.3389/fgene.2022.1067826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/10/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Nuclear receptor NR1H3 is a key regulator of macrophage function and lipid homeostasis. Here, we aimed to visualize the prognostic value and immunological characterization of NR1H3 in breast cancer. Methods: The expression pattern and prognostic value of NR1H3 were analyzed via multiple databases, including TIMER2, GEPIA2 and Kaplan-Meier Plotter. TISIDB, TIMER2 and immunohistochemical analysis were used to investigate the correlation between NR1H3 expression and immune infiltration. GO enrichment analysis, KEGG analysis, Reactome analysis, ConsensusPathDB and GeneMANIA were used to visualize the functional enrichment of NR1H3 and signaling pathways related to NR1H3. Results: We demonstrated that the expression of NR1H3 was significantly lower in breast cancer compared with adjacent normal tissues. Kaplan-Meier survival curves showed shorter overall survival in basal breast cancer patients with low NR1H3 expression, and poorer prognosis of relapse-free survival in breast cancer patients with low NR1H3 expression. NR1H3 was mainly expressed in immune cells, and its expression was closely related with infiltrating levels of tumor-infiltrating immune cells in breast cancer. Additionally, univariate and multivariate analysis indicated that the expression of NR1H3 and the level of macrophage infiltration were independent prognostic factors for breast cancer. Gene interaction network analysis showed the function of NR1H3 involved in regulating of innate immune response and macrophage activation. Moreover, NR1H3 may function as a predictor of chemoresponsiveness in breast cancer. Conclusion: These findings suggest that NR1H3 serves as a prognostic biomarker and contributes to the regulation of macrophage activation in breast cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhao
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingxian Li
- The Center of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, China,*Correspondence: Qingxian Li, ; Wenwu Cheng,
| | - Wenwu Cheng
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Qingxian Li, ; Wenwu Cheng,
| |
Collapse
|
6
|
Zhang W, Wang Z, Yang S, Wang Y, Xiang S, Guo Z, Hou B, Dong X, Yuan Z, Xu B, Song L. Preoperative Rim Enhancement on Magnetic Resonance Imaging Indicates Larger Tumor Size and Poor Prognosis in Chinese Basal-Like Breast Cancer Patients. Cancer Biother Radiopharm 2021; 37:729-736. [PMID: 34339256 DOI: 10.1089/cbr.2020.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: This study was to investigate the prevalence of preoperative rim enhancement, and its association with clinicopathological features, relapse, and survival profiles in Chinese basal-like breast cancer (BC) patients. Materials and Methods: The preoperative breast magnetic resonance imaging images of 145 basal-like BC patients who underwent surgical excision were obtained to determine rim enhancement. Besides, based on disease status and survival status during follow-up, the 1-year relapse rate/mortality, 3-year relapse rate/mortality, 5-year relapse rate/mortality were calculated; disease-free survival (DFS) and overall survival (OS) were determined. Results: There were 51 (35.2%) patients with rim enhancement and 94 (64.8%) patients without rim enhancement. Furthermore, rim enhancement was associated with larger tumor size and advanced T stage, whereas it did not associate with age, pathological differentiation, N stage, or TNM stage. In addition, rim enhancement was associated with higher 1-, 3-, and 5-year relapse rate and shorter DFS; meanwhile, rim enhancement was associated with increased 1-, 3-, and 5-year mortality rate and decreased OS. By multivariate Cox's regression analyses, rim enhancement, pathological differentiation, and N stage independently predicted reduced DFS; T stage independently predicted declined OS. Conclusion: Preoperative rim enhancement on MRI might be a possible noninvasive indicator for guiding personalized treatment strategies and improving prognosis in Chinese basal-like BC patients.
Collapse
Affiliation(s)
- Weiyong Zhang
- Imaging CT/MRI Room, HanDan Central Hospital, Handan, China
| | - Zehui Wang
- Laboratory Division, HanDan Central Hospital, Handan, China
| | - Sujun Yang
- Imaging CT/MRI Room, HanDan Central Hospital, Handan, China
| | - Yufang Wang
- Imaging CT/MRI Room, HanDan Central Hospital, Handan, China
| | - Shifeng Xiang
- Imaging CT/MRI Room, HanDan Central Hospital, Handan, China
| | - Zhiyuan Guo
- Division II of Oncology, and HanDan Central Hospital, Handan, China
| | - Bo Hou
- Imaging CT/MRI Room, HanDan Central Hospital, Handan, China
| | - Xiaolei Dong
- Imaging CT/MRI Room, HanDan Central Hospital, Handan, China
| | | | - Baoyuan Xu
- Hospital Office, HanDan Central Hospital, Handan, China
| | - Lihong Song
- Hospital Office, HanDan Central Hospital, Handan, China
| |
Collapse
|
7
|
Garmpis N, Damaskos C, Garmpi A, Nikolettos K, Dimitroulis D, Diamantis E, Farmaki P, Patsouras A, Voutyritsa E, Syllaios A, Zografos CG, Antoniou EA, Nikolettos N, Kostakis A, Kontzoglou K, Schizas D, Nonni A. Molecular Classification and Future Therapeutic Challenges of Triple-negative Breast Cancer. In Vivo 2021; 34:1715-1727. [PMID: 32606140 DOI: 10.21873/invivo.11965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is an extremely diverse group of breast tumors, with aggressive clinical behavior, higher rates of distant recurrence and worse overall survival compared to other types of breast cancers. The genetic, transcriptional histological and clinical heterogeneity of this disease has been an obstacle in the progression of targeted therapeutic approaches, as a ubiquitous TNBC marker has not yet been discerned. In terms of that, current studies focus on the classification of TNBC tumors in subgroups with similar characteristics in order to develop a treatment specialized for each group of patients. To date, a series of gene expression profiles analysis in order to identify the different molecular subtypes have been used. Complementary DNA microarrays, PAM50 assays, DNA and RNA sequencing as well as immunohistochemical analysis are some of the methods utilized to classify TNBC tumors. In 2012, the Cancer Genome Atlas (TCGA) Research Network conducted a major analysis of breast cancers using six different platforms, the genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays, in order to assort the tumors in homogenous subgroups. Since then, an increasing number of breast cancer data sets are being examined in an attempt to distinguish the classification with biological interpretation and clinical implementation. In this review, the progress in molecular subtyping of TNBC is discussed, providing a brief insight in novel TNBC biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Nikolettos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Diamantis
- Department of Endocrinology and Diabetes Center, G. Gennimatas General Hospital, Athens, Greece
| | - Paraskevi Farmaki
- First Department of Pediatrics, Agia Sofia Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Patsouras
- Second Department of Internal Medicine, Tzanio General Hospital, Piraeus, Greece
| | - Errika Voutyritsa
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Syllaios
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos G Zografos
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios A Antoniou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikos Nikolettos
- Obstetric - Gynecologic Clinic, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Zhou S, Yang Y, Wu Y, Liu S. Review: Multiplexed profiling of biomarkers in extracellular vesicles for cancer diagnosis and therapy monitoring. Anal Chim Acta 2021; 1175:338633. [PMID: 34330441 DOI: 10.1016/j.aca.2021.338633] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale vesicles secreted by normal and pathological cells. The types and levels of surface proteins and internal nucleic acids in EVs are closely related to their original cells, tumor occurrence, and development. Thus, the sensitive and accurate detection of EV biomarkers is a reliable approach for noninvasive disease diagnosis and treatment response monitoring. However, the purification and molecular profiling of these EVs are technically challenging. Much effort has been dedicated to developing new methods for the detection of multiple EV biomarkers. In this review, we summarize the recent progress in EV protein and nucleic acid biomarker analysis. Additionally, we systematically discuss the advantages of multiplexed EV biomarker detection for accurate cancer diagnosis, therapy monitoring, and cancer screening. This article aims to present an overview of all kinds of analytical technologies for assessing EVs and their applications in clinical settings.
Collapse
Affiliation(s)
- Sisi Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yao Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
9
|
Metastatic Triple Negative Breast Cancer: The New Era of Thinking. FORUM OF CLINICAL ONCOLOGY 2021. [DOI: 10.2478/fco-2018-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The heterogeneity of triple negative breast cancer (TNBC) is reflected in a bizarre response to therapy. Although it is chemotherapy sensitive, the failure is the usual pathway either in local or distance status. With progression in Gene Expression Profile (GEP) and other molecular techniques, TNBC is divided into sub-types with unique pathways. In the current review, we are trying to highlight based on the molecular classification of TNBC and the management based on every type.
Collapse
|
10
|
Cava C, Sabetian S, Castiglioni I. Patient-Specific Network for Personalized Breast Cancer Therapy with Multi-Omics Data. ENTROPY 2021; 23:e23020225. [PMID: 33670375 PMCID: PMC7918754 DOI: 10.3390/e23020225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/06/2023]
Abstract
The development of new computational approaches that are able to design the correct personalized drugs is the crucial therapeutic issue in cancer research. However, tumor heterogeneity is the main obstacle to developing patient-specific single drugs or combinations of drugs that already exist in clinics. In this study, we developed a computational approach that integrates copy number alteration, gene expression, and a protein interaction network of 73 basal breast cancer samples. 2509 prognostic genes harboring a copy number alteration were identified using survival analysis, and a protein–protein interaction network considering the direct interactions was created. Each patient was described by a specific combination of seven altered hub proteins that fully characterize the 73 basal breast cancer patients. We suggested the optimal combination therapy for each patient considering drug–protein interactions. Our approach is able to confirm well-known cancer related genes and suggest novel potential drug target genes. In conclusion, we presented a new computational approach in breast cancer to deal with the intra-tumor heterogeneity towards personalized cancer therapy.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, 20090 Milan, Italy
- Correspondence:
| | - Soudabeh Sabetian
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Isabella Castiglioni
- Department of Physics “Giuseppe Occhialini”, University of Milan-Bicocca Piazza dell’Ateneo Nuovo, 20126 Milan, Italy;
| |
Collapse
|
11
|
Angius A, Cossu-Rocca P, Arru C, Muroni MR, Rallo V, Carru C, Uva P, Pira G, Orrù S, De Miglio MR. Modulatory Role of microRNAs in Triple Negative Breast Cancer with Basal-Like Phenotype. Cancers (Basel) 2020; 12:E3298. [PMID: 33171872 PMCID: PMC7695196 DOI: 10.3390/cancers12113298] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Development of new research, classification, and therapeutic options are urgently required due to the fact that TNBC is a heterogeneous malignancy. The expression of high molecular weight cytokeratins identifies a biologically and clinically distinct subgroup of TNBCs with a basal-like phenotype, representing about 75% of TNBCs, while the remaining 25% includes all other intrinsic subtypes. The triple negative phenotype in basal-like breast cancer (BLBC) makes it unresponsive to endocrine therapy, i.e., tamoxifen, aromatase inhibitors, and/or anti-HER2-targeted therapies; for this reason, only chemotherapy can be considered an approach available for systemic treatment even if it shows poor prognosis. Therefore, treatment for these subgroups of patients is a strong challenge for oncologists due to disease heterogeneity and the absence of unambiguous molecular targets. Dysregulation of the cellular miRNAome has been related to huge cellular process deregulations underlying human malignancy. Consequently, epigenetics is a field of great promise in cancer research. Increasing evidence suggests that specific miRNA clusters/signatures might be of clinical utility in TNBCs with basal-like phenotype. The epigenetic mechanisms behind tumorigenesis enable progress in the treatment, diagnosis, and prevention of cancer. This review intends to summarize the epigenetic findings related to miRNAome in TNBCs with basal-like phenotype.
Collapse
Affiliation(s)
- Andrea Angius
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| | - Paolo Cossu-Rocca
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (P.C.-R.); (M.R.M.)
