1
|
Lee SH, Park NR, Park EK, Kim JE. S100P binds to RAGE and activates ERK/NF-κB signaling to promote osteoclast differentiation and activity. Biochem Biophys Res Commun 2024; 738:150536. [PMID: 39146619 DOI: 10.1016/j.bbrc.2024.150536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
S100 calcium-binding protein P (S100P) is a secretory protein that is expressed in various healthy tissues and tumors. Megakaryocyte-secreted S100P promotes osteoclast differentiation and function; however, its receptor and cellular signaling in osteoclasts remain unclear. Receptor for advanced glycation end products (RAGE), which is the receptor for S100P on cancer cells, was expressed in osteoclast precursors, and S100P-RAGE binding was confirmed through co-immunoprecipitation. Additionally, the phosphorylation of ERK and NF-κB was increased in S100P-stimulated osteoclast precursors but was inhibited by addition of the RAGE antagonistic peptide (RAP). S100P-induced osteoclast differentiation and excessive bone resorption activity were also reduced by the addition of RAP. This study demonstrates that S100P, upon binding with RAGE, activates the ERK and NF-κB signaling pathways in osteoclasts, leading to increased cell differentiation and bone resorption activity.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Na Rae Park
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
2
|
Zglejc-Waszak K, Jozwik M, Thoene M, Wojtkiewicz J. Role of Receptor for Advanced Glycation End-Products in Endometrial Cancer: A Review. Cancers (Basel) 2024; 16:3192. [PMID: 39335163 PMCID: PMC11430655 DOI: 10.3390/cancers16183192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy. EC is associated with metabolic disorders that may promote non-enzymatic glycation and activate the receptor for advanced glycation end-products (RAGE) signaling pathways. Thus, we assumed that RAGE and its ligands may contribute to EC. Of particular interest is the interaction between diaphanous-related formin 1 (Diaph1) and RAGE during the progression of human cancers. Diaph1 is engaged in the proper organization of actin cytoskeletal dynamics, which is crucial in cancer invasion, metastasis, angiogenesis, and axonogenesis. However, the detailed molecular role of RAGE in EC remains uncertain. In this review, we discuss epigenetic factors that may play a key role in the RAGE-dependent endometrial pathology. We propose that DNA methylation may regulate the activity of the RAGE pathway in the uterus. The accumulation of negative external factors, such as hyperglycemia, inflammation, and oxidative stress, may interfere with the DNA methylation process. Therefore, further research should take into account the role of epigenetic mechanisms in EC progression.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Anatomy, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland
| | - Michael Thoene
- Department of Medical Biology, Faculty of Health Sciences, University of Warmia and Mazury in Olsztyn, Żołnierska 14C Str., 10-561 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
3
|
Seki H, Kitabatake K, Tanuma SI, Tsukimoto M. Involvement of RAGE in radiation-induced acquisition of malignant phenotypes in human glioblastoma cells. Biochim Biophys Acta Gen Subj 2024; 1868:130650. [PMID: 38830560 DOI: 10.1016/j.bbagen.2024.130650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Glioblastoma (GBM), a highly aggressive malignant tumor of the central nervous system, is mainly treated with radiotherapy. However, since irradiation may lead to the acquisition of migration ability by cancer cells, thereby promoting tumor metastasis and invasion, it is important to understand the mechanism of cell migration enhancement in order to prevent recurrence of GBM. The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor activated by high mobility group box 1 (HMGB1). In this study, we found that RAGE plays a role in the enhancement of cell migration by γ-irradiation in human GBM A172 cells. γ-Irradiation induced actin remodeling, a marker of motility acquisition, and enhancement of cell migration in A172 cells. Both phenotypes were suppressed by specific inhibitors of RAGE (FPS-ZM1 and TTP488) or by knockdown of RAGE. The HMGB1 inhibitor ethyl pyruvate similarly suppressed γ-irradiation-induced enhancement of cell migration. In addition, γ-irradiation-induced phosphorylation of STAT3 was suppressed by RAGE inhibitors, and a STAT3 inhibitor suppressed γ-irradiation-induced enhancement of cell migration, indicating that STAT3 is involved in the migration enhancement downstream of RAGE. Our results suggest that HMGB1-RAGE-STAT3 signaling is involved in radiation-induced enhancement of GBM cell migration, and may contribute to GBM recurrence by promoting metastasis and invasion.
Collapse
Affiliation(s)
- Hiromu Seki
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Kazuki Kitabatake
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Sei-Ichi Tanuma
- Meikai University Research Institute of Odontology, Sakado, Saitama, Japan; Faculty of Human Science, University of Human Arts and Sciences, Iwatsuki, Saitama, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
| |
Collapse
|
4
|
Otake S, Saito K, Chiba Y, Yamada A, Fukumoto S. S100a6 knockdown promotes the differentiation of dental epithelial cells toward the epidermal lineage instead of the odontogenic lineage. FASEB J 2024; 38:e23608. [PMID: 38593315 DOI: 10.1096/fj.202302412rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Tooth development is a complex process involving various signaling pathways and genes. Recent findings suggest that ion channels and transporters, including the S100 family of calcium-binding proteins, may be involved in tooth formation. However, our knowledge in this regard is limited. Therefore, this study aimed to investigate the expression of S100 family members and their functions during tooth formation. Tooth germs were extracted from the embryonic and post-natal mice and the expression of S100a6 was examined. Additionally, the effects of S100a6 knockdown and calcium treatment on S100a6 expression and the proliferation of SF2 cells were examined. Microarrays and single-cell RNA-sequencing indicated that S100a6 was highly expressed in ameloblasts. Immunostaining of mouse tooth germs showed that S100a6 was expressed in ameloblasts but not in the undifferentiated dental epithelium. Additionally, S100a6 was localized to the calcification-forming side in enamel-forming ameloblasts. Moreover, siRNA-mediated S100a6 knockdown in ameloblasts reduced intracellular calcium concentration and the expression of ameloblast marker genes, indicating that S100a6 is associated with ameloblast differentiation. Furthermore, S100a6 knockdown inhibited the ERK/PI3K signaling pathway, suppressed ameloblast proliferation, and promoted the differentiation of the dental epithelium toward epidermal lineage. Conclusively, S100a6 knockdown in the dental epithelium suppresses cell proliferation via calcium and intracellular signaling and promotes differentiation of the dental epithelium toward the epidermal lineage.
Collapse
Grants
- 23H03109 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21J21873 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H03296 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H00488 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20K20612 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Shinji Otake
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yuta Chiba
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Dobrucki IT, Miskalis A, Nelappana M, Applegate C, Wozniak M, Czerwinski A, Kalinowski L, Dobrucki LW. Receptor for advanced glycation end-products: Biological significance and imaging applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1935. [PMID: 37926944 DOI: 10.1002/wnan.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The receptor for advanced glycation end-products (RAGE or AGER) is a transmembrane, immunoglobulin-like receptor that, due to its multiple isoform structures, binds to a diverse range of endo- and exogenous ligands. RAGE activation caused by the ligand binding initiates a cascade of complex pathways associated with producing free radicals, such as reactive nitric oxide and oxygen species, cell proliferation, and immunoinflammatory processes. The involvement of RAGE in the pathogenesis of disorders such as diabetes, inflammation, tumor progression, and endothelial dysfunction is dictated by the accumulation of advanced glycation end-products (AGEs) at pathologic states leading to sustained RAGE upregulation. The involvement of RAGE and its ligands in numerous pathologies and diseases makes RAGE an interesting target for therapy focused on the modulation of both RAGE expression or activation and the production or exogenous administration of AGEs. Despite the known role that the RAGE/AGE axis plays in multiple disease states, there remains an urgent need to develop noninvasive, molecular imaging approaches that can accurately quantify RAGE levels in vivo that will aid in the validation of RAGE and its ligands as biomarkers and therapeutic targets. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Iwona T Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Academy of Medical and Social Applied Sciences, Elblag, Poland
| | - Angelo Miskalis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael Nelappana
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Catherine Applegate
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
| | - Marcin Wozniak
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| | - Andrzej Czerwinski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Leszek Kalinowski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
6
|
Zhang Y, Song Y, Du J, Liu W, Dong C, Huang Z, Zhang Z, Yang L, Wang T, Xiong S, Dong L, Guo Y, Dang J, He Q, Yu Z, Ma X. S100 calcium-binding protein A9 promotes skin regeneration through toll-like receptor 4 during tissue expansion. BURNS & TRAUMA 2023; 11:tkad030. [PMID: 37936894 PMCID: PMC10627002 DOI: 10.1093/burnst/tkad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/17/2023] [Indexed: 11/09/2023]
Abstract
Background In plastic surgery, tissue expansion is widely used for repairing skin defects. However, low expansion efficiency and skin rupture caused by thin, expanded skin remain significant challenges in promoting skin regeneration during expansion. S100 calcium-binding protein A9 (S100A9) is essential in promoting wound healing; however, its effects on skin regeneration during tissue expansion remain unclear. The aim of the present study was to explore the role of S100A9 in skin regeneration, particularly collagen production to investigate its importance in skin regeneration during tissue expansion. Methods The expression and distribution of S100A9 and its receptors-toll-like receptor 4 (TLR-4) and receptor for advanced glycation end products were studied in expanded skin. These characteristics were investigated in skin samples of rats and patients. Moreover, the expression of S100A9 was investigated in stretched keratinocytes in vitro. The effects of S100A9 on the proliferation and migration of skin fibroblasts were also observed. TAK-242 was used to inhibit the binding of S100A9 to TLR-4; the levels of collagen I (COL I), transforming growth factor beta (TGF-β), TLR-4 and phospho-extracellular signal-related kinase 1/2 (p-ERK1/2) in fibroblasts were determined. Furthermore, fibroblasts were co-cultured with stretched S100A9-knockout keratinocytes by siRNA transfection and the levels of COL I, TGF-β, TLR-4 and p-ERK1/2 in fibroblasts were investigated. Additionally, the area of expanded skin, thickness of the dermis, and synthesis of COL I, TGF-β, TLR-4 and p-ERK1/2 were analysed to determine the effects of S100A9 on expanded skin. Results Increased expression of S100A9 and TLR-4 was associated with decreased extracellular matrix (ECM) in the expanded dermis. Furthermore, S100A9 facilitated the proliferation and migration of human skin fibroblasts as well as the expression of COL I and TGF-β in fibroblasts via the TLR-4/ERK1/2 pathway. We found that mechanical stretch-induced S100A9 expression and secretion of keratinocytes stimulated COL I, TGF-β, TLR-4 and p-ERK1/2 expression in skin fibroblasts. Recombined S100A9 protein aided expanded skin regeneration and rescued dermal thinning in rats in vivo as well as increasing ECM deposition during expansion. Conclusions These findings demonstrate that mechanical stretch promoted expanded skin regeneration by upregulating S100A9 expression. Our study laid the foundation for clinically improving tissue expansion using S100A9.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Jing Du
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Chen Dong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhaosong Huang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhe Zhang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Liu Yang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Tong Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Shaoheng Xiong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Liwei Dong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Yaotao Guo
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Juanli Dang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Qiang He
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| |
Collapse
|
7
|
Zhou H, Zhao C, Shao R, Xu Y, Zhao W. The functions and regulatory pathways of S100A8/A9 and its receptors in cancers. Front Pharmacol 2023; 14:1187741. [PMID: 37701037 PMCID: PMC10493297 DOI: 10.3389/fphar.2023.1187741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Pujals M, Mayans C, Bellio C, Méndez O, Greco E, Fasani R, Alemany-Chavarria M, Zamora E, Padilla L, Mitjans F, Nuciforo P, Canals F, Nonell L, Abad M, Saura C, Tabernero J, Villanueva J. RAGE/SNAIL1 signaling drives epithelial-mesenchymal plasticity in metastatic triple-negative breast cancer. Oncogene 2023; 42:2610-2628. [PMID: 37468678 DOI: 10.1038/s41388-023-02778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Epithelial/Mesenchymal (E/M) plasticity plays a fundamental role both in embryogenesis and during tumorigenesis. The receptor for advanced glycation end products (RAGE) is a driver of cell plasticity in fibrotic diseases; however, its role and molecular mechanism in triple-negative breast cancer (TNBC) remains unclear. Here, we demonstrate that RAGE signaling maintains the mesenchymal phenotype of aggressive TNBC cells by enforcing the expression of SNAIL1. Besides, we uncover a crosstalk mechanism between the TGF-β and RAGE pathways that is required for the acquisition of mesenchymal traits in TNBC cells. Consistently, RAGE inhibition elicits epithelial features that block migration and invasion capacities. Next, since RAGE is a sensor of the tumor microenvironment, we modeled acute acidosis in TNBC cells and showed it promotes enhanced production of RAGE ligands and the activation of RAGE-dependent invasive properties. Furthermore, acute acidosis increases SNAIL1 levels and tumor cell invasion in a RAGE-dependent manner. Finally, we demonstrate that in vivo inhibition of RAGE reduces metastasis incidence and expands survival, consistent with molecular effects that support the relevance of RAGE signaling in E/M plasticity. These results uncover new molecular insights on the regulation of E/M phenotypes in cancer metastasis and provide rationale for pharmacological intervention of this signaling axis.
Collapse
Affiliation(s)
- Mireia Pujals
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carla Mayans
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Chiara Bellio
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Olga Méndez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Emanuela Greco
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Roberta Fasani
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mercè Alemany-Chavarria
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Esther Zamora
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laura Padilla
- LEITAT Technological Center, 08028, Barcelona, Spain
| | | | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Lara Nonell
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María Abad
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Altos Labs Cambridge Institute of Science, Cambridge, UK
| | - Cristina Saura
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Josep Tabernero
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- IOB Institute of Oncology, Quiron Group (Quiron-IOB), Barcelona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Villanueva
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Mandarino A, Thiyagarajan S, Martins ACF, Gomes RDS, Vetter SW, Leclerc E. S100s and HMGB1 Crosstalk in Pancreatic Cancer Tumors. Biomolecules 2023; 13:1175. [PMID: 37627239 PMCID: PMC10452588 DOI: 10.3390/biom13081175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic cancer remains a disease that is very difficult to treat. S100 proteins are small calcium binding proteins with diverse intra- and extracellular functions that modulate different aspects of tumorigenesis, including tumor growth and metastasis. High mobility group box 1 (HMGB1) protein is a multifaceted protein that also actively influences the development and progression of tumors. In this study, we investigate the possible correlations, at the transcript level, between S100s and HMGB1 in pancreatic cancer. For this purpose, we calculated Pearson's correlations between the transcript levels of 13 cancer-related S100 genes and HMGB1 in a cDNA array containing 19 pancreatic cancer tumor samples, and in 8 human pancreatic cancer cell lines. Statistically significant positive correlations were found in 5.5% (5 out of 91) and 37.4% (34 of 91) of the possible S100/S100 or S100/HMGB1 pairs in cells and tumors, respectively. Our data suggest that many S100 proteins crosstalk in pancreatic tumors either with other members of the S100 family, or with HMGB1. These newly observed interdependencies may be used to further the characterization of pancreatic tumors based on S100 and HMGB1 transcription profiles.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
10
|
Børkja MLB, Giambelluca MS, Ytterhus B, Prestvik WS, Bjørkøy G, Bofin AM. S100A8 gene copy number and protein expression in breast cancer: associations with proliferation, histopathological grade and molecular subtypes. Breast Cancer Res Treat 2023:10.1007/s10549-023-07019-6. [PMID: 37450087 PMCID: PMC10361851 DOI: 10.1007/s10549-023-07019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND AIMS Amplification of S100A8 occurs in 10-30% of all breast cancers and has been linked to poorer prognosis. Similarly, the protein S100A8 is overexpressed in a roughly comparable proportion of breast cancers and is also found in infiltrating myeloid-lineage cells, again linked to poorer prognosis. We explore the relationship between these findings. METHODS We examined S100A8 copy number (CN) alterations using fluorescence in situ hybridization in 475 primary breast cancers and 117 corresponding lymph nodes. In addition, we studied S100A8 protein expression using immunohistochemistry in 498 primary breast cancers from the same cohort. RESULTS We found increased S100A8 CN (≥ 4) in tumor epithelial cells in 20% of the tumors, increased S100A8 protein expression in 15%, and ≥ 10 infiltrating S100A8 + polymorphonuclear cells in 19%. Both increased S100A8 CN and protein expression in cancer cells were associated with high Ki67 status, high mitotic count and high histopathological grade. We observed no association between increased S100A8 CN and S100A8 protein expression, and only a weak association (p = 0.09) between increased CN and number of infiltrating S100A8 + immune cells. Only S100A8 protein expression in cancer cells was associated with significantly worse prognosis. CONCLUSIONS Amplification of S100A8 does not appear to be associated with S100A8 protein expression in breast cancer. S100A8 protein expression in tumor epithelial cells identifies a subgroup of predominantly non-luminal tumors with a high mean age at diagnosis and significantly worse prognosis. Finally, S100A8 alone is not a sufficient marker to identify infiltrating immune cells linked to worse prognosis.
Collapse
Affiliation(s)
- Mathieu Le Boulvais Børkja
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Miriam S Giambelluca
- Department of Clinical Medicine, Faculty of Health Science, UiT- The Arctic University of Norway, Tromsø, Norway
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Borgny Ytterhus
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Wenche S Prestvik
- Department of Biomedical Laboraxtory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Bjørkøy
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biomedical Laboraxtory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Science Centre Nordland, Midtre gate 1, Mo i Rana, 8624, Norway
| | - Anna M Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
11
|
Magna M, Hwang GH, McIntosh A, Drews-Elger K, Takabatake M, Ikeda A, Mera BJ, Kwak T, Miller P, Lippman ME, Hudson BI. RAGE inhibitor TTP488 (Azeliragon) suppresses metastasis in triple-negative breast cancer. NPJ Breast Cancer 2023; 9:59. [PMID: 37443146 DOI: 10.1038/s41523-023-00564-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic cancer subtype, which is generally untreatable once it metastasizes. We hypothesized that interfering with the Receptor for Advanced Glycation End-products (RAGE) signaling with the small molecule RAGE inhibitors (TTP488/Azeliragon and FPS-ZM1) would impair TNBC metastasis and impair fundamental mechanisms underlying tumor progression and metastasis. Both TTP488 and FPS-ZM1 impaired spontaneous and experimental metastasis of TNBC models, with TTP488 reducing metastasis to a greater degree than FPS-ZM1. Transcriptomic analysis of primary xenograft tumor and metastatic tissue revealed high concordance in gene and protein changes with both drugs, with TTP488 showing greater potency against metastatic driver pathways. Phenotypic validation of transcriptomic analysis by functional cell assays revealed that RAGE inhibition impaired TNBC cell adhesion to multiple extracellular matrix proteins (including collagens, laminins, and fibronectin), migration, and invasion. Neither RAGE inhibitor impaired cellular viability, proliferation, or cell cycle in vitro. Proteomic analysis of serum from tumor-bearing mice revealed RAGE inhibition affected metastatic driver mechanisms, including multiple cytokines and growth factors. Further mechanistic studies by phospho-proteomic analysis of tumors revealed RAGE inhibition led to decreased signaling through critical BC metastatic driver mechanisms, including Pyk2, STAT3, and Akt. These results show that TTP488 impairs metastasis of TNBC and further clarifies the signaling and cellular mechanisms through which RAGE mediates metastasis. Importantly, as TTP488 displays a favorable safety profile in human studies, our study provides the rationale for evaluating TTP488 in clinical trials to treat or prevent metastatic TNBC.
Collapse
Affiliation(s)
- Melinda Magna
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Gyong Ha Hwang
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alec McIntosh
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Katherine Drews-Elger
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Masaru Takabatake
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Adam Ikeda
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Barbara J Mera
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Taekyoung Kwak
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Philip Miller
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Marc E Lippman
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Barry I Hudson
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA.
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
12
|
Miranda-Galvis M, Carneiro Soares C, Moretto Carnielli C, Ramalho Buttura J, Sales de Sá R, Kaminagakura E, Marchi FA, Paes Leme AF, Lópes Pinto CA, Santos-Silva AR, Moraes Castilho R, Kowalski LP, Squarize CH. New Insights into the Impact of Human Papillomavirus on Oral Cancer in Young Patients: Proteomic Approach Reveals a Novel Role for S100A8. Cells 2023; 12:cells12091323. [PMID: 37174723 PMCID: PMC10177374 DOI: 10.3390/cells12091323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Human papillomavirus (HPV) infection has recently been linked to a subset of cancers affecting the oral cavity. However, the molecular mechanisms underlying HPV-driven oral squamous cell carcinoma (OSCC) onset and progression are poorly understood. METHODS We performed MS-based proteomics profiling based on HPV status in OSCC in young patients, following biological characterization and cell assays to explore the proteome functional landscape. RESULTS Thirty-nine proteins are differentially abundant between HPV (+) and HPV (-) OSCC. Among them, COPS3, DYHC1, and S100A8 are unfavorable for tumor recurrence and survival, in contrast to A2M and Serpine1, low levels of which show an association with better DFS. Remarkably, S100A8 is considered an independent prognostic factor for lower survival rates, and at high levels, it alters tumor-associated immune profiling, showing a lower proportion of M1 macrophages and dendritic cells. HPV (+) OSCC also displayed the pathogen-associated patterns receptor that, when activated, triggered the S100A8 and NFκB inflammatory responses. CONCLUSION HPV (+) OSCC has a peculiar microenvironment pattern distinctive from HPV (-), involving the expression of pathogen-associated pattern receptors, S100A8 overexpression, and NFκB activation and responses, which has important consequences in prognosis and may guide therapeutic decisions.
Collapse
Affiliation(s)
- Marisol Miranda-Galvis
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
| | - Carolina Carneiro Soares
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
- Department of Microbiology, Immune Biology, and Genetics, Center for Molecular Biology, University of Vienna, 1030 Vienna, Austria
| | - Carolina Moretto Carnielli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| | - Jaqueline Ramalho Buttura
- Laboratory of Bioinformatics and Computational Biology, A.C.Camargo Cancer Center (CIPE), São Paulo 01508-010, SP, Brazil
| | - Raisa Sales de Sá
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
| | - Estela Kaminagakura
- Department of Bioscience and Oral Diagnosis, Science and Technology Institute, University of São Paulo State (UNESP), São José dos Campos 01049-010, SP, Brazil
| | - Fabio Albuquerque Marchi
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), São Paulo 01246-000, SP, Brazil
- Comprehensive Center for Precision Oncology, University of São Paulo, São Paulo 05508-900, SP, Brazil
| | - Adriana Franco Paes Leme
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| | - Clóvis A Lópes Pinto
- Department of Anatomic Pathology, A.C.Camargo Cancer Center, São Paulo 01509-001, SP, Brazil
| | - Alan Roger Santos-Silva
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Luiz Paulo Kowalski
- Head and Neck Surgery Department, Medical School, University of São Paulo, São Paulo 05508-900, SP, Brazil
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C.Camargo Cancer Center, São Paulo 01509-001, SP, Brazil
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Senatus L, Egaña-Gorroño L, López-Díez R, Bergaya S, Aranda JF, Amengual J, Arivazhagan L, Manigrasso MB, Yepuri G, Nimma R, Mangar KN, Bernadin R, Zhou B, Gugger PF, Li H, Friedman RA, Theise ND, Shekhtman A, Fisher EA, Ramasamy R, Schmidt AM. DIAPH1 mediates progression of atherosclerosis and regulates hepatic lipid metabolism in mice. Commun Biol 2023; 6:280. [PMID: 36932214 PMCID: PMC10023694 DOI: 10.1038/s42003-023-04643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Atherosclerosis evolves through dysregulated lipid metabolism interwoven with exaggerated inflammation. Previous work implicating the receptor for advanced glycation end products (RAGE) in atherosclerosis prompted us to explore if Diaphanous 1 (DIAPH1), which binds to the RAGE cytoplasmic domain and is important for RAGE signaling, contributes to these processes. We intercrossed atherosclerosis-prone Ldlr-/- mice with mice devoid of Diaph1 and fed them Western diet for 16 weeks. Compared to male Ldlr-/- mice, male Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis, in parallel with lower plasma concentrations of cholesterol and triglycerides. Female Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis compared to Ldlr-/- mice and demonstrated lower plasma concentrations of cholesterol, but not plasma triglycerides. Deletion of Diaph1 attenuated expression of genes regulating hepatic lipid metabolism, Acaca, Acacb, Gpat2, Lpin1, Lpin2 and Fasn, without effect on mRNA expression of upstream transcription factors Srebf1, Srebf2 or Mxlipl in male mice. We traced DIAPH1-dependent mechanisms to nuclear translocation of SREBP1 in a manner independent of carbohydrate- or insulin-regulated cues but, at least in part, through the actin cytoskeleton. This work unveils new regulators of atherosclerosis and lipid metabolism through DIAPH1.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Sonia Bergaya
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Juan Francisco Aranda
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Jaume Amengual
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Michaele B Manigrasso
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Gautham Yepuri
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ramesh Nimma
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Kaamashri N Mangar
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Rollanda Bernadin
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Boyan Zhou
- Department of Population Health, Division of Biostatistics, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Paul F Gugger
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Huilin Li
- Department of Population Health, Division of Biostatistics, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Neil D Theise
- Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, New York, USA
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY, USA
| | - Edward A Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
14
|
RAGE Inhibitors for Targeted Therapy of Cancer: A Comprehensive Review. Int J Mol Sci 2022; 24:ijms24010266. [PMID: 36613714 PMCID: PMC9820344 DOI: 10.3390/ijms24010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin family that is overexpressed in several cancers. RAGE is highly expressed in the lung, and its expression increases proportionally at the site of inflammation. This receptor can bind a variety of ligands, including advanced glycation end products, high mobility group box 1, S100 proteins, adhesion molecules, complement components, advanced lipoxidation end products, lipopolysaccharides, and other molecules that mediate cellular responses related to acute and chronic inflammation. RAGE serves as an important node for the initiation and stimulation of cell stress and growth signaling mechanisms that promote carcinogenesis, tumor propagation, and metastatic potential. In this review, we discuss different aspects of RAGE and its prominent ligands implicated in cancer pathogenesis and describe current findings that provide insights into the significant role played by RAGE in cancer. Cancer development can be hindered by inhibiting the interaction of RAGE with its ligands, and this could provide an effective strategy for cancer treatment.