- Department of Diagnostic Services, “Giovanni Paolo II” Hospital, ASSL Olbia-ATS Sardegna, 07026 Olbia, Italy
| | - Caterina Arru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (P.C.-R.); (M.R.M.)
| | - Vincenzo Rallo
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Piscina Manna, 09010 Pula, CA, Italy;
| | - Giovanna Pira
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Sandra Orrù
- Department of Pathology, “A. Businco” Oncologic Hospital, ASL Cagliari, 09121 Cagliari, Italy;
| | - Maria Rosaria De Miglio
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| |
Collapse
|
12
|
Privat M, Cavard A, Zekri Y, Ponelle-Chachuat F, Molnar I, Sonnier N, Bignon YJ. A high expression ratio of RhoA/RhoB is associated with the migratory and invasive properties of basal-like Breast Tumors. Int J Med Sci 2020; 17:2799-2808. [PMID: 33162807 PMCID: PMC7645338 DOI: 10.7150/ijms.43101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/14/2020] [Indexed: 01/11/2023] Open
Abstract
Basal-like breast cancer is among the most aggressive cancers and there is still no effective targeted treatment. In order to identify new therapeutic targets, we performed mRNA-Seq on eight breast cancer cell lines. Among the genes overexpressed in basal-like tumors, we focused on the RhoA and RhoB genes, which encode small GTPases known to play a role in the actin cytoskeleton, allowing cells to migrate. qRT-PCR and Western blotting were used for expression studies. Migratory and invasive properties were analysed by wound healing and Boyden chambers assays. Stress fibers formation was evaluated by fluorescent actin labeling. Rho siRNA, small inhibitor Rhosin treatment and BRCA1 transfection were performed to study the role of Rho and BRCA1 proteins. We showed that strong expression of RhoA and low expression of RhoB was associated with the basal-like subtype of breast cancer. Decreasing RhoA expression reduced the migratory and invasive capacities of basal-like cell lines, while decreasing RhoB expression increased these capacities. Rhosin, an inhibitor of RhoA, could also reduce the migration of basal-like cell lines. Rho proteins are involved in the formation of stress fibers, a conformation of the actin cytoskeleton found in migrating cells: inhibition of RhoA expression decreased the formation of these fibers. BRCA1, a gene frequently inactivated in basal-like tumors, appears to play a role in the differential expression of RhoA and RhoB in these tumors, as the restoration of BRCA1 expression in a BRCA1-mutated basal-like cell line decreased expression of RhoA and increased expression of RhoB, resulting in reduced migratory capacity. These results suggest Rho proteins as potential therapeutic targets for basal-like and BRCA1-mutated breast cancer, as migration and acquisition of mesenchymal properties are key functional pathways in these tumors with high metastatic potential.
Collapse
Affiliation(s)
- Maud Privat
- INSERM U1240 IMoST, University of Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Département d'Oncogénétique, Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Amélie Cavard
- Département d'Oncogénétique, Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Yanis Zekri
- Département d'Oncogénétique, Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Flora Ponelle-Chachuat
- INSERM U1240 IMoST, University of Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Département d'Oncogénétique, Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Ioana Molnar
- INSERM U1240 IMoST, University of Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Centre d'Investigation Clinique UMR 501, F-63001 Clermont-Ferrand, France
- Department of clinical research, Délégation Recherche Clinique et Innovation, Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Nicolas Sonnier
- INSERM U1240 IMoST, University of Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Département d'Oncogénétique, Centre Jean Perrin, F-63011 Clermont-Ferrand, France
- Centre de Ressources Biologiques BB-0033-00075, Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Yves-Jean Bignon
- INSERM U1240 IMoST, University of Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Département d'Oncogénétique, Centre Jean Perrin, F-63011 Clermont-Ferrand, France
- Centre de Ressources Biologiques BB-0033-00075, Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| |
Collapse
|
13
|
Menbari MN, Rahimi K, Ahmadi A, Mohammadi-Yegane S, Elyasi A, Darvishi N, Hosseini V, Abdi M. Association of HDAC8 Expression with Pathological Findings in Triple Negative and Non-Triple Negative Breast Cancer: Implications for Diagnosis. IRANIAN BIOMEDICAL JOURNAL 2020; 24:288-94. [PMID: 32429642 PMCID: PMC7392136 DOI: 10.29252/ibj.24.5.283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Previous data have shown the tumorigenicity roles of HDAC8 in breast cancer. More recently, the oncogenic effects of this molecule have been revealed in TNBC. The present study aimed to determine the diagnostic value of HDAC8 for the differentiation of TNBC from nTNBC tumors. Methods: A total of 50 cancerous and normal adjacent tumor specimens were obtained, and the clinical and pathological findings of studied subjects were recorded. The expression of HDAC8 gene was determined by qRT-PCR. Also, immunohistochemical staining was performed on tissue samples. Results: Our results showed that the expression of HDAC8 in breast cancer tissues was significantly higher than the normal adjacent tissues (p = 0.0011). HDAC8 expression was also observed to be higher in TNBC patients than nTNBC group (p = 0.0013). In addition, in the TNBC group, there was a significant association between the HDAC8 overexpression and tumor characteristics, including tumor size (p = 0.039), lymphatic invasion (p = 0.01), tumor grade (p = 0.02), and perineural invasion (p < 0.05). The cut-off value was fixed at 0.6279 r.u., and the corresponding sensitivity and specificity were found to be 73.91% and 70.37%, respectively. Conclusion: According to the findings, among the other markers, HDAC8 oncogene may be used as a potential tumor marker in diagnosis of TNBC tumors.
Collapse
Affiliation(s)
- Mohammad-Nazir Menbari
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Karim Rahimi
- Department of Molecular Biology and Genetics, Gene Expression and Gene Medicine, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Samira Mohammadi-Yegane
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anvar Elyasi
- Department of Surgery, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nikoo Darvishi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Vahedeh Hosseini
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
14
|
Dadiani M, Necula D, Kahana-Edwin S, Oren N, Baram T, Marin I, Morzaev-Sulzbach D, Pavlovski A, Balint-Lahat N, Anafi L, Wiemann S, Korner C, Gal-Yam EN, Avivi C, Kaufman B, Barshack I, Ben-Baruch A. TNFR2+ TILs are significantly associated with improved survival in triple-negative breast cancer patients. Cancer Immunol Immunother 2020; 69:1315-1326. [PMID: 32198536 DOI: 10.1007/s00262-020-02549-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
In view of the relatively limited efficacy of immunotherapies targeting the PD-1-PD-L1 axis in triple-negative breast cancer (TNBC) and of published reports on tumor-promoting roles of TNFR2+ tumor-infiltrating lymphocytes (TNFR2+ TILs), we determined the incidence of TNFR2+ TILs in TNBC patient tumors, their association with disease outcome and relations with PD-1+ TILs. Using a cohort of treatment-naïve TNBC patients with long follow-up (n = 70), we determined the presence of TNFR2+ TILs and PD-1+ TILs by immunohistochemistry. TILs (≥ 1% of cellular mass) and TNFR2+ TILs (≥ 1% of total TILs) were detected in 96% and 74% of tumors, respectively. The presence of TILs at > 5% of tumor cell mass ("Positive TILs"), as well as of positive TNFR2+ TILs (> 5%), was independently associated with good prognosis, and combination of both parameters demonstrated superior outcome relative to their lower levels. PD1+ TILs (> 5/hot spot) were detected in 63% of patients. High levels of PD-1+ TILs (> 20/hot spot) showed an unfavorable disease outcome, and in their presence, the favorable outcome of positive TNFR2+ TILs was ablated. Thus, TNFR2+ TILs are strongly connected to improved prognosis in TNBC; these findings suggest that TNFR2+ TILs have favorable effects in TNBC patients, unlike the tumor-promoting roles attributed to them in other cancer systems. Overall, our observations propose that the TNFR2+ TIL subset should not be targeted in the course of TNBC therapy; rather, its beneficial impacts may become into power when anti-PD-1 regimens-that may potentiate immune activities-are administered to TNBC patients.
Collapse
Affiliation(s)
- Maya Dadiani
- Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Daniela Necula
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel
| | | | - Nino Oren
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Tamir Baram
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Irina Marin
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel
| | | | - Anya Pavlovski
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel
| | | | - Liat Anafi
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cindy Korner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Camila Avivi
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel
| | - Bella Kaufman
- Breast Oncology Institute, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
15
|
Ninio-Many L, Hikri E, Burg-Golani T, Stemmer SM, Shalgi R, Ben-Aharon I. miR-125a Induces HER2 Expression and Sensitivity to Trastuzumab in Triple-Negative Breast Cancer Lines. Front Oncol 2020; 10:191. [PMID: 32185126 PMCID: PMC7058585 DOI: 10.3389/fonc.2020.00191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
The EGFR/HER2 signaling network is an effective therapeutic target for HER2-positive cancers, which are known for their aggressive biological course. Evidence indicates that the EGFR/HER2 network plays a role in the aggressive basal-like subtype as well. Here, we studied the potential role of miR-125a-3p as a modulator of the EGFR/HER2 pathway in basal-like breast cancer. Over-expression of miR-125a-3p reduced the migratory capability of MDA-MB-231 cells and led to an increase in the expression of ErbB2 transcript and protein. The induced ErbB2 responded to trastuzumab and underwent internalization and subsequent intra-lysosomal degradation. Trastuzumab treatment further reduced the migratory capability and induced the apoptosis of the cells. An in-vivo mouse model, which supported the in-vitro findings, showed a synergistic effect for miR-125a-3p and trastuzumab. Trastuzumab-treated miR-125a-3p-induced tumors were significantly smaller than control induced tumors. Our findings indicate that, in the basal-like subtype of breast cancer, miR-125a-3p may act as a tumor suppressor. miR-125a-3p induces an increase in the expression of ErbB2 that may render the cells suitable for treatment with anti-HER2 therapies.
Collapse
Affiliation(s)
- Lihi Ninio-Many
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Elad Hikri
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Tamar Burg-Golani
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Salomon M Stemmer
- Davidoff Center, Rabin Medical Center, Institute of Oncology, Petah-Tiqva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Ruth Shalgi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | | |
Collapse
|
16
|
Li Z, Chen Y, Ren WU, Hu S, Tan Z, Wang Y, Chen Y, Zhang J, Wu J, Li T, Xu J, Ying X. Transcriptome Alterations in Liver Metastases of Colorectal Cancer After Acquired Resistance to Cetuximab. Cancer Genomics Proteomics 2019; 16:207-219. [PMID: 31018951 DOI: 10.21873/cgp.20126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIM Cetuximab in combination with chemotherapy is recommended as first-line therapy for metastatic colorectal cancer (mCRC) with wild-type RAS. However, drug resistance to cetuximab exists widely in mCRC and reduces the prognosis of patients. Although some genomic alterations have been demonstrated to drive acquired resistance to cetuximab, the overall compendium of inherent molecular mechanisms is still incomplete. MATERIALS AND METHODS Four liver metastasis biopsies were collected from two mCRC patients who were treated with cetuximab in combination with 5-fluororacil plus leucovorin and oxaliplatin (FOLFOX) regimen. RESULTS Transcriptomic analysis revealed global gene expression alterations between paired samples prior to treatment and after acquired resistance. Further bioinformatics analysis discovered differentially expressed protein-coding genes/lncRNAs/miRNAs, potential miRNA-mRNA regulatory networks and lncRNA-mRNA competing endogenous RNA network, which may be potential biomarkers or play roles during the process of acquired resistance to cetuximab. CONCLUSION Our study contributes to deciphering the molecular mechanisms of acquired resistance to cetuximab.