Collapse
|
15
|
Daily A, Ravishankar P, Wang W, Krone R, Harms S, Klimberg VS. Development and validation of a short-term breast health measure as a supplement to screening mammography. Biomark Res 2022; 10:76. [PMID: 36284356 PMCID: PMC9594920 DOI: 10.1186/s40364-022-00420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background There is a growing body of evidence to support tears as a non-traditional biological fluid in clinical laboratory testing. In addition to the simplicity of tear fluid processing, the ability to access key cancer biomarkers in high concentrations quickly and inexpensively is significantly enhanced. Tear fluid is a dynamic environment rich in both proteomic and genomic information, making it an ideal medium for exploring the potential for biological testing modalities. Methods All protocols involving human subjects were reviewed and approved by the University of Arkansas IRB committee (13-11-289) prior to sample collection. Study enrollment was open to women ages 18 and over from October 30, 2017-June 19, 2019 at The Breast Center, Fayetteville, AR and Bentonville, AR. Convenience sampling was used and samples were age/sex matched, with enrollment open to individuals at any point of the breast health continuum of care. Tear samples were collected using the Schirmer strip method from 847 women. Concentration of selected tear proteins were evaluated using standard sandwich ELISA techniques and the resulting data, combined with demographic and clinical covariates, was analyzed using logistic regression analysis to build a model for classification of samples. Results Logistic regression analysis produced three models, which were then evaluated on cases and controls at two diagnostic thresholds and resulted in sensitivity ranging from 52 to 90% and specificity from 31 to 79%. Sensitivity and specificity variation is dependent on the model being evaluated as well as the selected diagnostic threshold providing avenues for assay optimization. Conclusions and relevance The work presented here builds on previous studies focused on biomarker identification in tear samples. Here we show successful early classification of samples using two proteins and minimal clinical covariates. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00420-1.
Collapse
Affiliation(s)
| | | | | | | | - Steve Harms
- The Breast Center-Medical Associates of Northwest Arkansas, Fayetteville, AR USA
| | - V. Suzanne Klimberg
- grid.176731.50000 0001 1547 9964Department of Surgery, University of Texas Medical Branch, Galveston, TX USA ,grid.240145.60000 0001 2291 4776Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
16
|
Taub CJ, Diaz A, Blomberg BB, Jutagir DR, Fisher HM, Gudenkauf LM, Lippman ME, Hudson BI, Antoni MH. Relationships Between Serum Cortisol, RAGE-Associated s100A8/A9 Levels, and Self-Reported Cancer-Related Distress in Women With Nonmetastatic Breast Cancer. Psychosom Med 2022; 84:803-807. [PMID: 35980780 PMCID: PMC9437114 DOI: 10.1097/psy.0000000000001109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Elevated inflammation and psychological distress in patients with breast cancer (BCa) have been related to poorer health outcomes. Regulation of the hypothalamic-pituitary-adrenal axis and signaling of the receptor for advanced glycation end products (RAGE) are important in the inflammatory response and have been associated with increased stress and poorer health outcomes in patients with cancer. This study examined relationships among circulating cortisol, a measure of hypothalamic-pituitary-adrenal axis activity and physiological stress; s100A8/A9, a RAGE ligand and emerging cancer-related biological measure; and self-reported cancer-related distress. METHODS Patients with BCa ( N = 183, stages 0-IIIb) were recruited 2 to 10 weeks after surgery but before receiving adjuvant therapies. Participants provided blood samples, from which serum cortisol and s100A8/A9 levels were determined, and completed a psychosocial questionnaire. Regression analyses, adjusting for age, cancer stage, time since surgery, race, and menopausal status, were conducted examining the relationships between cortisol, s100A8/A9, and cancer-related distress (Impact of Event Scale [IES]-Revised). RESULTS Cortisol and s100A8/A9 levels were positively related ( β = 0.218, t (112) = 2.332, p = .021), although the overall model was not significant. Cortisol levels were also positively associated with IES-Intrusions ( β = 0.192, t (163) = 2.659, p = .009) and IES-Hyperarousal subscale scores ( β = 0.171, t (163) = 2.304, p = .022). CONCLUSIONS Patients with higher cortisol levels also reported higher s100A8/A9 levels and more cancer-related distress. The relationship between cortisol and s100A8/A9 supports a link between the stress response and proinflammatory physiological processes known to predict a greater metastatic risk in BCa. Stress processes implicated in cancer biology are complex, and replication and extension of these initial findings are important.
Collapse
Affiliation(s)
- Chloe J Taub
- Department of Medical Social Science, Northwestern University Feinberg School of Medicine
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine
| | - Devika R Jutagir
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center
| | - Hannah M Fisher
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine
| | - Lisa M Gudenkauf
- Department of Health Outcomes and Behavior, Moffitt Cancer Center
| | - Marc E Lippman
- Department of Oncology and Medicine, Georgetown Lombardi Comprehensive Cancer Center
| | - Barry I Hudson
- Oncology Academic Department, Georgetown University School of Medicine
| | | |
Collapse
|
17
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales M. The RAGE/multiligand axis: a new actor in tumor biology. Biosci Rep 2022; 42:BSR20220395. [PMID: 35727208 PMCID: PMC9251583 DOI: 10.1042/bsr20220395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein which actively participates in several chronic inflammation-related diseases. RAGE, in addition to AGEs, has a wide repertoire of ligands, including several damage-associated molecular pattern molecules or alarmins such as HMGB1 and members of the S100 family proteins. Over the last years, a large and compelling body of evidence has revealed the active participation of the RAGE axis in tumor biology based on its active involvement in several crucial mechanisms involved in tumor growth, immune evasion, dissemination, as well as by sculpturing of the tumor microenvironment as a tumor-supportive niche. In the present review, we will detail the consequences of the RAGE axis activation to fuel essential mechanisms to guarantee tumor growth and spreading.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ivan Schneider
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Cristian Lindner
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ileana Gonzalez
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Miguel A. Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago 8320000, Chile, Santiago, Chile
| |
Collapse
|
18
|
Hu Y, Bai J, Zhou D, Zhang L, Chen X, Chen L, Liu Y, Zhang B, Li H, Yin C. The miR-4732-5p/XPR1 axis suppresses the invasion, metastasis, and epithelial-mesenchymal transition of lung adenocarcinoma via the PI3K/Akt/GSK3β/Snail pathway. Mol Omics 2022; 18:417-429. [PMID: 35388387 DOI: 10.1039/d1mo00245g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
The roles of microRNAs (miRNAs) in the occurrence, metastasis, and prognosis of lung adenocarcinoma (LUAD) have been drawing extensive attention from researchers. The aim of this study is to identify the effects of miR-4732-5p on the migration, invasion, and metastasis of LUAD. In this study, we found that the expression of miR-4732-5p was decreased in LUAD based on the data derived from The Cancer Genome Atlas (TCGA) database, tissues, and cell lines. LUAD patients with a low expression of miR-4732-5p exhibited a lower survival rate. Meanwhile, miR-4732-5p could directly target xenotropic and polytropic retrovirus receptor 1 (XPR1), and elevated XPR1 was observed in LUAD mRNA microarrays, Gene Expression Omnibus (GEO), and The Human Protein Atlas (HPA) database. Overexpression of miR-4732-5p significantly inhibits the migration, invasion, and metastasis of LUAD in vitro and in vivo, which can be reversed by overexpression of XPR1. We also found that the PI3K/Akt/GSK3β/Snail pathway induced by EGF induced EMT could be inhibited by miR-4732-5p overexpression and XPR1 knockdown. The migration and invasion of LUAD could be converted by cytoskeletal rearrangements, and the polymerization of EGF induced F-actin in A549 cells could be inhibited by elevated miR-4732-5p. Our results suggest that miR-4732-5p exerts anti-tumor effects on the invasion and metastasis of LUAD by regulating XPR1 in vivo and in vitro, indicating that the miR-4732-5p/XPR1 axis may be a potential target for LUAD therapeutic intervention.
Collapse
Affiliation(s)
- Yaqiong Hu
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Jun Bai
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Dandan Zhou
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Liping Zhang
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Xinlu Chen
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Lin Chen
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Yuqing Liu
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Baogang Zhang
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Hongli Li
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Chonggao Yin
- College of Nursing, Weifang Medical University, Weifang, Shandong, 261053, China.
| |
Collapse
|
19
|
Rigiracciolo DC, Nohata N, Lappano R, Cirillo F, Talia M, Adame-Garcia SR, Arang N, Lubrano S, De Francesco EM, Belfiore A, Gutkind JS, Maggiolini M. Focal Adhesion Kinase (FAK)-Hippo/YAP transduction signaling mediates the stimulatory effects exerted by S100A8/A9-RAGE system in triple-negative breast cancer (TNBC). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:193. [PMID: 35655319 PMCID: PMC9164429 DOI: 10.1186/s13046-022-02396-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/17/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Understanding the intricate signaling network involved in triple-negative breast cancer (TNBC) represents a challenge for developing novel therapeutic approaches. Here, we aim to provide novel mechanistic insights on the function of the S100A8/A9-RAGE system in TNBC. METHODS TNM plot analyzer, Kaplan-Meier plotter, Meta-analysis, GEPIA2 and GOBO publicly available datasets were used to evaluate the clinical significance of S100A8/A9 and expression levels of S100A8/A9, RAGE and Filamin family members in breast cancer (BC) subtypes. METABRIC database and Cox proportional hazard model defined the clinical impact of high RAGE expression in BC patients. Multiple bioinformatics programs identified the main enriched pathways within high RAGE expression BC cohorts. By lentiviral system, TNBC cells were engineered to overexpress RAGE. Western blotting, immunofluorescence, nucleus/cytoplasm fractionation, qRT-PCR, gene silencing and luciferase experiments were performed to identify signal transduction mediators engaged by RAGE upon stimulation with S100A8/A9 in TNBC cells. Proliferation, colony formation and transwell migration assays were carried out to evaluate the growth and migratory capacity of TNBC cells. Statistical analysis was performed by ANOVA and independent t-tests. RESULTS We found a remarkable high expression of S100A8 and S100A9 in BC, particularly in HER2-positive and TNBC, with the latter associated to worst clinical outcomes. In addition, high RAGE expression correlated with a poor overall survival in BC. Next, we determined that the S100A8/A9-RAGE system triggers FAK activation by engaging a cytoskeleton mechanosensing complex in TNBC cells. Through bioinformatics analysis, we identified the Hippo pathway as the most enriched in BC patients expressing high RAGE levels. In accordance with these data, we demonstrated the involvement of S100A8/A9-RAGE-FAK signaling in the control of Hippo/YAP activities, and we established the crucial contribution of RAGE-FAK-YAP circuitry in the growth and migratory effects initiated by S100A8/A9 in TNBC cells. CONCLUSIONS The present study provides novel mechanistic insights on RAGE actions in TNBC. Moreover, our findings suggest that RAGE-FAK-YAP transduction pathway could be exploited as a druggable system halting the aggressive TNBC subtype.