Collapse
Affiliation(s)
- Zongcheng Li
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, P.R. China.,State Key Laboratory of Proteomics, Translational Medicine Center of Stem Cells, 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Yuling Chen
- Department of GI Oncology, 307 Hospital of PLA, Academy of Military Medical Sciences, Beijing, P.R. China
| | - W U Ren
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, P.R. China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Shuofeng Hu
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Zhaoli Tan
- Department of GI Oncology, 307 Hospital of PLA, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Yan Wang
- Department of GI Oncology, 307 Hospital of PLA, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Yaowen Chen
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, P.R. China.,Department of Obstetrics and Gynecology, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, P.R. China
| | - Jian Zhang
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Jiaqi Wu
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Tingting Li
- Department of Geriatric Gastroenterology, Chinese People's Liberation Army General Hospital, Beijing, P.R. China.,State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, Beijing, P.R. China
| | - Jianming Xu
- Department of GI Oncology, 307 Hospital of PLA, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Xiaomin Ying
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, P.R. China
| |
Collapse
|
17
|
Liang Y, Besch-Williford C, Cook MT, Belenchia A, Brekken RA, Hyder SM. APR-246 alone and in combination with a phosphatidylserine-targeting antibody inhibits lung metastasis of human triple-negative breast cancer cells in nude mice. BREAST CANCER-TARGETS AND THERAPY 2019; 11:249-259. [PMID: 31534364 PMCID: PMC6681124 DOI: 10.2147/bctt.s208706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/18/2019] [Indexed: 12/29/2022]
Abstract
Background Approximately 15–20% of all human breast cancers are classified as triple-negative because they lack estrogen and progesterone receptors and Her-2-neu, which are commonly targeted by chemotherapeutic drugs. New treatment strategies are therefore urgently needed to combat triple-negative breast cancers (TNBCs). Almost 80% of the triple-negative tumors express mutant p53 (mtp5), a functionally defective tumor suppressor protein. Whereas wild-type p53 (wtp53) promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor-dependent angiogenesis, mtp53 fails to regulate these functions, resulting in tumor vascularization, growth, resistance to chemotherapy, and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for suppressing TNBC metastasis. Methods APR-246 is a small-molecule drug that reactivates mtp53, thereby restoring p53 function. In this study, we sought to determine whether administration of APR-246, either alone or in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits stem cell-like characteristics of tumor cells and migration in vitro, and metastasis of human mtp53-expressing TNBC cells to the lungs in mouse models. Results APR-246 reduced both the stem cell-like properties and migration of TNBC cells in vitro. In mouse models, administration of either APR-246 or 2aG4 reduced metastasis of TNBC cells to the lungs; a combination of the two diminished lung metastasis to the same extent as either agent alone. Combination treatment significantly reduced the incidence of lung metastasis compared either single agent alone. Conclusion Metastasis of human mtp53-expressing TNBC cells to the lungs of nude mice is inhibited by the treatment that combines activation of mtp53 with targeting of phosphatidylserine residues on tumor blood vessels. We contend therefore that our findings strongly support the use of combination treatment involving mtp53 activation and immunotherapy in patients with TNBC.
Collapse
Affiliation(s)
- Yayun Liang
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | - Matthew T Cook
- Department of Biology, Washburn University, Topeka, KS, USA
| | - Anthony Belenchia
- Department of Nutrition and Exercise Physiology and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research and Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Salman M Hyder
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
18
|
O-GlcNAc Transferase Inhibition Differentially Affects Breast Cancer Subtypes. Sci Rep 2019; 9:5670. [PMID: 30952976 PMCID: PMC6450885 DOI: 10.1038/s41598-019-42153-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/25/2019] [Indexed: 12/18/2022] Open
Abstract
Post-translational modification of intracellular proteins with a single N-acetylglucosamine sugar (O-GlcNAcylation) regulates signaling, proliferation, metabolism and protein stability. In breast cancer, expression of the enzyme that catalyzes O-GlcNAcylation – O-GlcNAc-transferase (OGT), and the extent of protein O-GlcNAcylation, are upregulated in tumor tissue, and correlate with cancer progression. Here we compare the significance of O-GlcNAcylation in a panel of breast cancer cells of different phenotypes. We find a greater dependency on OGT among triple-negative breast cancer (TNBC) cell lines, which respond to OGT inhibition by undergoing cell cycle arrest and apoptosis. Searching for the cause of this response, we evaluate the changes in the proteome that occur after OGT inhibition or knock-down, employing a reverse-phase protein array (RPPA). We identify transcriptional repressor - hairy and enhancer of split-1 (HES1) - as a mediator of the OGT inhibition response in the TNBC cells. Inhibition of OGT as well as the loss of HES1 results in potent cytotoxicity and apoptosis. The study raises a possibility of using OGT inhibition to potentiate DNA damage in the TNBC cells.
Collapse
|
19
|
Lee JU, Kim WH, Lee HS, Park KH, Sim SJ. Quantitative and Specific Detection of Exosomal miRNAs for Accurate Diagnosis of Breast Cancer Using a Surface-Enhanced Raman Scattering Sensor Based on Plasmonic Head-Flocked Gold Nanopillars. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804968. [PMID: 30828996 DOI: 10.1002/smll.201804968] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/22/2019] [Indexed: 05/08/2023]
Abstract
MicroRNAs in exosomes (exosomal miRNAs) have attracted increased attention as cancer biomarkers for early diagnosis and prognosis owing to their stability in body fluids. Since strong association exists between exosomal miRNA expression levels and breast cancer, the development of effective methods that can monitor exosomal miRNA expression both over broad concentration ranges and in ultralow amounts is critical. Here, a surface-enhanced Raman scattering (SERS)-based sensing platform is developed for the quantitative determination of exosomal miRNAs. Ultrasensitive exosomal miRNA detection with single-nucleotide specificity is obtained from enhanced SERS signals from a uniform plasmonic head-flocked gold nanopillar substrate, which generates multiple hotspots and enables hybridization between short oligonucleotides, i.e., miRNAs and locked nucleic acid probes. The proposed SERS sensor shows an extremely low detection limit without any amplification process, a wide dynamic range (1 am to 100 nm), multiplex sensing capability and sound miRNA recovery in serum. Furthermore, this sensor allows reliable observation of exosomal miRNA expression patterns from breast cancer cell lines and can discriminate breast cancer subtype based on the difference between these patterns. The results suggest that this sensor can be used for universal cancer diagnosis and further biomedical applications through the quantitative measurement of exosomal miRNAs in bodily fluids.
Collapse
Affiliation(s)
- Jong Uk Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Korea
| | - Woo Hyun Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Korea
| | - Hye Sun Lee
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, 02841, Korea
| | - Kyong Hwa Park
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, 02841, Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Korea
| |
Collapse
|
20
|
Massive integrative gene set analysis enables functional characterization of breast cancer subtypes. J Biomed Inform 2019; 93:103157. [PMID: 30928514 DOI: 10.1016/j.jbi.2019.103157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 01/31/2023]
Abstract
The availability of large-scale repositories and integrated cancer genome efforts have created unprecedented opportunities to study and describe cancer biology. In this sense, the aim of translational researchers is the integration of multiple omics data to achieve a better identification of homogeneous subgroups of patients in order to develop adequate diagnostic and treatment strategies from the personalized medicine perspective. So far, existing integrative methods have grouped together omics data information, leaving out individual omics data phenotypic interpretation. Here, we present the Massive and Integrative Gene Set Analysis (MIGSA) R package. This tool can analyze several high throughput experiments in a comprehensive way through a functional analysis strategy, relating a phenotype to its biological function counterpart defined by means of gene sets. By simultaneously querying different multiple omics data from the same or different groups of patients, common and specific functional patterns for each studied phenotype can be obtained. The usefulness of MIGSA was demonstrated by applying the package to functionally characterize the intrinsic breast cancer PAM50 subtypes. For each subtype, specific functional transcriptomic profiles and gene sets enriched by transcriptomic and proteomic data were identified. To achieve this, transcriptomic and proteomic data from 28 datasets were analyzed using MIGSA. As a result, enriched gene sets and important genes were consistently found as related to a specific subtype across experiments or data types and thus can be used as molecular signature biomarkers.
Collapse
|
21
|
Baek HJ, Kim SE, Choi EK, Kim JK, Shin DH, Park EJ, Kim TH, Kim JY, Kim KG, Deng CX, Kim SS. Inhibition of Estrogen Signaling Reduces the Incidence of BRCA1-associated Mammary Tumor Formation. Int J Biol Sci 2018; 14:1755-1768. [PMID: 30416390 PMCID: PMC6216038 DOI: 10.7150/ijbs.28142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/30/2018] [Indexed: 01/02/2023] Open
Abstract
BRCA1-deficient breast cancer is a very well-known hereditary cancer. However, except for resection of normal mammary glands and ovaries, there is no acceptable measure for proactively preventing tumor development. Importantly, inherited BRCA1 mutations are closely associated with tumors in hormone-responsive tissues. Here, we examined the effects of estrogen on the accumulation of genetic instabilities upon loss of BRCA1, and assessed the contribution of estrogen signaling to the incidence and progression of Brca1-mutated mammary tumors. Our in vitro studies showed that treatment of BRCA1-depleted breast cancer cells with estrogen induced proliferation. Additionally, estrogen reduced the ability of these BRCA1-knockdown cells to sense radiation-induced DNA damage and also facilitated G1/S progression. Moreover, long-term treatment of Brca1-mutant (Brca1co/coMMTV-Cre) mice with the selective estrogen receptor (ER)-α degrader, fulvestrant, decreased the tumor formation rate from 64% to 36%, and also significantly reduced mammary gland density in non-tumor-bearing mice. However, in vivo experiments showed that fulvestrant treatment did not alter the progression of ER-positive Brca1-mutant tumors, which were frequently identified in the aged population and showed less aggressive tendencies. These findings enhance our understanding of how ER-α signaling contributes to BRCA1-deficient mammary tumors and provide evidence suggesting that targeted inhibition of ER-α signaling may be useful for the prevention of BRCA1-mutated breast cancer.
Collapse
Affiliation(s)
- Hye Jung Baek
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Sun Eui Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Eun Kyung Choi
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Jong Kwang Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Dong Hoon Shin
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Eun Jung Park
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Tae Hyun Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Joo-Young Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Kwang Gi Kim
- Department of Biomedical Engineering, Gachon University College of Medicine, Incheon, 21565, Korea
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Sang Soo Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| |
Collapse
|
22
|
MiR-29b-1-5p is altered in BRCA1 mutant tumours and is a biomarker in basal-like breast cancer. Oncotarget 2018; 9:33577-33588. [PMID: 30323900 PMCID: PMC6173367 DOI: 10.18632/oncotarget.26094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Depletion of BRCA1 protein in mouse mammary glands results in defects in lactational development and increased susceptibility to mammary cancer. Extensive work has focussed on the role of BRCA1 in the normal breast and in the development of breast cancer, the cell of origin for BRCA1 tumours and the protein-coding genes altered in BRCA1 deficient cells. However, the role of non-coding RNAs in BRCA1-deficient cells is poorly understood. To evaluate miRNA expression in BRCA1 deficient mammary cells, RNA sequencing was performed on the mammary glands of Brca1 knockout mice. We identified 140 differentially expressed miRNAs, 9 of which were also differentially expressed in human BRCA1 breast tumours or familial non-BRCA1 patients and during normal gland development. We show that BRCA1 binds to putative cis-elements in promoter regions of the miRNAs with the potential to regulate their expression, and that four miRNAs (miR-29b-1-5p, miR-664, miR-16-2 and miR-744) significantly stratified the overall survival of basal-like tumours. Importantly the prognostic value of miR-29b-1-5p was higher in significance than several commonly used clinical biomarkers. These results emphasise the role of Brca1 in modulating expression of miRNAs and highlights the potential for BRCA1 regulated miRNAs to be informative biomarkers associated with BRCA1 loss and survival in breast cancer.
Collapse
|
23
|
Padua MB, Bhat-Nakshatri P, Anjanappa M, Prasad MS, Hao Y, Rao X, Liu S, Wan J, Liu Y, McElyea K, Jacobsen M, Sandusky G, Althouse S, Perkins S, Nakshatri H. Dependence receptor UNC5A restricts luminal to basal breast cancer plasticity and metastasis. Breast Cancer Res 2018; 20:35. [PMID: 29720215 PMCID: PMC5932758 DOI: 10.1186/s13058-018-0963-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
Background The majority of estrogen receptor-positive (ERα+) breast cancers respond to endocrine therapies. However, resistance to endocrine therapies is common in 30% of cases, which may be due to altered ERα signaling and/or enhanced plasticity of cancer cells leading to breast cancer subtype conversion. The mechanisms leading to enhanced plasticity of ERα-positive cancer cells are unknown. Methods We used short hairpin (sh)RNA and/or the CRISPR/Cas9 system to knockdown the expression of the dependence receptor UNC5A in ERα+ MCF7 and T-47D cell lines. RNA-seq, quantitative reverse transcription polymerase chain reaction, chromatin immunoprecipitation, and Western blotting were used to measure the effect of UNC5A knockdown on basal and estradiol (E2)-regulated gene expression. Mammosphere assay, flow cytometry, and immunofluorescence were used to determine the role of UNC5A in restricting plasticity. Xenograft models were used to measure the effect of UNC5A knockdown on tumor growth and metastasis. Tissue microarray and immunohistochemistry were utilized to determine the prognostic value of UNC5A in breast cancer. Log-rank test, one-way, and two-way analysis of variance (ANOVA) were used for statistical analyses. Results Knockdown of the E2-inducible UNC5A resulted in altered basal gene expression affecting plasma membrane integrity and ERα signaling, as evident from ligand-independent activity of ERα, altered turnover of phosphorylated ERα, unique E2-dependent expression of genes effecting histone demethylase activity, enhanced upregulation of E2-inducible genes such as BCL2, and E2-independent tumorigenesis accompanied by multiorgan metastases. UNC5A depletion led to the appearance of a luminal/basal hybrid phenotype supported by elevated expression of basal/stem cell-enriched ∆Np63, CD44, CD49f, epidermal growth factor receptor (EGFR), and the lymphatic vessel permeability factor NTN4, but lower expression of luminal/alveolar differentiation-associated ELF5 while maintaining functional ERα. In addition, UNC5A-depleted cells acquired bipotent luminal progenitor characteristics based on KRT14+/KRT19+ and CD49f+/EpCAM+ phenotype. Consistent with in vitro results, UNC5A expression negatively correlated with EGFR expression in breast tumors, and lower expression of UNC5A, particularly in ERα+/PR+/HER2− tumors, was associated with poor outcome. Conclusion These studies reveal an unexpected role of the axon guidance receptor UNC5A in fine-tuning ERα and EGFR signaling and the luminal progenitor status of hormone-sensitive breast cancers. Furthermore, UNC5A knockdown cells provide an ideal model system to investigate metastasis of ERα+ breast cancers. Electronic supplementary material The online version of this article (10.1186/s13058-018-0963-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria B Padua
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Present Address: Department of Pediatrics and Herman B. Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Manjushree Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mayuri S Prasad
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yangyang Hao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xi Rao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kyle McElyea
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sandra Althouse
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Susan Perkins
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,VA Roudebush Medical Center, C218C, 980 West Walnut St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
24
|
Fiocchetti M, Cipolletti M, Ascenzi P, Marino M. Dissecting the 17β-estradiol pathways necessary for neuroglobin anti-apoptotic activity in breast cancer. J Cell Physiol 2018; 233:5087-5103. [PMID: 29219195 DOI: 10.1002/jcp.26378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Abstract
Neuroglobin (NGB) is a relatively recent discovered monomeric heme-protein, which behave in neurons as a sensor of injuring stimuli including oxidative stress, hypoxia, and neurotoxicity. In addition, the anti-apoptotic activity of overexpressed NGB has been reported both in neurons and in cancer cell lines. We recently demonstrated that, NGB functions as a compensatory protein of the steroid hormone 17β-estradiol (E2) protecting cancer cells against the apoptotic death induced by oxidative stress. However, the E2-induced signaling pathways at the root of NGB over-expression and mitochondrial re-localization in breast cancer cells is still elusive. By using a kinase screening library, here, we report that: i) There is a strong positive correlation between NGB and ERα expression and activity in breast cancer cells; ii) The E2-activated phosphatidyl-inositol 3 kinase (PI3K)/protein kinase B (AKT) and protein kinase C (PKC) pathways are necessary to modulate the NGB protein levels; iii) The E2-induced persistent activation of AKT drive NGB to mitochondria; iv) Reactive oxygen species (ROS)-inducing compounds activating rapidly and transiently AKT does not affect the NGB mitochondrial level; and v) High level of NGB into mitochondria are necessary for the pro-survival and anti-apoptotic effect of this globin in cancer cells. As a whole, these results underline the E2 triggered pathways in E2-responsive breast cancer cells that involve NGB as a compensatory protein devoted to cancer cell survival.
Collapse
Affiliation(s)
| | | | - Paolo Ascenzi
- Department of Science, University of Roma Tre, Roma, Italy.,Interdepartmental Laboratory for Electron Microscopy, University of Roma Tre, Roma, Italy
| | - Maria Marino
- Department of Science, University of Roma Tre, Roma, Italy
| |
Collapse
|
25
|
Privat M, Rudewicz J, Sonnier N, Tamisier C, Ponelle-Chachuat F, Bignon YJ. Antioxydation And Cell Migration Genes Are Identified as Potential Therapeutic Targets in Basal-Like and BRCA1 Mutated Breast Cancer Cell Lines. Int J Med Sci 2018; 15:46-58. [PMID: 29333087 PMCID: PMC5765739 DOI: 10.7150/ijms.20508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022] Open
Abstract
Basal-like breast cancers are among the most aggressive cancers and effective targeted therapies are still missing. In order to identify new therapeutic targets, we performed Methyl-Seq and RNA-Seq of 10 breast cancer cell lines with different phenotypes. We confirmed that breast cancer subtypes cluster the RNA-Seq data but not the Methyl-Seq data. Basal-like tumor hypermethylated phenotype was not confirmed in our study but RNA-Seq analysis allowed to identify 77 genes significantly overexpressed in basal-like breast cancer cell lines. Among them, 48 were overexpressed in triple negative breast cancers of TCGA data. Some molecular functions were overrepresented in this candidate gene list. Genes involved in antioxydation, such as SOD1, MGST3 and PRDX or cadherin-binding genes, such as PFN1, ITGB1 and ANXA1, could thus be considered as basal like breast cancer biomarkers. We then sought if these genes were linked to BRCA1, since this gene is often inactivated in basal-like breast cancers. Nine genes were identified overexpressed in both basal-like breast cancer cells and BRCA1 mutated cells. Amongst them, at least 3 genes code for proteins implicated in epithelial cell migration and epithelial to mesenchymal transition (VIM, ITGB1 and RhoA). Our study provided several potential therapeutic targets for triple negative and BRCA1 mutated breast cancers. It seems that migration and mesenchymal properties acquisition of basal-like breast cancer cells is a key functional pathway in these tumors with a high metastatic potential.
Collapse
Affiliation(s)
- Maud Privat
- Université Clermont Auvergne, Centre Jean Perrin, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, F-63000 Clermont Ferrand, France
| | - Justine Rudewicz
- Département d'Oncogénétique, Centre Jean Perrin, F-63000 Clermont Ferrand, France
| | - Nicolas Sonnier
- Université Clermont Auvergne, Centre Jean Perrin, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, F-63000 Clermont Ferrand, France
- Biological Resources Center BB-0033-00075, Centre Jean Perrin, F-63000 Clermont Ferrand, France
| | - Christelle Tamisier
- Département d'Oncogénétique, Centre Jean Perrin, F-63000 Clermont Ferrand, France
| | - Flora Ponelle-Chachuat
- Université Clermont Auvergne, Centre Jean Perrin, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, F-63000 Clermont Ferrand, France
| | - Yves-Jean Bignon
- Université Clermont Auvergne, Centre Jean Perrin, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, F-63000 Clermont Ferrand, France
- Biological Resources Center BB-0033-00075, Centre Jean Perrin, F-63000 Clermont Ferrand, France
| |
Collapse
|
26
|
Tang X, Shi L, Xie N, Liu Z, Qian M, Meng F, Xu Q, Zhou M, Cao X, Zhu WG, Liu B. SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat Commun 2017; 8:318. [PMID: 28827661 PMCID: PMC5566498 DOI: 10.1038/s41467-017-00396-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/27/2017] [Indexed: 12/15/2022] Open
Abstract
Distant metastasis is the main cause of breast cancer-related death; however, effective therapeutic strategies targeting metastasis are still scarce. This is largely attributable to the spatiotemporal intratumor heterogeneity during metastasis. Here we show that protein deacetylase SIRT7 is significantly downregulated in breast cancer lung metastases in human and mice, and predicts metastasis-free survival. SIRT7 deficiency promotes breast cancer cell metastasis, while temporal expression of Sirt7 inhibits metastasis in polyomavirus middle T antigen breast cancer model. Mechanistically, SIRT7 deacetylates and promotes SMAD4 degradation mediated by β-TrCP1, and SIRT7 deficiency activates transforming growth factor-β signaling and enhances epithelial-to-mesenchymal transition. Significantly, resveratrol activates SIRT7 deacetylase activity, inhibits breast cancer lung metastases, and increases survival. Our data highlight SIRT7 as a modulator of transforming growth factor-β signaling and suppressor of breast cancer metastasis, meanwhile providing an effective anti-metastatic therapeutic strategy.Metastatic disease is the major reason for breast cancer-related deaths; therefore, a better understanding of this process and its players is needed. Here the authors report the role of SIRT7 in inhibiting SMAD4-mediated breast cancer metastasis providing a possible therapeutic avenue.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Ni Xie
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Zuojun Liu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Minxian Qian
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Fanbiao Meng
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Qingyang Xu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Mingyan Zhou
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xinyue Cao
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Baohua Liu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China.
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
27
|
Le Large TYS, Bijlsma MF, Kazemier G, van Laarhoven HWM, Giovannetti E, Jimenez CR. Key biological processes driving metastatic spread of pancreatic cancer as identified by multi-omics studies. Semin Cancer Biol 2017; 44:153-169. [PMID: 28366542 DOI: 10.1016/j.semcancer.2017.03.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy, characterized by a high metastatic burden, already at the time of diagnosis. The metastatic potential of PDAC is one of the main reasons for the poor outcome next to lack of significant improvement in effective treatments in the last decade. Key mutated driver genes, such as activating KRAS mutations, are concordantly expressed in primary and metastatic tumors. However, the biology behind the metastatic potential of PDAC is not fully understood. Recently, large-scale omic approaches have revealed new mechanisms by which PDAC cells gain their metastatic potency. In particular, genomic studies have shown that multiple heterogeneous subclones reside in the primary tumor with different metastatic potential. The development of metastases may be correlated to a more mesenchymal transcriptomic subtype. However, for cancer cells to survive in a distant organ, metastatic sites need to be modulated into pre-metastatic niches. Proteomic studies identified the influence of exosomes on the Kuppfer cells in the liver, which could function to prepare this tissue for metastatic colonization. Phosphoproteomics adds an extra layer to the established omic techniques by unravelling key functional signaling. Future studies integrating results from these large-scale omic approaches will hopefully improve PDAC prognosis through identification of new therapeutic targets and patient selection tools. In this article, we will review the current knowledge on the biology of PDAC metastasis unravelled by large scale multi-omic approaches.