Collapse
Affiliation(s)
- Damiano Cosimo Rigiracciolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.,Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | | | - Nadia Arang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Simone Lubrano
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA. .,Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
20
|
Cheng J, Xia L, Hao X, Gan F, Bai Y, Zhang C, Mao Y, Zhu Y, Pu Q, Park DW, Tavolari S, Mei J, Chen Y, Deng S, Liu L. Targeting STT3A produces an anti-tumor effect in lung adenocarcinoma by blocking the MAPK and PI3K/AKT signaling pathway. Transl Lung Cancer Res 2022; 11:1089-1107. [PMID: 35832442 PMCID: PMC9271429 DOI: 10.21037/tlcr-22-396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023]
Abstract
Background Glycosylation is crucial for the stability and biological functions of proteins. The aberrant glycosylation of critical proteins plays an important role in multiple cancers, including lung adenocarcinoma (LUAD). STT3 oligosaccharyltransferase complex catalytic subunit A (STT3A) is a major isoform of N-linked glycosyltransferase that catalyzes the glycosylation of various proteins. However, the functions of STT3A in LUAD are still unclear. Methods The expression profiles of STT3A were initially analyzed in public data sets and then validated by quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry assays in clinical LUAD samples. The overall survival (OS) between patients with high and low STT3A expression was compared using a Kaplan-Meier curve with a log-rank analysis. STT3A was knocked-out using CRISPR/Cas9 and inhibited by NGI-1. Cell Counting Kit-8, colony formation assay, wound-healing, transwell assay, and flow cytometry were performed to assess the cellular functions of STT3A in vitro. A mice xenograft model was established to investigate the effects of STT3A on tumor growth in vivo. Further, the downstream signaling pathways of STT3A were screened by mass spectrometry with a bioinformatics analysis, and the activation of the target pathways were subsequently validated by Western blot. Results The expression of STT3A was frequently upregulated in LUAD tissues than normal lung tissues. The high expression of STT3A was significantly associated with poor OS in LUAD patients. The knockout or inhibition of STT3A suppressed proliferation, migration, and invasion, and arrested the cell cycle of LUAD cell lines in vitro. Similarly, the knockout or inhibition of STT3A suppressed tumor growth in vivo. In terms of molecular mechanism, STT3A may promote LUAD progression by activating the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase and protein kinase B (PI3K/AKT) pathways and regulating the epithelial-mesenchymal transition. Conclusions STT3A promotes LUAD progression via the MAPK and PI3K/AKT signaling pathways and could serve as a novel prognostic biomarker and potential therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Jiahan Cheng
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Xia
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohu Hao
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fanyi Gan
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Bai
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanfen Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Mao
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yunke Zhu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Pu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Won Park
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Simona Tavolari
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Jiandong Mei
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yaohui Chen
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Senyi Deng
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Reis JC, Travado L, Seixas E, Sousa B, Antoni MH. Low social and family well-being is associated with greater RAGE ligand s100A8/A9 and interleukin-1 beta levels in metastatic breast cancer patients. Brain Behav Immun Health 2022; 21:100433. [PMID: 35243410 PMCID: PMC8885603 DOI: 10.1016/j.bbih.2022.100433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Greater inflammatory signaling has been shown to promote breast cancer disease progression and poorer clinical outcomes. Lower social support and social well-being have been related to greater inflammatory signaling and poorer clinical outcomes in women with non-metastatic breast cancer, and this appears to be independent of depression. However, little is known about these associations in women with metastatic disease. s100A8/A9 and interleukin 1 beta (IL-1β) proteins are widely studied in breast cancer and are considered as biomarkers of cancer progression or as having a causal role in carcinogenesis and cancer progression and metastasis via inflammatory signaling. The aim of this study was to examine the associations between less social/family well-being (SWB) and S100A8/A9 and IL-1β levels in women diagnosed with metastatic breast cancer. Sixty women (Mean age 58.95 ± 1.49) with a diagnosis of metastatic breast cancer participated in the study. The Functional Assessment of Cancer Therapy (FACT) social and family well-being (SWB) subscale and the Hospital Anxiety Depression Scale (HADS) were administered to patients undergoing a first- or second-line endocrine or oral chemotherapy treatment and who were not experiencing brain metastasis or visceral crisis. Salivary s100A8/A9 and IL-1β levels were assessed at 5PM on two consecutive days and averaged. Multiple regression tested the independent contribution of SWB on s100 A8/A9 and IL-1b while controlling for depression. Lower levels of SWB were associated with greater S100A8/A9 (ß = -0.345, p = 0.007) and IL-1β (ß = -0.286, p = 0.027) levels and these associations remained significant after controlling for depression. This work provides new evidence for the role of decreased SWB and greater s100A8/A9 and IL-1b levels in patients diagnosed with metastatic breast cancer. Psychosocial interventions that promote social support and positive social interactions through interpersonal skills may help metastatic breast cancer patients to improve their SWB. This may have salutary effects on cancer-promoting processes, which could provide psychological and physical health benefits.
Collapse
Affiliation(s)
- Joaquim C Reis
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Luzia Travado
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Elsa Seixas
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Berta Sousa
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Michael H Antoni
- Department of Psychology, University of Miami, and Sylvester Comprehensive Cancer Center, Cancer Control Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
22
|
Daily A, Ravishankar P, Harms S, Klimberg VS. Using tears as a non-invasive source for early detection of breast cancer. PLoS One 2022; 17:e0267676. [PMID: 35471994 PMCID: PMC9041847 DOI: 10.1371/journal.pone.0267676] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
The changing expression levels of ocular proteins in response to systemic disease has been well established in literature. In this study, we examined the ocular proteome to identify protein biomarkers with altered expression levels in women diagnosed with breast cancer. Tear samples were collected from 273 participants using Schirmer strip collection methods. Following protein elution, proteome wide trypsin digestion with Liquid chromatography/tandem mass spectrometry (LC-MS/MS) was used to identify potential protein biomarkers with altered expression levels in breast cancer patients. Selected biomarkers were further validated by enzyme linked immunosorbent assay (ELISA). A total of 102 individual tear samples (51 breast cancer, 51 control) were analyzed by LC-MS/MS which identified 301 proteins. Spectral intensities between the groups were compared and 14 significant proteins (p-value <0.05) were identified as potential biomarkers in breast cancer patients. Three biomarkers, S100A8 (p-value = 0.0069, 7.8-fold increase), S100A9 (p-value = 0.0048, 10.2-fold increase), and Galectin-3 binding protein (p-value = 0.01, 3.0-fold increase) with an increased expression in breast cancer patients were selected for validation using ELISA. Validation by ELISA was conducted using 171 individual tear samples (75 Breast Cancer and 96 Control). Similar to the observed LC-MS/MS results, S100A8 (p-value <0.0001) and S100A9 (p-value <0.0001) showed significantly higher expression in breast cancer patients. However, galectin-3 binding protein had increased expression in the control group. Our results provide further support for using tear proteins to detect non-ocular systemic diseases such as breast cancer. Our work provides crucial details to support the continued evaluation of tear samples in the screening and diagnosis of breast cancer and paves the way for future evaluation of the tear proteome for screening and diagnosis of systemic diseases.
Collapse
Affiliation(s)
- Anna Daily
- Namida Lab Inc, Fayetteville, Arkansas, United States of America
- * E-mail:
| | | | - Steve Harms
- Namida Lab Inc, Fayetteville, Arkansas, United States of America
- The Breast Center-Medical Associates of Northwest Arkansas, Fayetteville, Arkansas, United States of America
| | - V. Suzanne Klimberg
- Namida Lab Inc, Fayetteville, Arkansas, United States of America
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
- Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
23
|
Shipunov I, Kupaev V. Glycome assessment in patients with respiratory diseases. TRANSLATIONAL METABOLIC SYNDROME RESEARCH 2022. [DOI: 10.1016/j.tmsr.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
|
24
|
Chang A, Sloan EK, Antoni MH, Knight JM, Telles R, Lutgendorf SK. Biobehavioral Pathways and Cancer Progression: Insights for Improving Well-Being and Cancer Outcomes. Integr Cancer Ther 2022; 21:15347354221096081. [PMID: 35579197 PMCID: PMC9118395 DOI: 10.1177/15347354221096081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
The relationship between psychosocial factors and cancer has intrigued people for centuries. In the last several decades there has been an expansion of mechanistic research that has revealed insights regarding how stress activates neuroendocrine stress-response systems to impact cancer progression. Here, we review emerging mechanistic findings on key pathways implicated in the effect of stress on cancer progression, including the cellular immune response, inflammation, angiogenesis, and metastasis, with a primary focus on the mediating role of the sympathetic nervous system. We discuss converging findings from preclinical and clinical cancer research that describe these pathways and research that reveals how these stress pathways may be targeted via pharmacological and mind-body based interventions. While further research is required, the body of work reviewed here highlights the need for and feasibility of an integrated approach to target stress pathways in cancer patients to achieve comprehensive cancer treatment.
Collapse
Affiliation(s)
- Aeson Chang
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, VIC, Australia
| | - Erica K. Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, VIC, Australia
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Peter MacCallum Cancer Centre, Division of Surgery, Melbourne, VIC, Australia
| | - Michael H. Antoni
- Departments of Psychology, Psychiatry, and Behavioral Sciences, and Cancer Control Program, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Jennifer M. Knight
- Department of Psychiatry and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rachel Telles
- Departments of Psychological and Brain Sciences, Obstetrics and Gynecology, and Urology, and Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Susan K. Lutgendorf
- Departments of Psychological and Brain Sciences, Obstetrics and Gynecology, and Urology, and Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
25
|
A Novel S100 Family-Based Signature Associated with Prognosis and Immune Microenvironment in Glioma. JOURNAL OF ONCOLOGY 2021; 2021:3586589. [PMID: 34712325 PMCID: PMC8548170 DOI: 10.1155/2021/3586589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Background Glioma is the most common central nervous system (CNS) cancer with a short survival period and a poor prognosis. The S100 family gene, comprising 25 members, relates to diverse biological processes of human malignancies. Nonetheless, the significance of S100 genes in predicting the prognosis of glioma remains largely unclear. We aimed to build an S100 family-based signature for glioma prognosis. Methods We downloaded 665 and 313 glioma patients, respectively, from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database with RNAseq data and clinical information. This study established a prognostic signature based on the S100 family genes through multivariate COX and LASSO regression. The Kaplan-Meier curve was plotted to compare overall survival (OS) among groups, whereas Receiver Operating Characteristic (ROC) analysis was performed to evaluate model accuracy. A representative gene S100B was further verified by in vitro experiments. Results An S100 family-based signature comprising 5 genes was constructed to predict the glioma that stratified TCGA-derived cases as a low- or high-risk group, whereas the significance of prognosis was verified based on CGGA-derived cases. Kaplan-Meier analysis revealed that the high-risk group was associated with the dismal prognosis. Furthermore, the S100 family-based signature was proved to be closely related to immune microenvironment. In vitro analysis showed S100B gene in the signature promoted glioblastoma (GBM) cell proliferation and migration. Conclusions We constructed and verified a novel S100 family-based signature associated with tumor immune microenvironment (TIME), which may shed novel light on the glioma diagnosis and treatment.