Collapse
Affiliation(s)
- T Y S Le Large
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, The Netherlands; Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - M F Bijlsma
- Laboratory of Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, The Netherlands
| | - G Kazemier
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - H W M van Laarhoven
- Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - E Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy; CNR-Nano, Institute of Nanoscience and Nanotechnology, Pisa, Italy
| | - C R Jimenez
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Milioli HH, Tishchenko I, Riveros C, Berretta R, Moscato P. Basal-like breast cancer: molecular profiles, clinical features and survival outcomes. BMC Med Genomics 2017; 10:19. [PMID: 28351365 PMCID: PMC5370447 DOI: 10.1186/s12920-017-0250-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Basal-like constitutes an important molecular subtype of breast cancer characterised by an aggressive behaviour and a limited therapy response. The outcome of patients within this subtype is, however, divergent. Some individuals show an increased risk of dying in the first five years, and others a long-term survival of over ten years after the diagnosis. In this study, we aim at identifying markers associated with basal-like patients' survival and characterising subgroups with distinct disease outcome. METHODS We explored the genomic and transcriptomic profiles of 351 basal-like samples from the METABRIC and ROCK data sets. Two selection methods, labelled Differential and Survival filters, were employed to determine genes/probes that are differentially expressed in tumour and control samples, and are associated with overall survival. These probes were further used to define molecular subgroups, which vary at the microRNA level and in DNA copy number. RESULTS We identified the expression signature of 80 probes that distinguishes between two basal-like subgroups with distinct clinical features and survival outcomes. Genes included in this list have been mainly linked to cancer immune response, epithelial-mesenchymal transition and cell cycle. In particular, high levels of CXCR6, HCST, C3AR1 and FPR3 were found in Basal I; whereas HJURP, RRP12 and DNMT3B appeared over-expressed in Basal II. These genes exhibited the highest betweenness centrality and node degree values and play a key role in the basal-like breast cancer differentiation. Further molecular analysis revealed 17 miRNAs correlated to the subgroups, including hsa-miR-342-5p, -150, -155, -200c and -17. Additionally, increased percentages of gains/amplifications were detected on chromosomes 1q, 3q, 8q, 10p and 17q, and losses/deletions on 4q, 5q, 8p and X, associated with reduced survival. CONCLUSIONS The proposed signature supports the existence of at least two subgroups of basal-like breast cancers with distinct disease outcome. The identification of patients at a low risk may impact the clinical decisions-making by reducing the prescription of high-dose chemotherapy and, consequently, avoiding adverse effects. The recognition of other aggressive features within this subtype may be also critical for improving individual care and for delineating more effective therapies for patients at high risk.
Collapse
Affiliation(s)
- Heloisa H. Milioli
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, 2305 Australia
- School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, 2308 Australia
| | - Inna Tishchenko
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, 2305 Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, University Drive, Callaghan, 2308 Australia
| | - Carlos Riveros
- CReDITSS Unit, Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, 2305 Australia
| | - Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, 2305 Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, University Drive, Callaghan, 2308 Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, 2305 Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, University Drive, Callaghan, 2308 Australia
| |
Collapse
|
29
|
Basal markers and prognosis in luminal breast cancer. Breast Cancer Res Treat 2017; 163:207-217. [PMID: 28258354 DOI: 10.1007/s10549-017-4182-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 02/27/2017] [Indexed: 01/06/2023]
Abstract
PURPOSE Basal marker expression in triple-negative breast cancers identifies basal-like tumours, and thus separates the TN group into two prognostic groups. However, the expression and prognostic significance of basal markers in luminal breast cancers are poorly described. The aim of this study was to investigate the expression and prognostic value of basal markers (CK5, CK14 and EGFR) in luminal breast cancer. METHODS A total of 1423 formalin-fixed, paraffin-embedded breast cancer tumours from a well-characterized cohort of Norwegian women, previously reclassified into molecular subtypes using IHC and ISH, were included in the study. For the present study, tumours expressing at least one of the basal markers CK5, CK14 or EGFR were defined as basal marker positive. Cumulative incidence of death from breast cancer and hazard ratio analyses were used to assess prognosis according to basal marker expression. RESULTS AND CONCLUSION In total, 470 cases (33.0%) were basal marker positive. A higher proportion of the basal marker-positive tumours were of histopathological grade 3 compared to basal marker negative. For hormone receptor-positive, HER2-negative cases, we found better prognosis for basal marker-positive breast cancer compared to basal marker negative. For all subtypes combined, poorer prognosis for basal marker-negative cases was found in histopathological grade 2 tumours but not among grade 1 and 3.
Collapse
|
30
|
Thomas C, Henry W, Cuiffo BG, Collmann AY, Marangoni E, Benhamo V, Bhasin MK, Fan C, Fuhrmann L, Baldwin AS, Perou C, Vincent-Salomon A, Toker A, Karnoub AE. Pentraxin-3 is a PI3K signaling target that promotes stem cell-like traits in basal-like breast cancers. Sci Signal 2017; 10:10/467/eaah4674. [PMID: 28223411 DOI: 10.1126/scisignal.aah4674] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Basal-like breast cancers (BLBCs) exhibit hyperactivation of the phosphoinositide 3-kinase (PI3K) signaling pathway because of the frequent mutational activation of the PIK3CA catalytic subunit and the genetic loss of its negative regulators PTEN (phosphatase and tensin homolog) and INPP4B (inositol polyphosphate-4-phosphatase type II). However, PI3K inhibitors have had limited clinical efficacy in BLBC management because of compensatory amplification of PI3K downstream signaling loops. Therefore, identification of critical PI3K mediators is paramount to the development of effective BLBC therapeutics. Using transcriptomic analysis of activated PIK3CA-expressing BLBC cells, we identified the gene encoding the humoral pattern recognition molecule pentraxin-3 (PTX3) as a critical target of oncogenic PI3K signaling. We found that PTX3 abundance is stimulated, in part, through AKT- and nuclear factor κB (NF-κB)-dependent pathways and that presence of PTX3 is necessary for PI3K-induced stem cell-like traits. We further showed that PTX3 expression is greater in tumor samples from patients with BLBC and that it is prognostic of poor patient survival. Our results thus reveal PTX3 as a newly identified PI3K-regulated biomarker and a potential therapeutic target in BLBC.
Collapse
Affiliation(s)
- Clémence Thomas
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Whitney Henry
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Benjamin G Cuiffo
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Anthony Y Collmann
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Manoj K Bhasin
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. .,Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
31
|
Joyce DP, Kerin MJ, Dwyer RM. Exosome-encapsulated microRNAs as circulating biomarkers for breast cancer. Int J Cancer 2016; 139:1443-8. [PMID: 27170104 DOI: 10.1002/ijc.30179] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 12/19/2022]
Abstract
Breast cancer is a highly prevalent disease, accounting for 29% of invasive cancers in women. Survival from this disease depends on the stage at diagnosis, with patients who are detected earlier having more favourable outcomes. It is because of this that research groups are focusing on the development of a blood-based biomarker for breast cancer. Such biomarkers may facilitate the detection of breast cancer in its infancy before it has spread beyond the primary site. MicroRNAs (miRNAs) have shown immense potential in this setting. These short, non-coding RNA sequences have been shown to be dysregulated in breast cancer. Despite showing immense promise, miRNAs have not been successfully implemented in the clinical setting due to a lack of a standardised approach which has resulted in conflicting results. These challenges may be addressed at least in part through the study of exosomes. The biomarker potential for exosomes holds huge promise and may revolutionise the way in which we diagnose and manage breast cancer. These nanovesicles may be isolated from a variety of bodily fluids, including serum, and their miRNA content has been shown to reflect that of the parent breast cancer cell. This review will highlight the nomenclature and defining characteristics of exosomes, and current methods of isolation of serum-derived exosomes. Initial promising reports on the potential utility of exosomal miRNAs to be used as breast cancer biomarkers will also be addressed.
Collapse
Affiliation(s)
- Doireann P Joyce
- Discipline of Surgery, School of Medicine, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Michael J Kerin
- Discipline of Surgery, School of Medicine, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Róisín M Dwyer
- Discipline of Surgery, School of Medicine, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
32
|
Abdel-Fatah TMA, Arora A, Moseley PM, Perry C, Rakha EA, Green AR, Chan SYT, Ellis IO, Madhusudan S. DNA repair prognostic index modelling reveals an essential role for base excision repair in influencing clinical outcomes in ER negative and triple negative breast cancers. Oncotarget 2016; 6:21964-78. [PMID: 26267318 PMCID: PMC4673139 DOI: 10.18632/oncotarget.4157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/20/2015] [Indexed: 01/23/2023] Open
Abstract
Stratification of oestrogen receptor (ER) negative and triple negative breast cancers (TNBCs) is urgently needed. In the current study, a cohort of 880 ER- (including 635 TNBCs) was immuno-profiled for a panel of DNA repair proteins including: Pol β, FEN1, APE1, XRCC1, SMUG1, PARP1, BRCA1, ATR, ATM, DNA-PKcs, Chk1, Chk2, p53, and TOPO2. Multivariate Cox proportional hazards models (with backward stepwise exclusion of these factors, using a criterion of p < 0.05 for retention of factors in the model) were used to identify factors that were independently associated with clinical outcomes. XRCC1 (p = 0.002), pol β (p = 0.032) FEN1 (p = 0.001) and BRCA1 (p = 0.040) levels were independently associated with poor BCSS. Subsequently, DNA repair index prognostic (DRPI) scores for breast cancer specific survival (BCSS) were calculated and two prognostic groups (DRPI-PGs) were identified. Patients in prognostic group 2 (DRPI-PG2) have higher risk of death (p < 0.001). Furthermore, in DRPI-PG2 patients, exposure to anthracycline reduced the risk of death [(HR (95% CI) = 0.79 (0.64–0.98), p = 0.032) by 21–26%. In addition, DRPI-PG2 patients have adverse clinicopathological features including higher grade, lympho-vascular invasion, Her-2 positive phenotype, compared to those in DRPI-PG1 (p < 0.01). Receiver operating characteristic (ROC) curves indicated that the DRPI outperformed the currently used prognostic factors and adding DRPI to lymph node stage significantly improved their performance as a predictor for BCSS [p < 0.00001, area under curve (AUC) = 0.70]. BER strongly influences pathogenesis of ER- and TNBCs. The DRPI accurately predicts BCSS and can also serve as a valuable prognostic and predictive tool for TNBCs.
Collapse
Affiliation(s)
| | - Arvind Arora
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51 PB, UK
| | - Paul M Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Christina Perry
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51 PB, UK
| | - Emad A Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Andrew R Green
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Stephen Y T Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Ian O Ellis
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK.,Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG51 PB, UK
| |
Collapse
|
33
|
Yarbrough WG, Panaccione A, Chang MT, Ivanov SV. Clinical and molecular insights into adenoid cystic carcinoma: Neural crest-like stemness as a target. Laryngoscope Investig Otolaryngol 2016; 1:60-77. [PMID: 28894804 PMCID: PMC5510248 DOI: 10.1002/lio2.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES This review surveys trialed therapies and molecular defects in adenoid cystic carcinoma (ACC), with an emphasis on neural crest-like stemness characteristics of newly discovered cancer stem cells (CSCs) and therapies that may target these CSCs. DATA SOURCES Articles available on Pubmed or OVID MEDLINE databases and unpublished data. REVIEW METHODS Systematic review of articles pertaining to ACC and neural crest-like stem cells. RESULTS Adenoid cystic carcinoma of the salivary gland is a slowly growing but relentless cancer that is prone to nerve invasion and metastases. A lack of understanding of molecular etiology and absence of targetable drivers has limited therapy for patients with ACC to surgery and radiation. Currently, no curative treatments are available for patients with metastatic disease, which highlights the need for effective new therapies. Research in this area has been inhibited by the lack of validated cell lines and a paucity of clinically useful markers. The ACC research environment has recently improved, thanks to the introduction of novel tools, technologies, approaches, and models. Improved understanding of ACC suggests that neural crest-like stemness is a major target in this rare tumor. New cell culture techniques and patient-derived xenografts provide tools for preclinical testing. CONCLUSION Preclinical research has not identified effective targets in ACC, as confirmed by the large number of failed clinical trials. New molecular data suggest that drivers of neural crest-like stemness may be required for maintenance of ACC; as such, CSCs are a target for therapy of ACC.
Collapse
Affiliation(s)
- Wendell G. Yarbrough
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
- Yale Cancer CenterNew HavenConnecticutUSA
| | - Alexander Panaccione
- Department of Cancer BiologyVanderbilt University School of MedicineNashvilleTennesseeU.S.A.
| | - Michael T. Chang
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
| | - Sergey V. Ivanov
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
34
|
Ha JR, Siegel PM, Ursini-Siegel J. The Tyrosine Kinome Dictates Breast Cancer Heterogeneity and Therapeutic Responsiveness. J Cell Biochem 2016; 117:1971-90. [PMID: 27392311 DOI: 10.1002/jcb.25561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 12/13/2022]
Abstract
Phospho-tyrosine signaling networks control numerous biological processes including cellular differentiation, cell growth and survival, motility, and invasion. Aberrant regulation of the tyrosine kinome is a hallmark of malignancy and influences all stages of breast cancer progression, from initiation to the development of metastatic disease. The success of specific tyrosine kinase inhibitors strongly validates the clinical relevance of tyrosine phosphorylation networks in breast cancer pathology. However, a significant degree of redundancy exists within the tyrosine kinome. Numerous receptor and cytoplasmic tyrosine kinases converge on a core set of signaling regulators, including adaptor proteins and tyrosine phosphatases, to amplify pro-tumorigenic signal transduction pathways. Mutational activation, amplification, or overexpression of one or more components of the tyrosine kinome represents key contributing events responsible for the tumor heterogeneity that is observed in breast cancers. It is this molecular heterogeneity that has become the most significant barrier to durable clinical responses due to the development of therapeutic resistance. This review focuses on recent literature that supports a prominent role for specific components of the tyrosine kinome in the emergence of unique breast cancer subtypes and in shaping breast cancer plasticity, sensitivity to targeted therapies, and the eventual emergence of acquired resistance. J. Cell. Biochem. 117: 1971-1990, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jacqueline R Ha
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Peter M Siegel
- Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
35
|
MicroRNA-206 is differentially expressed in Brca1-deficient mice and regulates epithelial and stromal cell compartments of the mouse mammary gland. Oncogenesis 2016; 5:e218. [PMID: 27043663 PMCID: PMC4848838 DOI: 10.1038/oncsis.2016.27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 01/28/2016] [Accepted: 02/10/2016] [Indexed: 12/14/2022] Open
Abstract
Depletion of Brca1 leads to defects in mouse mammary gland development and mammary tumors in humans and mice. To explore the role of microRNAs (miRNAs) in this process, we examined the mammary glands of MMTV-Cre Brca1Co/Co mice for differential miRNA expression using a candidate approach. Several miRNAs were differentially expressed in mammary tissue at day 1 of lactation and in mammary epithelial cell lines in which Brca1 messenger RNA (mRNA) levels have been reduced. Functional studies revealed that several of these miRNAs regulate mammary epithelial cell function in vitro, including miR-206. Creation and analysis of MMTV-miR-206 transgenic mice showed no effect on lactational mammary development and no tumors, but indicates a role in mammary tissue remodeling in mature mice, potentially involving Igf-1 and Sfrp1. These results indicate the potential of miRNAs to mediate the consequences of Brca1 loss and suggest a novel function for miR-206.
Collapse
|
36
|
Sandhu GK, Milevskiy MJG, Wilson W, Shewan AM, Brown MA. Non-coding RNAs in Mammary Gland Development and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:121-153. [PMID: 26659490 DOI: 10.1007/978-94-017-7417-8_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that function to regulate the expression of numerous genes and associated biochemical pathways and cellular functions. NcRNAs include small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs). They participate in the regulation of all developmental processes and are frequently aberrantly expressed or functionally defective in disease. This Chapter will focus on the role of ncRNAs, in particular miRNAs and lncRNAs, in mammary gland development and disease.
Collapse
Affiliation(s)
- Gurveen K Sandhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Michael J G Milevskiy
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Wesley Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Melissa A Brown
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.
| |
Collapse
|
37
|
Humbert O, Riedinger JM, Charon-Barra C, Berriolo-Riedinger A, Desmoulins I, Lorgis V, Kanoun S, Coutant C, Fumoleau P, Cochet A, Brunotte F. Identification of Biomarkers Including 18FDG-PET/CT for Early Prediction of Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Clin Cancer Res 2015; 21:5460-8. [DOI: 10.1158/1078-0432.ccr-15-0384] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/23/2015] [Indexed: 12/31/2022]
Abstract
Abstract
Purpose: To investigate the value of the metabolic tumor response assessed with 18F-fluorodeoxyglucose positron emission tomography (FDG-PET), compared with clinicobiologic markers to predict pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in women with triple-negative breast cancer (TNBC).
Experimental Design: Fifty consecutive women with TNBC and an indication for NAC were prospectively included. Different pretreatment clinical, biologic, and pathologic biomarkers, including SBR grade, the Ki-67 proliferation index, androgen receptor expression, EGF receptor (EGFR), and cytokeratin 5/6 staining, were assessed. Tumor glucose metabolism at baseline and its change after the first cycle of NAC (ΔSUVmax) were assessed using FDG-PET.
Results: The pCR rate was 42%. High Ki-67 proliferation index (P = 0.016), negative EGFR status (P = 0.042), and high ΔSUVmax (P = 0.002) were significantly associated with pCR. In multivariate logistic regression, both negative EGFR status (OR, 6.4; P = 0.043) and high ΔSUVmax (OR, 7.1; P = 0.014) were independent predictors of pCR. Using a threshold at −50%, tumor ΔSUVmax predicted pCR with a negative, a positive predictive value, and an accuracy of 79%, 70%, and 75%, respectively. Combining a low ΔSUVmax and positive EGFR status could predict non-pCR with an accuracy of 92%.
Conclusions: It is important to define the chemosensitivity of TNBC to NAC early. Combining EGFR status and the metabolic response assessed with FDG-PET can help the physician to early predict the probability of achieving pCR or not. Given these results, the interest of response-guided tailoring of the chemotherapy might be tested in multicenter trials. Clin Cancer Res; 21(24); 5460–8. ©2015 AACR.
Collapse
Affiliation(s)
- Olivier Humbert
- 1Department of Nuclear Medicine, Centre GF Leclerc, Dijon, France
- 2Université de Bourgogne, UMR CNRS 6306, Dijon, France
| | - Jean-Marc Riedinger
- 1Department of Nuclear Medicine, Centre GF Leclerc, Dijon, France
- 3Departments of Biology and Pathology, Centre GF Leclerc, Dijon, France
| | | | | | | | - Véronique Lorgis
- 4Department of Medical Oncology, Centre GF Leclerc, Dijon, France
| | - Salim Kanoun
- 1Department of Nuclear Medicine, Centre GF Leclerc, Dijon, France
- 2Université de Bourgogne, UMR CNRS 6306, Dijon, France
- 5Imaging Department, CHU Le Bocage, Dijon, France
| | | | - Pierre Fumoleau
- 4Department of Medical Oncology, Centre GF Leclerc, Dijon, France
| | - Alexandre Cochet
- 1Department of Nuclear Medicine, Centre GF Leclerc, Dijon, France
- 2Université de Bourgogne, UMR CNRS 6306, Dijon, France
| | - François Brunotte
- 1Department of Nuclear Medicine, Centre GF Leclerc, Dijon, France
- 2Université de Bourgogne, UMR CNRS 6306, Dijon, France
- 5Imaging Department, CHU Le Bocage, Dijon, France
| |
Collapse
|
38
|
Yokdang N, Hatakeyama J, Wald JH, Simion C, Tellez JD, Chang DZ, Swamynathan MM, Chen M, Murphy WJ, Carraway Iii KL, Sweeney C. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene 2015; 35:2932-47. [PMID: 26387542 PMCID: PMC4805527 DOI: 10.1038/onc.2015.345] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 06/24/2015] [Accepted: 08/04/2015] [Indexed: 01/04/2023]
Abstract
LRIG1, a member of the LRIG family of transmembrane leucine rich repeat-containing proteins, is a negative regulator of receptor tyrosine kinase signaling and a tumor suppressor. LRIG1 expression is broadly decreased in human cancer and in breast cancer, low expression of LRIG1 has been linked to decreased relapse-free survival. Recently, low expression of LRIG1 was revealed to be an independent risk factor for breast cancer metastasis and death. These findings suggest that LRIG1 may oppose breast cancer cell motility and invasion, cellular processes which are fundamental to metastasis. However, very little is known of LRIG1 function in this regard. In this study, we demonstrate that LRIG1 is down-regulated during epithelial to mesenchymal transition (EMT) of human mammary epithelial cells, suggesting that LRIG1 expression may represent a barrier to EMT. Indeed, depletion of endogenous LRIG1 in human mammary epithelial cells expands the stem cell population, augments mammosphere formation and accelerates EMT. Conversely, expression of LRIG1 in highly invasive Basal B breast cancer cells provokes a mesenchymal to epithelial transition accompanied by a dramatic suppression of tumorsphere formation and a striking loss of invasive growth in three-dimensional culture. LRIG1 expression perturbs multiple signaling pathways and represses markers and effectors of the mesenchymal state. Furthermore, LRIG1 expression in MDA-MB-231 breast cancer cells significantly slows their growth as tumors, providing the first in vivo evidence that LRIG1 functions as a growth suppressor in breast cancer.
Collapse
Affiliation(s)
- N Yokdang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - J Hatakeyama
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - J H Wald
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - C Simion
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - J D Tellez
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - D Z Chang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - M M Swamynathan
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - M Chen
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - W J Murphy
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - K L Carraway Iii
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - C Sweeney
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
39
|
Alkner S, Tang MHE, Brueffer C, Dahlgren M, Chen Y, Olsson E, Winter C, Baker S, Ehinger A, Rydén L, Saal LH, Fernö M, Gruvberger-Saal SK. Contralateral breast cancer can represent a metastatic spread of the first primary tumor: determination of clonal relationship between contralateral breast cancers using next-generation whole genome sequencing. Breast Cancer Res 2015; 17:102. [PMID: 26242876 PMCID: PMC4531539 DOI: 10.1186/s13058-015-0608-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 07/01/2015] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION By convention, a contralateral breast cancer (CBC) is treated as a new primary tumor, independent of the first cancer (BC1). Although there have been indications that the second tumor (BC2) sometimes may represent a metastatic spread of BC1, this has never been conclusively shown. We sought to apply next-generation sequencing to determine a "genetic barcode" for each tumor and reveal the clonal relationship of CBCs. METHODS Ten CBC patients with detailed clinical information and available fresh frozen tumor tissue were studied. Using low-coverage whole genome DNA-sequencing data for each tumor, chromosomal rearrangements were enumerated and copy number profiles were generated. Comparisons between tumors provided an estimate of clonal relatedness for tumor pairs within individual patients. RESULTS Between 15-256 rearrangements were detected in each tumor (median 87). For one patient, 76 % (68 out of 90) of the rearrangements were shared between BC1 and BC2, highly consistent with what has been seen for true primary-metastasis pairs (>50 %) and thus confirming a common clonal origin of the two tumors. For most of the remaining cases, BC1 and BC2 had similarly low overlap as unmatched randomized pairs of tumors from different individuals, suggesting the CBC to represent a new independent primary tumor. CONCLUSION Using rearrangement fingerprinting, we show for the first time with certainty that a contralateral BC2 can represent a metastatic spread of BC1. Given the poor prognosis of a generalized disease compared to a new primary tumor, these women need to be identified at diagnosis of CBC for appropriate determination of treatment. Our approach generates a promising new method to assess clonal relationship between tumors. Additional studies are required to confirm the frequency of CBCs representing metastatic events.