Collapse
|
26
|
Lim H, Koh M, Jin H, Bae M, Lee SY, Kim KM, Jung J, Kim HJ, Park SY, Kim HS, Moon WK, Hwang S, Cho NH, Moon A. Cancer-associated fibroblasts induce an aggressive phenotypic shift in non-malignant breast epithelial cells via interleukin-8 and S100A8. J Cell Physiol 2021; 236:7014-7032. [PMID: 33748944 DOI: 10.1002/jcp.30364] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment have been associated with tumor progression in breast cancer. Although crosstalk between breast cancer cells and CAFs has been studied, the effect of CAFs on non-neoplastic breast epithelial cells is not fully understood to date. Here, we investigated the effect of CAFs on aggressive phenotypes in non-neoplastic MCF10A breast epithelial cells. CAFs induced epithelial-to-mesenchymal transition (EMT) and invasive phenotype in MCF10A cells. S100A8, a potential prognostic marker in several cancers, was markedly increased in MCF10A cells by CAFs. S100A8 was crucial for CAFs-induced invasive phenotype of MCF10A cells. Among cytokines increased by CAFs, interleukin (IL)-8 induced S100A8 through transcription factors p65 NF-κB and C/EBPβ. In a xenograft mouse model with MCF10A cells and CAFs, tumor was not developed, suggesting that coinjection with CAFs may not be sufficient for in vivo tumorigenicity of MCF10A cells. Xenograft mouse tumor models with MDA-MB-231 breast carcinoma cells provided an in vivo evidence for the effect of CAFs on breast cancer progression as well as a crucial role of IL-8 in tumor growth and S100A8 expression in vivo. Using a tissue microarray of human breast cancer, we showed that S100A8 expression was correlated with poor outcomes. S100A8 expression was more frequently detected in cancer-adjacent normal human breast tissues than in normal breast tissues. Together, this study elucidated a novel mechanism for the acquisition of invasive phenotype of non-neoplastic breast cells induced by CAFs, suggesting that targeting IL-8 and S100A8 may be an effective strategy against breast cancer.
Collapse
Affiliation(s)
- Hyesol Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Minsoo Koh
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Hao Jin
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Mijeong Bae
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Seung-Yeon Lee
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Kyoung Mee Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Hyun Jeong Kim
- Department of Pathology, Seoul National University Bundang Hospital, Gyeonggi, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Gyeonggi, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Sejin Hwang
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, Korea
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Korea
| |
Collapse
|
27
|
Pujals M, Resar L, Villanueva J. HMGA1, Moonlighting Protein Function, and Cellular Real Estate: Location, Location, Location! Biomolecules 2021; 11:1334. [PMID: 34572547 PMCID: PMC8468999 DOI: 10.3390/biom11091334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
The gene encoding the High Mobility Group A1 (HMGA1) chromatin remodeling protein is upregulated in diverse cancers where high levels portend adverse clinical outcomes. Until recently, HMGA1 was assumed to be a nuclear protein exerting its role in cancer by transcriptionally modulating gene expression and downstream signaling pathways. However, the discovery of an extracellular HMGA1-RAGE autocrine loop in invasive triple-negative breast cancer (TNBC) cell lines implicates HMGA1 as a "moonlighting protein" with different functions depending upon cellular location. Here, we review the role of HMGA1, not only as a chromatin regulator in cancer and stem cells, but also as a potential secreted factor that drives tumor progression. Prior work found that HMGA1 is secreted from TNBC cell lines where it signals through the receptor for advanced glycation end products (RAGE) to foster phenotypes involved in tumor invasion and metastatic progression. Studies in primary TNBC tumors also suggest that HMGA1 secretion associates with distant metastasis in TNBC. Given the therapeutic potential to target extracellular proteins, further work to confirm this role in other contexts is warranted. Indeed, crosstalk between nuclear and secreted HMGA1 could change our understanding of tumor development and reveal novel therapeutic opportunities relevant to diverse human cancers overexpressing HMGA1.
Collapse
Affiliation(s)
- Mireia Pujals
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain;
| | - Linda Resar
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Medicine (Hematology), Oncology, Pathology and Institute of Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pathobiology, Cellular and Molecular Medicine and Human Genetics Graduate Programs, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Josep Villanueva
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
28
|
Moysa A, Steczkiewicz K, Niedzialek D, Hammerschmid D, Zhukova L, Sobott F, Dadlez M. A model of full-length RAGE in complex with S100B. Structure 2021; 29:989-1002.e6. [PMID: 33887170 DOI: 10.1016/j.str.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/03/2021] [Accepted: 04/02/2021] [Indexed: 01/10/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is an immunoglobulin-type multiligand transmembrane protein expressed in numerous cell types, including the central nervous system cells. RAGE interaction with S100B, released during brain tissue damage, leads to RAGE upregulation and initialization of a spiral proinflammatory associated with different neural disorders. Here, we present the structural characterization of the hetero-oligomeric complex of the full-length RAGE with S100B, obtained by a combination of mass spectrometry-based methods and molecular modeling. We predict that RAGE functions as a tightly packed tetramer exposing a positively charged surface formed by V domains for S100B binding. Based on HDX results we demonstrate an allosteric coupling of the distal extracellular V domains and the transmembrane region, indicating a possible mechanism of signal transmission by RAGE across the membrane. Our model provides an insight into RAGE-ligand interactions, providing a basis for the rational design of the therapeutic modifiers of its activity.
Collapse
Affiliation(s)
- Alexander Moysa
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland.
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland.
| | - Dorota Niedzialek
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland
| | - Dietmar Hammerschmid
- Department of Chemistry, King's College London, 7 Trinity Street, SE1 1DB London, UK; Department of Chemistry, Biomolecular & Analytical Mass Spectrometry Group, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lilia Zhukova
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, UK; Department of Chemistry, Biomolecular & Analytical Mass Spectrometry Group, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Michal Dadlez
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland
| |
Collapse
|
29
|
Kotsiou OS, Papagiannis D, Papadopoulou R, Gourgoulianis KI. Calprotectin in Lung Diseases. Int J Mol Sci 2021; 22:ijms22041706. [PMID: 33567747 PMCID: PMC7915440 DOI: 10.3390/ijms22041706] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Calprotectin (CLP) is a heterodimer formed by two S-100 calcium-binding cytosolic proteins, S100A8 and S100A9. It is a multifunctional protein expressed mainly by neutrophils and released extracellularly by activated or damaged cells mediating a broad range of physiological and pathological responses. It has been more than 20 years since the implication of S100A8/A9 in the inflammatory process was shown; however, the evaluation of its role in the pathogenesis of respiratory diseases or its usefulness as a biomarker for the appropriate diagnosis and prognosis of lung diseases have only gained attention in recent years. This review aimed to provide current knowledge regarding the potential role of CLP in the pathophysiology of lung diseases and describe how this knowledge is, up until now, translated into daily clinical practice. CLP is involved in numerous cellular processes in lung health and disease. In addition to its anti-microbial functions, CLP also serves as a molecule with pro- and anti-tumor properties related to cell survival and growth, angiogenesis, DNA damage response, and the remodeling of the extracellular matrix. The findings of this review potentially introduce CLP in daily clinical practice within the spectrum of respiratory diseases.
Collapse
Affiliation(s)
- Ourania S. Kotsiou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
- Department of Nursing, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
- Correspondence:
| | - Dimitrios Papagiannis
- Department of Nursing, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Rodanthi Papadopoulou
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, UK;
| | | |
Collapse
|
30
|
Eva TA, Barua N, Chowdhury MM, Yeasmin S, Rakib A, Islam MR, Emran TB, Simal-Gandara J. Perspectives on signaling for biological- and processed food-related advanced glycation end-products and its role in cancer progression. Crit Rev Food Sci Nutr 2020; 62:2655-2672. [PMID: 33307763 DOI: 10.1080/10408398.2020.1856771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Receptor for advanced glycation end-products (RAGE) is a multifunctional receptor binds a broad spectrum of ligands and mediates responses to cell damage and stress conditions. It also activates programs leading to acute and chronic inflammation and implicated in several pathological diseases, including cancer. In this review, we presented the non-enzymatic reaction of reducing sugar with the amino groups of proteins, lipids, and nucleic acids. This reaction initiates a complex series of rearrangements and dehydrations, and then produces a class of irreversibly cross-linked heterogeneous fluorescent moieties, termed advanced glycation end products (AGEs). There is a growing body of evidence that interaction of processes food-related AGEs with a cell surface receptor RAGE brings out the generation of oxidative stress and subsequently evokes proliferative, angiogenic and inflammatory reactions, thereby being involved in the development and progression of various types of cancers. This review is an insightful assessment of molecular mechanisms through which RAGE signaling contributes to the enhancement and survival of the tumorigenic cell. Here we summarize the procurement of individual ligands of RAGE like amphoterin, calcium-binding proteins, and resultant mediation of RAGE signaling pathway, which partially can elucidate the elevated risk of several cancers. Besides, we summarize many factors or conditions including APE1 (apurinic/apyrimidinic endonuclease 1), retinol mutations, retinoblastoma (Rb), proteinase 3 (PR3) hypoxia and so on through which RAGE signaling presents an establishment of cancerous environment. Additionally, we also reviewed some recent findings that give shreds of evidence for presenting the role of RAGE and its ligands in the advanced stage of cancers.
Collapse
Affiliation(s)
- Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Nizum Barua
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Md Mustafiz Chowdhury
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Sharfin Yeasmin
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Mohammad Rashedul Islam
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| |
Collapse
|
31
|
Huang A, Fan W, Liu J, Huang B, Cheng Q, Wang P, Duan Y, Ma T, Chen L, Wang Y, Yu M. Prognostic Role of S100A8 in Human Solid Cancers: A Systematic Review and Validation. Front Oncol 2020; 10:564248. [PMID: 33240811 PMCID: PMC7682514 DOI: 10.3389/fonc.2020.564248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Background S100A8 plays a key role in many cellular processes and is highly expressed in various solid cancers. However, the prognostic role of S100A8 has not been well defined. Therefore, we conducted a quantitative meta-analysis to investigate whether or not S100A8 could be used as a prognostic biomarker in solid tumors. Methods PubMed, Web of Science, Embase, and Cochrane library were searched to acquire relevant studies that evaluated the association between expression of S100A8 and prognosis of cancer patients. Pooled hazard ratios (HRs) with their corresponding 95% confidence intervals (CIs) were extracted to evaluate the association between S100A8 overexpression and Overall Survival (OS), Disease-Free Survival (DFS), Recurrence-Free Survival (RFS), and Progression-Free Survival (PFS). The expression of S100A8 was also validated by Flow cytometry, immunohistochemistry (IHC), and western blot. Results A total of 2,817 patients from 13 independent studies, ranging from 43 to 1,117 patients in size, were statistically analyzed. Our results indicated that a high level of S100A8 expression was significantly associated with poor OS, poor DFS, and poor PFS/RFS. In term of clinical pathological characteristics, a high expression level of S100A8 was significantly associated with differentiation grades, lymphatic metastasis, ER statue, and PR statue. The validation studies showed that the expression of S100A8 was at high levels in MDA-MB-231 (79.7%), MDA-MB-453 (89.2%), HTB-9 (70.2%), and T24 (53.3%) cells and it was higher in breast cancer tissue and bladder cancer tissue than their corresponding para-carcinoma tissue. Conclusions S100A8 overexpression was significantly associated with poor clinical prognosis in cancer patients. S100A8 is potential a prognostic biomarker in breast cancer and bladder cancer. More well-designed studies with adequate prognostic data are needed to confirm the prognostic role of S100A8 revealed in this study.
Collapse
Affiliation(s)
- An Huang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Carcinogenesis andTranslational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Fan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiacui Liu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ben Huang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingyuan Cheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Wang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yiping Duan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tiantian Ma
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liangyue Chen
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Wang
- Department of Obstetrics and Gynecology, Hubei Provincial Hospital of TCM, Wuhan, China
| | - Mingxia Yu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Prognostic significance of S100A8-positive immune cells in relation to other immune cell infiltration in pre-invasive and invasive breast cancers. Cancer Immunol Immunother 2020; 70:1365-1378. [PMID: 33146829 PMCID: PMC8053168 DOI: 10.1007/s00262-020-02776-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/20/2020] [Indexed: 12/03/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) play an important role in tumor progression through both immunologic and non-immunologic mechanisms. This study was conducted to evaluate the expression of S100A8, a well-known MDSC marker, and the significance of its expression in pre-invasive and invasive breast cancers. S100A8 expression in tumor cells (TCs) and immune cells (ICs) was assessed by immunohistochemistry, and its association with clinicopathologic features and infiltration of other IC subsets including CD4+, CD8+, and FOXP3+ tumor-infiltrating lymphocytes (TILs) and PD-L1+ ICs was evaluated. S100A8 expression in TCs and ICs showed a positive correlation in pre-invasive carcinoma and invasive carcinoma. S100A8+ ICs, but not S100A8+ TCs, were significantly higher in number in invasive carcinoma than in pre-invasive carcinoma. Infiltration of S100A8+ ICs was revealed as a poor prognostic indicator in pre-invasive and invasive carcinomas, especially in hormone receptor-positive subgroup. Infiltration of CD4+, CD8+, and FOXP3+ TIL subsets and PD-L1+ ICs was significantly higher in S100A8+ IC (+) group than in S100A8+ IC (−) group. Combined analyses of IC subset infiltration revealed that infiltration of S100A8+ ICs was associated with poor clinical outcome in the PD-L1+ IC (−), CD8+ TIL-low, and FOXP3+ TIL-low subgroups. In conclusion, S100A8+ ICs seem to undergo a dynamic change during breast cancer progression in association with other IC subset infiltration. The prognostic impact of S100A8+ IC infiltration was greater in less immunogenic tumors.
Collapse
|
33
|
Ray R, Jangde N, Singh SK, Sinha S, Rai V. Lysophosphatidic acid-RAGE axis promotes lung and mammary oncogenesis via protein kinase B and regulating tumor microenvironment. Cell Commun Signal 2020; 18:170. [PMID: 33109194 PMCID: PMC7592382 DOI: 10.1186/s12964-020-00666-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background Receptor for advanced glycation end products (RAGE) is a multi-ligand transmembrane receptor of the immunoglobulin superfamily. Lysophosphatidic acid (LPA) is a ligand for RAGE and is involved in physiological and pathophysiological conditions including cancer. However, RAGE-LPA axis is unexplored in lung and mammary cancer. Methods RAGE was silenced in A549, MDA MB-231 and MCF7 using RAGE shRNA. For in vitro tumorigenesis, we performed wound healing, colony formation, cell proliferation and invasion assays. Evaluation of expression of oncogenes, EMT markers and downstream signaling molecules was done by using western blot and immunohistochemistry. For subcellular expression of RAGE, immunofluorescence was done. In vivo tumorigenesis was assessed by intraperitoneal injection of cancer cells in nude mice. Results Here we show RAGE mediated profound increase in proliferation, migration and invasion of lung and mammary cancer cells via LPA in Protein kinase B (PKB) dependent manner. LPA mediated EMT transition is regulated by RAGE. In vivo xenograft results show significance of RAGE in LPA mediated lung and mammary tumor progression, angiogenesis and immune cell infiltration to tumor microenvironment. Conclusion Our results establish the significance and involvement of RAGE in LPA mediated lung and mammary tumor progression and EMT transition via RAGE. RAGE-LPA axis may be a therapeutic target in lung and mammary cancer treatment strategies. Video Abstract
Supplementary information Supplementary information accompanies this paper at 10.1186/s12964-020-00666-y.
Collapse
Affiliation(s)
- Rashmi Ray
- Laboratory of Vascular Immunology, Institute of Life Sciences, (An Autonomous Institute of Department of Biotechnology (DBT) New Delhi), Bhubaneswar, 751023, India
| | - Nitish Jangde
- Laboratory of Vascular Immunology, Institute of Life Sciences, (An Autonomous Institute of Department of Biotechnology (DBT) New Delhi), Bhubaneswar, 751023, India.,Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Satyendra Kumar Singh
- Laboratory of Vascular Immunology, Institute of Life Sciences, (An Autonomous Institute of Department of Biotechnology (DBT) New Delhi), Bhubaneswar, 751023, India
| | - Sunita Sinha
- Laboratory of Vascular Immunology, Institute of Life Sciences, (An Autonomous Institute of Department of Biotechnology (DBT) New Delhi), Bhubaneswar, 751023, India.,Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vivek Rai
- Laboratory of Vascular Immunology, Institute of Life Sciences, (An Autonomous Institute of Department of Biotechnology (DBT) New Delhi), Bhubaneswar, 751023, India.
| |
Collapse
|
34
|
Zhu K, Li P, Mo Y, Wang J, Jiang X, Ge J, Huang W, Liu Y, Tang Y, Gong Z, Liao Q, Li X, Li G, Xiong W, Zeng Z, Yu J. Neutrophils: Accomplices in metastasis. Cancer Lett 2020; 492:11-20. [PMID: 32745581 DOI: 10.1016/j.canlet.2020.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
Metastasis is a critical cause of treatment failure and death in patients with advanced malignancies. Tumor cells can leave the primary site and enter the bloodstream; these circulating tumor cells then colonize target organs by overcoming blood shear stress, evading immune surveillance, and silencing the offensive capabilities of immune cells, eventually forming metastatic foci. From leaving the primary focus to the completion of distant metastasis, malignant tumor cells are supported and/or antagonized by certain immune cells. In particular, it has been found that myeloid granulocytes play an important role in this process. This review therefore aims to comprehensively describe the significance of neutrophils in solid tumor metastasis in terms of their supporting role in initiating the invasion and migration of tumor cells and assisting the colonization of circulating tumor cells in distant target organs, with the hope of providing insight into and ideas for anti-tumor metastasis treatment of tumor patients.
Collapse
Affiliation(s)
- Kunjie Zhu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jie Wang
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Weilun Huang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan Liu
- Department of Plastic and Cosmetic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Jianjun Yu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
35
|
Muciño-Olmos EA, Vázquez-Jiménez A, Avila-Ponce de León U, Matadamas-Guzman M, Maldonado V, López-Santaella T, Hernández-Hernández A, Resendis-Antonio O. Unveiling functional heterogeneity in breast cancer multicellular tumor spheroids through single-cell RNA-seq. Sci Rep 2020; 10:12728. [PMID: 32728097 PMCID: PMC7391783 DOI: 10.1038/s41598-020-69026-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022] Open
Abstract
Heterogeneity is an intrinsic characteristic of cancer. Even in isogenic tumors, cell populations exhibit differential cellular programs that overall supply malignancy and decrease treatment efficiency. In this study, we investigated the functional relationship among cell subtypes and how this interdependency can promote tumor development in a cancer cell line. To do so, we performed single-cell RNA-seq of MCF7 Multicellular Tumor Spheroids as a tumor model. Analysis of single-cell transcriptomes at two-time points of the spheroid growth, allowed us to dissect their functional relationship. As a result, three major robust cellular clusters, with a non-redundant complementary composition, were found. Meanwhile, one cluster promotes proliferation, others mainly activate mechanisms to invade other tissues and serve as a reservoir population conserved over time. Our results provide evidence to see cancer as a systemic unit that has cell populations with task stratification with the ultimate goal of preserving the hallmarks in tumors.
Collapse
Affiliation(s)
- Erick Andrés Muciño-Olmos
- PhD Program in Biomedical Sciences, UNAM, Mexico City, Mexico.,Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Ugo Avila-Ponce de León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico.,PhD Program in Biological Sciences, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- PhD Program in Biomedical Sciences, UNAM, Mexico City, Mexico.,Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Vilma Maldonado
- Epigenetic Laboratory, Instituto Nacional de Medicina, Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Tayde López-Santaella
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Abrahan Hernández-Hernández
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico. .,Coordinación de La Investigación Científica -Red de Apoyo a La Investigación, UNAM, Mexico City, Mexico.
| |
Collapse
|
36
|
Allgöwer C, Kretz AL, von Karstedt S, Wittau M, Henne-Bruns D, Lemke J. Friend or Foe: S100 Proteins in Cancer. Cancers (Basel) 2020; 12:cancers12082037. [PMID: 32722137 PMCID: PMC7465620 DOI: 10.3390/cancers12082037] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
S100 proteins are widely expressed small molecular EF-hand calcium-binding proteins of vertebrates, which are involved in numerous cellular processes, such as Ca2+ homeostasis, proliferation, apoptosis, differentiation, and inflammation. Although the complex network of S100 signalling is by far not fully deciphered, several S100 family members could be linked to a variety of diseases, such as inflammatory disorders, neurological diseases, and also cancer. The research of the past decades revealed that S100 proteins play a crucial role in the development and progression of many cancer types, such as breast cancer, lung cancer, and melanoma. Hence, S100 family members have also been shown to be promising diagnostic markers and possible novel targets for therapy. However, the current knowledge of S100 proteins is limited and more attention to this unique group of proteins is needed. Therefore, this review article summarises S100 proteins and their relation in different cancer types, while also providing an overview of novel therapeutic strategies for targeting S100 proteins for cancer treatment.
Collapse
Affiliation(s)
- Chantal Allgöwer
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Silvia von Karstedt
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany;
- CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Mathias Wittau
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
- Correspondence: ; Tel.: +49-731-500-53691
| |
Collapse
|
37
|
Dariya B, Nagaraju GP. Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discov Today 2020; 25:1614-1623. [PMID: 32652310 DOI: 10.1016/j.drudis.2020.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/04/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023]
Abstract
The irreversible glycation and oxidation of proteins and lipids produces advanced glycation end products (AGEs). These modified AGEs are triggered to bind the receptor for AGE (RAGE), thereby activating its downstream signaling pathways, such as nuclear factor (NF)-κB and phosphoinositide 3-kinase (PI3K)/Akt, ultimately leading to diabetes and cancers. In this review, we focus on the interaction of AGE-RAGE and their associated pathways. We also consider the activity of phytochemicals, such as genistein and curcumin, that trap dicarbonyl compounds including methylglyoxal (MG) and glyoxalase that arise from multiple pathways to block AGE formation and prevent its interaction with RAGE.
Collapse
Affiliation(s)
- Begum Dariya
- Department of Biosciences and Biotechnology, Banasthali University, Banasthali, Rajasthan 304022, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
38
|
Lee JW, Kim SY, Han SW, Lee JE, Lee HJ, Heo NH, Lee SM. [ 18F]FDG uptake of bone marrow on PET/CT for predicting distant recurrence in breast cancer patients after surgical resection. EJNMMI Res 2020; 10:72. [PMID: 32607957 PMCID: PMC7326752 DOI: 10.1186/s13550-020-00660-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background The objective of this study was to investigate the prognostic value of 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake of bone marrow (BM) and metabolic parameters of primary tumor on positron emission tomography/computed tomography (PET/CT) for predicting distant recurrence in patients with breast cancer. Methods Pretreatment [18F]FDG PET/CT images of 345 breast cancer patients were retrospectively evaluated. Maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis (TLG) of primary breast cancer and bone marrow-to-liver uptake ratio (BLR) on PET/CT were measured. A Cox proportional hazard regression model was used to evaluate the prognostic potential of parameters for predicting recurrence-free survival (RFS) and distant RFS. For Kaplan-Meier analysis, the specific cutoff values pf BLR and TLG were determined by the maximal chi-square method. Results The median follow-up duration of the enrolled patients was 48.7 months, and during follow-up, 36 patients (10.4%) experienced the cancer recurrence. BLR was significantly correlated with T stage, serum inflammatory markers, and recurrence pattern (p < 0.05). Patients with high BLR and TLG showed worse RFS and distant RFS than those with low BLR and TLG. On multivariate analysis, BLR was significantly associated with both RFS and distant RFS after adjusting for T stage, estrogen receptor status, and TLG (p = 0.001 for both). Only 0.5% of patients with TLG < 9.64 g and BLR < 0.91 experienced distant recurrence. However, patients with TLG ≥ 9.64 g and BLR ≥ 0.91 had a distant recurrence rate of 40.7%. Conclusions BLR on pretreatment [18F]FDG PET/CT were significant predictors for RFS and distant RFS in patients with breast cancer. By combining [18F]FDG uptake of BM and volumetric PET/CT index of breast cancer, the risk of distant recurrence could be stratified.