Collapse
Affiliation(s)
- Sara Alkner
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, MV 404-B2, Lund, SE-22381, Sweden.
- Skåne Clinic of Oncology, Skåne University Hospital Lund, Lund, SE-22241, Sweden.
| | - Man-Hung Eric Tang
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, MV 404-B2, Lund, SE-22381, Sweden.
| | - Christian Brueffer
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, MV 404-B2, Lund, SE-22381, Sweden.
| | - Malin Dahlgren
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, MV 404-B2, Lund, SE-22381, Sweden.
| | - Yilun Chen
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, MV 404-B2, Lund, SE-22381, Sweden.
| | - Eleonor Olsson
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, MV 404-B2, Lund, SE-22381, Sweden.
| | - Christof Winter
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, MV 404-B2, Lund, SE-22381, Sweden.
| | - Sara Baker
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, MV 404-B2, Lund, SE-22381, Sweden.
| | - Anna Ehinger
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, MV 404-B2, Lund, SE-22381, Sweden.
- Department of Pathology and Cytology, Blekinge County Hospital, Karlskrona, SE-37185, Sweden.
| | - Lisa Rydén
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, MV 404-B2, Lund, SE-22381, Sweden.
- Clinic of Surgery, Skåne University Hospital Lund, Lund, SE-22241, Sweden.
| | - Lao H Saal
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, MV 404-B2, Lund, SE-22381, Sweden.
| | - Mårten Fernö
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, MV 404-B2, Lund, SE-22381, Sweden.
| | - Sofia K Gruvberger-Saal
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, MV 404-B2, Lund, SE-22381, Sweden.
| |
Collapse
|
40
|
Perspectives on Epidermal Growth Factor Receptor Regulation in Triple-Negative Breast Cancer: Ligand-Mediated Mechanisms of Receptor Regulation and Potential for Clinical Targeting. Adv Cancer Res 2015; 127:253-81. [PMID: 26093903 DOI: 10.1016/bs.acr.2015.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Currently, there are no effective targeted therapies for triple-negative breast cancer (TNBC) indicating a critical unmet need for breast cancer patients. Tumors that fall into the triple-negative category of breast cancers do not respond to the targeted therapies currently approved for breast cancer treatment, such as endocrine therapy (tamoxifen, aromatase inhibitors) or human epidermal growth factor receptor-2 (HER2) inhibitors (trastuzumab, lapatinib), because these tumors lack the most common breast cancer markers: estrogen receptor, progesterone receptor, and HER2. While many patients with TNBC respond to chemotherapy, subsets of patients fare poorly and relapse very quickly. Studies indicate that epidermal growth factor receptor (EGFR) is frequently overrepresented in TNBC (>50%), suggesting EGFR could be used as a biomarker and target in breast cancer. While it is clear that this growth factor receptor plays an integral role in TNBC, little is known about the mechanisms of sustained EGFR activation and how to target this protein despite availability of EGFR-targeted inhibitors, suggesting that our understanding of EGFR deregulation in TNBC is incomplete.
Collapse
|
41
|
Tang H, Sebti S, Titone R, Zhou Y, Isidoro C, Ross TS, Hibshoosh H, Xiao G, Packer M, Xie Y, Levine B. Decreased BECN1 mRNA Expression in Human Breast Cancer is Associated with Estrogen Receptor-Negative Subtypes and Poor Prognosis. EBioMedicine 2015; 2:255-263. [PMID: 25825707 PMCID: PMC4376376 DOI: 10.1016/j.ebiom.2015.01.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Both BRCA1 and Beclin 1 (BECN1) are tumor suppressor genes, which are in close proximity on the human chromosome 17q21 breast cancer tumor susceptibility locus and are often concurrently deleted. However, their importance in sporadic human breast cancer is not known. To interrogate the effects of BECN1 and BRCA1 in breast cancer, we studied their mRNA expression patterns in breast cancer patients from two large datasets: The Cancer Genome Atlas (TCGA) (n = 1067) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (n = 1992). In both datasets, low expression of BECN1 was more common in HER2-enriched and basal-like (mostly triple-negative) breast cancers compared to luminal A/B intrinsic tumor subtypes, and was also strongly associated with TP53 mutations and advanced tumor grade. In contrast, there was no significant association between low BRCA1 expression and HER2-enriched or basal-like subtypes, TP53 mutations or tumor grade. In addition, low expression of BECN1 (but not low BRCA1) was associated with poor prognosis, and BECN1 (but not BRCA1) expression was an independent predictor of survival. These findings suggest that decreased mRNA expression of the autophagy gene BECN1 may contribute to the pathogenesis and progression of HER2-enriched, basal-like, and TP53 mutant breast cancers. The tumor suppressor genes, BECN1 and BRCA1, are in close proximity to the 17q21 breast cancer tumor susceptibility locus. We studied mRNA expression patterns of BECN1 and BRCA1 in breast cancer patients in the large TCGA and METABRIC datasets. Decreased BECN1 (but not BRCA1) expression is linked with aggressive clinico-pathological features in human breast cancer. Decreased BECN1 (but not BRCA1) expression is linked with worse survival in human breast cancer patients.
Collapse
Affiliation(s)
- Hao Tang
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Salwa Sebti
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Rossella Titone
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Yunyun Zhou
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A Avogrado", Via Solaroli 17, 28100 Novara, Italy
| | - Theodora S Ross
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University College of Physicians & Surgeons, New York, New York 10032
| | - Guanghua Xiao
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Milton Packer
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Yang Xie
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Howard Hughes Medical Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
42
|
Li Q, Wei W, Jiang YI, Yang H, Liu J. Promoter methylation and expression changes of BRCA1 in cancerous tissues of patients with sporadic breast cancer. Oncol Lett 2015; 9:1807-1813. [PMID: 25789047 PMCID: PMC4356378 DOI: 10.3892/ol.2015.2908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 01/13/2015] [Indexed: 12/31/2022] Open
Abstract
BRCA1 is a susceptibility gene that has a genetic predisposition for breast cancer. BRCA1 gene mutation is closely associated with familial hereditary breast cancer, but the BRCA1 gene mutation is rarely found in sporadic breast cancer. According to previous studies, decreased expression of BRCA1 was detected in certain types of sporadic breast cancer. Aberrant methylation of DNA promoter CpG islands is one of the mechanisms by which tumor suppressor gene expression and function is lost. The aim of the present study was to investigate BRCA1 gene expression, methylation status and clinical significance in sporadic types of breast cancer. Quantitative polymerase chain reaction (PCR) and bisulfite sequencing PCR were respectively used to detect expression differences of BRCA1 mRNA and BRCA1 methylation in the 49 cancerous and paired non-cancerous samples from patients with breast cancer. The associations of BRCA1 expression and methylation status with the clinicopathologic characteristics were analysed. BRCA1 mRNA expression levels in the 49 breast cancer tissues were lower than those in the paired non-cancerous tissues. There was a significant statistical difference (P=0.001). BRCA1 mRNA expression was not associated with the main clinicopathologic characteristics. Frequency of the BRCA1 promoter methylation in the breast cancerous tissues was significantly higher than that in the non-cancerous tissues (P=0.007); BRCA1 gene methylation status was negatively correlated with mRNA expression (P=0.029); and BRCA1 methylation exhibited no association with all clinicopathological features. DNA promoter hypermethylation may be the potential mechanism accounting for BRCA1 expression silence in part of sporadic types of breast cancer. Some patients with hypermethylated BRCA1 may display favorable clinicopathological status.
Collapse
Affiliation(s)
- Qiuyun Li
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Guangxi 530021, P.R. China ; Department of General Surgery, No. 303 Hospital of PLA, Nanning, Guangxi 530021, P.R. China
| | - Wei Wei
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Guangxi 530021, P.R. China
| | - Y I Jiang
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Guangxi 530021, P.R. China
| | - Huawei Yang
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Guangxi 530021, P.R. China
| | - Jianlun Liu
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Guangxi 530021, P.R. China
| |
Collapse
|
43
|
Toivola DM, Boor P, Alam C, Strnad P. Keratins in health and disease. Curr Opin Cell Biol 2015; 32:73-81. [PMID: 25599598 DOI: 10.1016/j.ceb.2014.12.008] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/09/2014] [Accepted: 12/19/2014] [Indexed: 02/01/2023]
Abstract
The cytoprotective keratins (K) compose the intermediate filaments of epithelial cells and their inherited and spontaneous mutations give rise to keratinopathies. For example, mutations in K1/K5/K10/K14 cause epidermal skin diseases whereas simple epithelial K8/K18/K19 variants predispose to development of several liver disorders. Due to their abundance, tissue- and context-specific expression, keratins constitute excellent diagnostic markers of both neoplastic and non-neoplastic diseases. During injury and in disease, keratin expression levels, cellular localization or posttranslational modifications are altered. Accumulating evidence suggests that these changes modulate multiple processes including cell migration, tumor growth/metastasis and development of infections. Therefore, our understanding of keratins is shifting from diagnostic markers to active disease modifiers.
Collapse
Affiliation(s)
- Diana M Toivola
- Department of Biosciences, Cell Biology, Åbo Akademi University and Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, RWTH University, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Catharina Alam
- Department of Biosciences, Cell Biology, Åbo Akademi University and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Pavel Strnad
- IZKF and Department of Internal Medicine III, University Hospital Aachen, Germany.
| |
Collapse
|
44
|
Boggs AE, Vitolo MI, Whipple RA, Charpentier MS, Goloubeva OG, Ioffe OB, Tuttle KC, Slovic J, Lu Y, Mills GB, Martin SS. α-Tubulin acetylation elevated in metastatic and basal-like breast cancer cells promotes microtentacle formation, adhesion, and invasive migration. Cancer Res 2014; 75:203-15. [PMID: 25503560 DOI: 10.1158/0008-5472.can-13-3563] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metastatic cases of breast cancer pose the primary challenge in clinical management of this disease, demanding the identification of effective therapeutic strategies that remain wanting. In this study, we report that elevated levels of α-tubulin acetylation are a sufficient cause of metastatic potential in breast cancer. In suspended cell culture conditions, metastatic breast cancer cells exhibited high α-tubulin acetylation levels that extended along microtentacle (McTN) protrusions. Mutation of the acetylation site on α-tubulin and enzymatic modulation of this posttranslational modification exerted a significant impact on McTN frequency and the reattachment of suspended tumor cells. Reducing α-tubulin acetylation significantly inhibited migration but did not affect proliferation. In an analysis of more than 140 matched primary and metastatic tumors from patients, we found that acetylation was maintained and in many cases increased in lymph node metastases compared with primary tumors. Proteomic analysis of an independent cohort of more than 390 patient specimens further documented the relationship between increased α-tubulin acetylation and the aggressive behaviors of basal-like breast cancers, with a trend toward increased risk of disease progression and death in patients with high-intensity α-tubulin acetylation in primary tumors. Taken together, our results identify a tight correlation between acetylated α-tubulin levels and aggressive metastatic behavior in breast cancer, with potential implications for the definition of a simple prognostic biomarker in patients with breast cancer.