Collapse
Affiliation(s)
- Jeong Won Lee
- Department of Nuclear Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Simgok-ro 100-gil 25, Seo-gu, Incheon, 22711, South Korea
| | - Sung Yong Kim
- Department of Surgery, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, Chungcheongnam-do, 31151, South Korea
| | - Sun Wook Han
- Department of Surgery, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, Chungcheongnam-do, 31151, South Korea
| | - Jong Eun Lee
- Department of Surgery, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, Chungcheongnam-do, 31151, South Korea
| | - Hyun Ju Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, Chungcheongnam-do, 31151, South Korea
| | - Nam Hun Heo
- Clinical Trial Center, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, Chungcheongnam-do, 31151, South Korea
| | - Sang Mi Lee
- Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, Chungcheongnam-do, 31151, South Korea.
| |
Collapse
|
39
|
Identification of a Profile of Neutrophil-Derived Granule Proteins in the Surface of Gold Nanoparticles after Their Interaction with Human Breast Cancer Sera. NANOMATERIALS 2020; 10:nano10061223. [PMID: 32586001 PMCID: PMC7353125 DOI: 10.3390/nano10061223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 12/29/2022]
Abstract
It is well known that the interaction of a nanomaterial with a biological fluid leads to the formation of a protein corona (PC) surrounding the nanomaterial. Using standard blood analyses, alterations in protein patterns are difficult to detect. PC acts as a “nano-concentrator” of serum proteins with affinity for nanoparticles’ surface. Consequently, characterization of PC could allow detection of otherwise undetectable changes in protein concentration at an early stage of a disease, such as breast cancer (BC). Here, we employed gold nanoparticles (AuNPsdiameter: 10.02 ± 0.91 nm) as an enrichment platform to analyze the human serum proteome of BC patients (n = 42) and healthy controls (n = 42). Importantly, the analysis of the PC formed around AuNPs after their interaction with serum samples of BC patients showed a profile of proteins that could differentiate breast cancer patients from healthy controls. These proteins developed a significant role in the immune and/or innate immune system, some of them being neutrophil-derived granule proteins. The analysis of the PC also revealed serum proteome alterations at the subtype level.
Collapse
|
40
|
El-Far AH, Sroga G, Al Jaouni SK, Mousa SA. Role and Mechanisms of RAGE-Ligand Complexes and RAGE-Inhibitors in Cancer Progression. Int J Mol Sci 2020; 21:ijms21103613. [PMID: 32443845 PMCID: PMC7279268 DOI: 10.3390/ijms21103613] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022] Open
Abstract
Interactions of the receptor for advanced glycation end product (RAGE) and its ligands in the context of their role in diabetes mellitus, inflammation, and carcinogenesis have been extensively investigated. This review focuses on the role of RAGE-ligands and anti-RAGE drugs capable of controlling cancer progression. Different studies have demonstrated interaction of RAGE with a diverse range of acidic (negatively charged) ligands such as advanced glycation end products (AGEs), high-mobility group box1 (HMGB1), and S100s, and their importance to cancer progression. Some RAGE-ligands displayed effects on anti- and pro-apoptotic proteins through upregulation of the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs), matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), and nuclear factor kappa B (NF-κB) pathways, while downregulating p53 in cancer progression. In addition, RAGE may undergo ligand-driven multimodal dimerization or oligomerization mediated through self-association of some of its subunits. We conclude our review by proposing possible future lines of study that could result in control of cancer progression through RAGE inhibition.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Damanhour 22511, Egypt;
| | - Grazyna Sroga
- Rensselaer Polytechnic Institute, NY (RPI), Troy, NY 12180, USA;
| | - Soad K. Al Jaouni
- Department of Hematology/Pediatric Oncology, King Abdulaziz University, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shaker A. Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
- Correspondence:
| |
Collapse
|
41
|
RAGE acts as an oncogenic role and promotes the metastasis of human lung cancer. Cell Death Dis 2020; 11:265. [PMID: 32327633 PMCID: PMC7181650 DOI: 10.1038/s41419-020-2432-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
RAGE (receptor for advanced glycation end-product) is thought to be associated with metastasis and poor prognosis of various types of cancer. However, RAGE is constitutively expressed in the normal lung and down-regulated in cancerous lung, while the opposite evidence shows that RAGE-mediated signaling contributes to the tumorigenesis of lung cancer. Therefore, the role of RAGE in lung cancer progression is still unclear to be further investigated. In this study, RAGE-overexpressed stable clones of human lung cancer A549 cells and two local lung adenocarcinoma cell lines CL1-0 and CL1-5 were utilized to verify the effect of RAGE on lung cancer cells while the in vivo xenograft animal model was further performed to evaluate the role of RAGE in the progression of lung cancer. The growth of A549 cells was inhibited by RAGE overexpression. p53-dependent p21CIP1 expression contributed to RAGE-induced growth inhibition by suppressing CDK2 kinase activity and retinoblastoma protein (RB) phosphorylation in vitro. On the other hand, RAGE overexpression promoted migration, invasion, and mesenchymal features of lung adenocarcinoma cells through ERK signaling. Furthermore, an in vivo xenograft experiment indicated that RAGE promoted the metastasis of lung cancer cells with p21CIP1 up-regulation, ERK activation, and the changes of EMT markers. Regarding to the involvement of tumor-associated macrophage (TAM) in the microenvironment, we monitored the expressions of TAM markers including CD68 and CD163 as well as angiogenesis marker CD31 in xenograft slice. The data showed that RAGE might induce the accumulation of TAM in lung cancer cells and further accelerate the in vivo tumor growth. In summary, our study provides evidence indicating the distinct in vitro and in vivo effects of RAGE and related mechanisms on tumor growth and metastasis, which shed light on the oncogenic role of RAGE in lung cancer.
Collapse
|
42
|
Di Ceglie I, Kruisbergen NNL, van den Bosch MHJ, van Lent PLEM. Fc-gamma receptors and S100A8/A9 cause bone erosion during rheumatoid arthritis. Do they act as partners in crime? Rheumatology (Oxford) 2020; 58:1331-1343. [PMID: 31180451 DOI: 10.1093/rheumatology/kez218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Bone erosion is one of the central hallmarks of RA and is caused by excessive differentiation and activation of osteoclasts. Presence of autoantibodies in seropositive arthritis is associated with radiographic disease progression. ICs, formed by autoantibodies and their antigens, activate Fcγ-receptor signalling in immune cells, and as such stimulate inflammation-mediated bone erosion. Interestingly, ICs can also directly activate osteoclasts by binding to FcγRs on their surface. Next to autoantibodies, high levels of alarmins, among which is S100A8/A9, are typical for RA and they can further activate the immune system but also directly promote osteoclast function. Therefore, IC-activated FcγRs and S100A8/A9 might act as partners in crime to stimulate inflammation and osteoclasts differentiation and function, thereby stimulating bone erosion. This review discusses the separate roles of ICs, FcγRs and alarmins in bone erosion and sheds new light on the possible interplay between them, which could fuel bone erosion.
Collapse
Affiliation(s)
- Irene Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nik N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
43
|
Peterson LL, Park S, Park Y, Colditz GA, Anbardar N, Turner DP. Dietary advanced glycation end products and the risk of postmenopausal breast cancer in the National Institutes of Health-AARP Diet and Health Study. Cancer 2020; 126:2648-2657. [PMID: 32097496 DOI: 10.1002/cncr.32798] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Advanced glycation end products (AGEs) are reactive metabolites produced as a by-product of sugar metabolism and are consumed through the diet in high-fat and highly processed foods. They are associated with chronic inflammatory diseases, and evidence suggests that they play a role in carcinogenesis. The authors evaluated the association of dietary AGE intake and the risk of postmenopausal invasive breast cancer. METHODS This was a prospective cohort study of 183,548 postmenopausal women in the National Institutes of Health-AARP Diet and Health Study. The main outcome was incident invasive breast cancer. AGE intake was estimated from food-frequency questionnaires. Incident breast cancer cases were identified through state cancer registries. Cox proportional hazards regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals for developing breast cancer according to AGE intake quintiles. Multivariable regression models were adjusted for breast cancer risk factors. RESULTS The mean follow-up was 12.8 years, and 9851 breast cancers (1978 advanced stage) were identified. The median AGE daily intake was 5932 kilo units per 100 kilocalories (KU/1000 kcal). Women with higher intake tended to have lower education levels, higher body mass index, less physical activity, were current smokers, and had higher fat and meat intake. The highest quintile of AGE intake (compared with the lowest) was associated with an increased risk of breast cancer (HR, 1.09; 95% CI, 1.02-1.16; P = .03) after adjusting for breast cancer risk factors and particularly was associated with 37% of advanced-stage tumors (HR, 1.37; 95% CI, 1.09-1.74; P < .02) after adjusting for risk factors and fat and meat intake. CONCLUSIONS Dietary AGEs may play a role in the development of postmenopausal breast cancer.
Collapse
Affiliation(s)
- Lindsay L Peterson
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Seho Park
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.,Division of Breast Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Yikyung Park
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Graham A Colditz
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Narges Anbardar
- Harvard University, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - David P Turner
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
44
|
Clinical Implications of Extracellular HMGA1 in Breast Cancer. Int J Mol Sci 2019; 20:ijms20235950. [PMID: 31779212 PMCID: PMC6928815 DOI: 10.3390/ijms20235950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
The unconventional secretion of proteins is generally caused by cellular stress. During the tumorigenesis, tumor cells experience high levels of stress, and the secretion of some theoretically intracellular proteins is activated. Once in the extracellular space, these proteins play different paracrine and autocrine roles and could represent a vulnerability of cancer. One of these proteins is the high mobility group A1 (HMGA1), which is frequently overexpressed in tumors and presents a low expression in normal adult tissues. We have recently described that HMGA1 establishes an autocrine loop in invasive triple-negative breast cancer (TNBC) cells. The secretion of HMGA1 and its binding to the receptor for advanced glycation end products (RAGE) mediates the migration, invasion, and metastasis of TNBC cells and predicts the onset of metastasis in these patients. In this review, we summarized different strategies to exploit the novel tumorigenic phenotype mediated by extracellular HMGA1. We envisioned future clinical applications where the association between its change in subcellular localization and breast cancer progression could be used to predict tumor aggressiveness and guide treatment decisions. Furthermore, we proposed that targeting extracellular HMGA1 as monotherapy using monoclonal antibodies, or in combination with chemotherapy and other targeted therapies, could bring new therapeutic options for TNBC patients.