Collapse
Affiliation(s)
- Amanda E Boggs
- University of Maryland, Baltimore, Graduate Program in Life Sciences, Baltimore, Maryland. University of Maryland Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore, Maryland
| | - Michele I Vitolo
- University of Maryland, Baltimore, Graduate Program in Life Sciences, Baltimore, Maryland. University of Maryland Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore, Maryland. Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rebecca A Whipple
- University of Maryland Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore, Maryland
| | - Monica S Charpentier
- University of Maryland, Baltimore, Graduate Program in Life Sciences, Baltimore, Maryland. University of Maryland Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore, Maryland
| | - Olga G Goloubeva
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Olga B Ioffe
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kimberly C Tuttle
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jana Slovic
- University of Maryland, Baltimore, Graduate Program in Life Sciences, Baltimore, Maryland. University of Maryland Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore, Maryland
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stuart S Martin
- University of Maryland, Baltimore, Graduate Program in Life Sciences, Baltimore, Maryland. University of Maryland Marlene and Stewart Greenebaum NCI Cancer Center, Baltimore, Maryland. Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
45
|
Hill SJ, Clark AP, Silver DP, Livingston DM. BRCA1 pathway function in basal-like breast cancer cells. Mol Cell Biol 2014; 34:3828-42. [PMID: 25092866 PMCID: PMC4187718 DOI: 10.1128/mcb.01646-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/20/2014] [Accepted: 07/21/2014] [Indexed: 01/10/2023] Open
Abstract
Sporadic basal-like cancers (BLCs) are a common subtype of breast cancer that share multiple biological properties with BRCA1-mutated breast tumors. Despite being BRCA1(+/+), sporadic BLCs are widely viewed as phenocopies of BRCA1-mutated breast cancers, because they are hypothesized to manifest a BRCA1 functional defect or breakdown of a pathway(s) in which BRCA1 plays a major role. The role of BRCA1 in the repair of double-strand DNA breaks by homologous recombination (HR) is its best understood function and the function most often implicated in BRCA1 breast cancer suppression. Therefore, it is suspected that sporadic BLCs exhibit a defect in HR. To test this hypothesis, multiple DNA damage repair assays focused on several types of repair were performed on a group of cell lines classified as sporadic BLCs and on controls. The sporadic BLC cell lines failed to exhibit an overt HR defect. Rather, they exhibited defects in the repair of stalled replication forks, another BRCA1 function. These results provide insight into why clinical trials of poly(ADP-ribose) polymerase (PARP) inhibitors, which require an HR defect for efficacy, have been unsuccessful in sporadic BLCs, unlike cisplatin, which elicits DNA damage that requires stalled fork repair and has shown efficacy in sporadic BLCs.
Collapse
Affiliation(s)
- Sarah J Hill
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Allison P Clark
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Daniel P Silver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David M Livingston
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Excess of miRNA-378a-5p perturbs mitotic fidelity and correlates with breast cancer tumourigenesis in vivo. Br J Cancer 2014; 111:2142-51. [PMID: 25268374 PMCID: PMC4260036 DOI: 10.1038/bjc.2014.524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/25/2014] [Accepted: 09/08/2014] [Indexed: 12/31/2022] Open
Abstract
Background: Optimal expression and proper function of key mitotic proteins facilitate control and repair processes that aim to prevent loss or gain of chromosomes, a hallmark of cancer. Altered expression of small regulatory microRNAs is associated with tumourigenesis and metastasis but the impact on mitotic signalling has remained unclear. Methods: Cell-based high-throughput screen identified miR-378a-5p as a mitosis perturbing microRNA. Transient transfections, immunofluorescence, western blotting, time-lapse microscopy, FISH and reporter assays were used to characterise the mitotic anomalies by excess miR-378a-5p. Analysis of microRNA profiles in breast tumours was performed. Results: Overexpression of miR-378a-5p induced numerical chromosome changes in cells and abrogated taxol-induced mitotic block via premature inactivation of the spindle assembly checkpoint. Moreover, excess miR-378a-5p triggered receptor tyrosine kinase–MAP kinase pathway signalling, and was associated with suppression of Aurora B kinase. In breast cancer in vivo, we found that high miR-378a-5p levels correlate with the most aggressive, poorly differentiated forms of cancer. Interpretation: Downregulation of Aurora B by excess miR-378a-5p can explain the observed microtubule drug resistance and increased chromosomal imbalance in the microRNA-overexpressing cells. The results suggest that breast tumours may deploy high miR-378a-5p levels to gain growth advantage and antagonise taxane therapy.
Collapse
|
47
|
Chen XS, Yuan Y, Garfield DH, Wu JY, Huang O, Shen KW. Both carboplatin and bevacizumab improve pathological complete remission rate in neoadjuvant treatment of triple negative breast cancer: a meta-analysis. PLoS One 2014; 9:e108405. [PMID: 25247558 PMCID: PMC4172579 DOI: 10.1371/journal.pone.0108405] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/27/2014] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) is associated with high pathological complete remission (pCR) rate in neoadjuvant treatment (NAT). TNBC patients who achieve pCR have superior outcome than those without pCR. A meta-analysis was done to evaluate whether integrating novel approaches into NAT can improve the pCR rate in TNBC. Medical subject heading terms (Breast Neoplasm) and key words (triple negative OR estrogen receptor (ER) negative OR HER2 negative) AND (primary systemic OR neoadjuvant OR preoperative) were used to select eligible studies. Experimental arm in each study was considered as the testing regimen, and control arm was defined as the standard regimen in this meta-analysis. A total of 11 studies with 14 paired regimens were included in the final analysis. Aggregate pCR rate was 37.3% and 44.6% in the standard and testing group, respectively. Novel approaches in the testing regimen significantly improved the pCR rate in NAT of TNBC patients compared with the standard regimen, with an odds ratio (OR) of 1.34 (95% confidence interval (CI) 1.11-1.62, P = 0.002). Considering specific regimens, we demonstrated the pCR rate to be much higher in the carboplatin-containing (OR = 1.80, 95% CI 1.39-2.32, P<0.001) or bevacizumab-containing regimens (OR = 1.36, 95% CI 1.11-1.66, P = 0.003) than in the control regimens. The addition of carboplatin in NAT had a pCR rate as high as 51.2% in TNBC patients, with an absolute pCR difference of 13.8% as compared with control regimens. No significant heterogeneity was identified among studies evaluating the addition of carboplatin or bevacizumab efficacy in NAT. This meta-analysis indicates that these novel NAT regimens have achieved a significant pCR improvement in TNBC patients, especially among patients treated with carboplatin-containing or bevacizumab-containing regimen. This can help us design appropriate trials in the adjuvant setting and guide clinical practice.
Collapse
Affiliation(s)
- Xiao-song Chen
- Comprehensive Breast Health Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Yuan
- Department of Radiology, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - David H. Garfield
- University of Colorado Comprehensive Cancer Center, Aurora, Colorado, United States of America
| | - Jia-yi Wu
- Comprehensive Breast Health Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ou Huang
- Comprehensive Breast Health Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kun-wei Shen
- Comprehensive Breast Health Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Bogachek MV, Chen Y, Kulak MV, Woodfield GW, Cyr AR, Park JM, Spanheimer PM, Li Y, Li T, Weigel RJ. Sumoylation pathway is required to maintain the basal breast cancer subtype. Cancer Cell 2014; 25:748-61. [PMID: 24835590 PMCID: PMC4096794 DOI: 10.1016/j.ccr.2014.04.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/12/2013] [Accepted: 04/11/2014] [Indexed: 01/28/2023]
Abstract
The TFAP2C/AP-2γ transcription factor regulates luminal breast cancer genes, and loss of TFAP2C induces epithelial-mesenchymal transition. By contrast, the highly homologous family member, TFAP2A, lacks transcriptional activity at luminal gene promoters. A detailed structure-function analysis identified that sumoylation of TFAP2A blocks its ability to induce the expression of luminal genes. Disruption of the sumoylation pathway by knockdown of sumoylation enzymes, mutation of the SUMO-target lysine of TFAP2A, or treatment with sumoylation inhibitors induced a basal-to-luminal transition, which was dependent on TFAP2A. Sumoylation inhibitors cleared the CD44(+/hi)/CD24(-/low) cell population characterizing basal cancers and inhibited tumor outgrowth of basal cancer xenografts. These findings establish a critical role for sumoylation in regulating the transcriptional mechanisms that maintain the basal cancer phenotype.
Collapse
Affiliation(s)
- Maria V Bogachek
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Yizhen Chen
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Mikhail V Kulak
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | - Anthony R Cyr
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Jung M Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Yingyue Li
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Tiandao Li
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA; The Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ronald J Weigel
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
49
|
Zupancic T, Stojan J, Lane EB, Komel R, Bedina-Zavec A, Liovic M. Intestinal cell barrier function in vitro is severely compromised by keratin 8 and 18 mutations identified in patients with inflammatory bowel disease. PLoS One 2014; 9:e99398. [PMID: 24915158 PMCID: PMC4051775 DOI: 10.1371/journal.pone.0099398] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/14/2014] [Indexed: 12/20/2022] Open
Abstract
Keratin 8 and 18 (K8/K18) mutations have been implicated in the aetiology of certain pathogenic processes of the liver and pancreas. While some K8 mutations (K8 G62C, K8 K464N) are also presumed susceptibility factors for inflammatory bowel disease (IBD), the only K18 mutation (K18 S230T) discovered so far in an IBD patient is thought to be a polymorphism. The aim of our study was to demonstrate that these mutations might also directly affect intestinal cell barrier function. Cell monolayers of genetically engineered human colonocytes expressing these mutations were tested for permeability, growth rate and resistance to heat-stress. We also calculated the change in dissociation constant (Kd, measure of affinity) each of these mutations introduces into the keratin protein, and present the first model of a keratin dimer L12 region with in silico clues to how the K18 S230T mutation may affect keratin function. Physiologically, these mutations cause up to 30% increase in paracellular permeability in vitro. Heat-stress induces little keratin clumping but instead cell monolayers peel off the surface suggesting a problem with cell junctions. K18 S230T has pronounced pathological effects in vitro marked by high Kd, low growth rate and increased permeability. The latter may be due to the altered distribution of tight junction components claudin-4 and ZO-1. This is the first time intestinal cells have been suggested also functionally impaired by K8/K18 mutations. Although an in vitro colonocyte model system does not completely mimic the epithelial lining of the intestine, nevertheless the data suggest that K8/K18 mutations may be also able to produce a phenotype in vivo.
Collapse
Affiliation(s)
- Tina Zupancic
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Jure Stojan
- Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Radovan Komel
- National Institute of Chemistry, Ljubljana, Slovenia
- Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mirjana Liovic
- National Institute of Chemistry, Ljubljana, Slovenia
- Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
50
|
Vuong D, Simpson PT, Green B, Cummings MC, Lakhani SR. Molecular classification of breast cancer. Virchows Arch 2014; 465:1-14. [PMID: 24878755 DOI: 10.1007/s00428-014-1593-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/11/2014] [Indexed: 01/01/2023]
Abstract
Breast cancer is a complex, multifaceted disease encompassing a great variety of entities that show considerable variation in clinical, morphological and molecular attributes. Traditional classifications including histological assessment and clinical staging are used to guide patient management. In recent years, there has been exponential progress in molecular analysis with profound implications for our understanding of breast cancer biology and, hence, classification. There are now genome-based frameworks for the molecular categorisation of breast cancer including the development of prognostic and predictive signatures that potentially allow individualisation of treatment. Here we review the current state of the molecular classifications of in situ and invasive breast cancer including special subtypes. Future perspectives are also provided.
Collapse
Affiliation(s)
- Darina Vuong
- The University of Queensland, UQ Centre for Clinical Research, Herston, Brisbane, QLD, 4029, Australia
| | | | | | | | | |
Collapse
|