Collapse
|
45
|
Li H, Mou Q, Li P, Yang Z, Wang Z, Niu J, Liu Y, Sun Z, Lv S, Zhang B, Yin C. MiR-486-5p inhibits IL-22-induced epithelial-mesenchymal transition of breast cancer cell by repressing Dock1. J Cancer 2019; 10:4695-4706. [PMID: 31528235 PMCID: PMC6746125 DOI: 10.7150/jca.30596] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/16/2019] [Indexed: 12/30/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is one of important steps that lead to cancer metastasis. Interleukin-22 (IL-22) is a T helper 17 (Th17) cells-secreted cytokine, it can promote invasion and metastasis of many cancers. MiR-486-5p is a microRNA that known to function as a tumor suppressor, and bioinformatics analysis predicts that Dock-1 has a binding site of miR-486-5p. In current research, we examined the relative expression levels of miR-486-5p and Dock-1 in 80 pairs of breast cancer tissues and corresponding adjacent normal tissues, also the effects of modifying their levels in cultured cells. We illustrated that IL-22 and Dock1 promote the invasion, metastasis, and EMT of breast cancer using Transwell invasion assay, western blot and immunofluorescence. MiR-486-5p directly bound the Dock1 mRNA 3' untranslated region and inhibited IL-22-induced EMT of breast cancer cells via the Dock1/NF-κB/Snail signaling pathway. Dock1 overexpression reversed the effect caused by the overexpression of miR-486-5p. Overexpression of miR-486-5p or downregulation of Dock1 reduced pulmonary metastasis in mice. This study provided insight into a potential mechanism where miRNAs regulate breast cancer metastasis and provided a novel therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Hongli Li
- Medicine Research Center, Weifang Medical University, Weifang, China
| | - Qingjie Mou
- Department of Oncology, Clinical Medical College, Weifang Medical University, Weifang, China
| | - Peirui Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zhiyi Yang
- Department of Pathology, Clinical Medical College, Weifang Medical University, Weifang, China
| | - Zhaoyan Wang
- Department of Pathology, Clinical Medical College, Weifang Medical University, Weifang, China
| | - Jie Niu
- College of Nursing, Weifang Medical University, Weifang, China
| | - Yuanyuan Liu
- College of Nursing, Weifang Medical University, Weifang, China
| | - Zhiliang Sun
- College of Biological Science and Technology, Weifang Medical University, Weifang, China
| | - Shijun Lv
- Department of Pathology, Clinical Medical College, Weifang Medical University, Weifang, China
| | - Baogang Zhang
- Department of Pathology, Clinical Medical College, Weifang Medical University, Weifang, China
| | - Chonggao Yin
- College of Nursing, Weifang Medical University, Weifang, China
| |
Collapse
|
46
|
Minner S, Hager D, Steurer S, Höflmayer D, Tsourlakis MC, Möller-Koop C, Clauditz TS, Hube-Magg C, Luebke AM, Simon R, Sauter G, Göbel C, Weidemann S, Lebok P, Dum D, Fraune C, Izbicki J, Burandt E, Schlomm T, Huland H, Heinzer H, Haese A, Graefen M, Heumann A. Down-Regulation of S100A8 is an Independent Predictor of PSA Recurrence in Prostate Cancer Treated by Radical Prostatectomy. Neoplasia 2019; 21:872-881. [PMID: 31382165 PMCID: PMC6698296 DOI: 10.1016/j.neo.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022]
Abstract
Dysregulation of S100A8 is described in many different human tumor types, but its role in prostate cancer is unknown. To evaluate the clinical relevance of S100A8 expression in prostate cancer, a tissue microarray containing 13,665 tumors was analyzed by immunohistochemistry. Cytoplasmic S100A8 staining was compared to prostate cancer phenotype, patient prognosis and molecular features including TMPRSS2:ERG fusion status and deletions of PTEN, 3p, 5q and 6q. S100A8 immunostaining was typically seen in normal prostate tissue but lost in 60% of 9786 interpretable prostate cancers. In the remaining tumors, S100A8 was considered weak in 17.9%, moderate in 17.8% and strong in 5.4% of cases. Loss of S100A8 expression was linked to advanced tumor stage, high Gleason grade, positive nodal status, positive surgical margin and high preoperative PSA (P < .0001 each). In addition, loss of S100A8 expression was associated with TMPRSS2:ERG fusions (P < .0001), deletions of PTEN, 3p, and 6q (P < .005), and a high number of genomic deletions per tumor (P = .0009). Absence of S100A8 immunostaining was also linked to an elevated risk for early PSA recurrence (P < .0001). In a multivariate analysis limited to features that are preoperatively available, the prognostic impact of S100A8 expression (P < .0001) was independent of clinical stage, Gleason grade, and serum PSA level (P < .0001). Taken together, the results of our study demonstrate that complete loss of S100A8 expression is linked to adverse tumor features and predicts early biochemical recurrence in prostate cancer. S100A8 measurement, either alone or in combination might be of clinical utility in prostate cancers.
Collapse
Affiliation(s)
- Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominik Hager
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | | | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Jakob Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Asmus Heumann
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
47
|
Chen Y, Sumardika IW, Tomonobu N, Winarsa Ruma IM, Kinoshita R, Kondo E, Inoue Y, Sato H, Yamauchi A, Murata H, Yamamoto KI, Tomida S, Shien K, Yamamoto H, Soh J, Liu M, Futami J, Sasai K, Katayama H, Kubo M, Putranto EW, Hibino T, Sun B, Nishibori M, Toyooka S, Sakaguchi M. Melanoma cell adhesion molecule is the driving force behind the dissemination of melanoma upon S100A8/A9 binding in the original skin lesion. Cancer Lett 2019; 452:178-190. [PMID: 30904617 DOI: 10.1016/j.canlet.2019.03.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/21/2022]
Abstract
Since metastasis accounts for the majority of cancer-associated deaths, studies on the mechanisms of metastasis are needed to establish innovative strategies for cancer treatment. We previously reported that melanoma cell adhesion molecule (MCAM) functions as a critical receptor for S100A8/A9, and binding of S100A8/A9 to MCAM results in the migration of melanoma cells to lung tissue. However, the critical role of MCAM in the original melanoma skin lesion is still not clear. In this study, we aimed to determine the importance of the S100A8/A9-MCAM axis in melanoma dissemination in a skin lesion as a critical early step for metastasis. Mechanistic studies revealed the downstream signaling of MCAM that signaled the induction of metastasis. S100A8/A9-MCAM binding activates mitogen-activated protein kinase kinase kinase 8 (MAP3K8), also termed TPL2, leading to strong activation of the transcription factor ETV4 and subsequent induction of matrix metalloproteinase-25 (MMP25), and finally to induction of melanoma lung tropic metastasis. Collectively, our results demonstrate a crucial role of the S100A8/A9-MCAM signaling axis in metastatic onset of melanoma cells and indicate that strategies targeting the identified pathway may be useful for the establishment of innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Youyi Chen
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan; Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - I Wayan Sumardika
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan; Faculty of Medicine, Udayana University, Denpasar, 80232, Bali, Indonesia
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - I Made Winarsa Ruma
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan; Faculty of Medicine, Udayana University, Denpasar, 80232, Bali, Indonesia
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medicine and Dental Sciences, 757, Ichiban-cho, Asahimachidori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Hiroki Sato
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki-shi, Okayama, 701-0192, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Shuta Tomida
- Department of Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiko Shien
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Hiromasa Yamamoto
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Junichi Soh
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ming Liu
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Junichiro Futami
- Department of Medical and Bioengineering Science, Okayama University Graduate School of Natural Science and Technology, 3-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Kaori Sasai
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Hiroshi Katayama
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Miyoko Kubo
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Endy Widya Putranto
- Department of Pediatrics, Dr. Sardjito Hospital/Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Toshihiko Hibino
- Department of Dermatology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Shinichi Toyooka
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
| |
Collapse
|
48
|
Guo C, Xu LF, Li HM, Wang W, Guo JH, Jia MQ, Jia R, Jia J. Transcriptomic study of the mechanism of anoikis resistance in head and neck squamous carcinoma. PeerJ 2019; 7:e6978. [PMID: 31198634 PMCID: PMC6535219 DOI: 10.7717/peerj.6978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Background Normal epithelial cells rapidly undergo apoptosis as soon as they lose contact with the extracellular matrix (ECM), which is termed as anoikis. However, cancer cells tend to develop a resistance mechanism to anoikis. This acquired ability is termed as anoikis resistance. Cancer cells, with anoikis resistance, can spread to distant tissues or organs via the peripheral circulatory system and cause cancer metastasis. Thus, inhibition of anoikis resistance blocks the metastatic ability of cancer cells. Methods Anoikis-resistant CAL27 (CAL27AR) cells were induced from CAL27 cells using the suspension culture approach. Transcriptome analysis was performed using RNA-Seq to study the differentially expressed genes (DEGs) between the CAL27ARcells and the parental CAL27 cells. Gene function annotation and Gene Ontology (GO) enrichment analysis were performed using DAVID database. Signaling pathways involved in DEGs were analyzed using Gene Set Enrichment Analysis (GSEA) software. Analysis results were confirmed by reverse transcription PCR (RT-PCR), western blotting, and gene correlation analysis based on the TCGA database. Results GO enrichment analysis indicated that the biological process (BP) of the DEGs was associated with epidermal development, DNA replication, and G1/S transition of the mitotic cell cycle. The analysis of cellular component (CC) showed that the most significant up-regulated genes were related to extracellular exosome. KEGG Pathway analysis revealed that 23 signaling pathways were activated (p-value ≤ 0.05, FDR q-value ≤ 0.05) and 22 signaling pathways were suppressed (p-value ≤ 0.05, FDR q-value ≤ 0.05). The results from the GSEA indicated that in contrast to the inhibition of EGFR signaling pathway, the VEGF signaling pathway was activated. The VEGF signaling pathway possibly activates STAT3 though induction of STAT3 phosphorylation. Gene correlation analysis revealed that the VEGFA- STAT3-KLF4-CDKN1A signal axis was not only present in head and neck squamous carcinoma (HNSCC) but also two other epithelial-derived carcinomas that highly express VEGFA, including kidney renal clear cell carcinoma (KIRC) and ovarian serous cystadenocarcinoma (OV).
Collapse
Affiliation(s)
- Chen Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Ling-Feng Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Hui-Min Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Wei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Ji-Hua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Meng-Qi Jia
- Department of Oral and Maxillofacial Surgery, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Jun Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China.,Department of Oral and Maxillofacial Surgery, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| |
Collapse
|
49
|
Khorrami S, Tavakoli M, Safari E. Clinical Value of Serum S100A8/A9 and CA15-3 in the Diagnosis of Breast Cancer. IRANIAN JOURNAL OF PATHOLOGY 2019; 14:104-112. [PMID: 31528166 PMCID: PMC6679667 DOI: 10.30699/ijp.14.2.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/18/2018] [Indexed: 12/23/2022]
Abstract
Background and Objective S100A8/A9 is a heterodimer calcium-binding protein which is involved in tumor cell proliferation, adhesion and invasion, and is proposed as a biomarker for better diagnosis and prognosis in many cancers. The aim of this study was to evaluate the simultaneous serum-based level of S100A8/A9 and CA15-3 as well-illustrated cancer biomarkers, as well as their prognostic value in breast cancer patients and healthy matched controls. Material and Methods Thirty breast cancer patients at different stages of disease and healthy matched controls with no history of inflammatory, autoimmune diseases, or cancer, were enrolled in the study. The levels of S100A8/A9 and CA15-3 were assessed serologically using the Enzyme-linked immunosorbent assay (ELISA) method, and the relevance of these markers with patients' clinicopathological features were subsequently assessed. Results Based on our data, the serum levels of both S100A8/A9 and CA15-3 were significantly higher in patients compared to the healthy controls, and thus positively correlated with tumor size. Also, statistical analysis shows that the serum level of S100A8/A9 has 100% specificity and sensitivity (AUC = 1.00, 95% CI) for the diagnosis of breast cancer patients. Conclusion According to our data as well as other observations, the S100A8/A9 heterodimer can be considered as a potential biomarker for the proper diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Samaneh Khorrami
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Safari
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Stress hormone-mediated acceleration of breast cancer metastasis is halted by inhibition of nitric oxide synthase. Cancer Lett 2019; 459:59-71. [PMID: 31132432 DOI: 10.1016/j.canlet.2019.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/02/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
Stress hormones have been shown to be important mediators in driving malignant growth and reducing treatment efficacy in breast cancer. Glucocorticoids can induce DNA damage through an inducible nitric oxide synthase (iNOS) mediated pathway to increase levels of nitric oxide (NO). Using an immune competent mouse breast cancer model and 66CL4 breast cancer cells we identified a novel role of NOS inhibition to reduce stress-induced breast cancer metastasis. On a mechanistic level we show that the glucocorticoid cortisol induces expression of keys genes associated with angiogenesis, as well as pro-tumourigenic immunomodulation. Transcriptomics analysis confirmed that in the lungs of tumour-bearing mice, stress significantly enriched pathways associated with tumourigenesis, some of which could be regulated with NOS inhibition. These results demonstrate the detrimental involvement of NOS in stress hormone signalling, and the potential future benefits of NOS inhibition in highly stressed patients.
Collapse
|