1
|
Cani AK, Hayes DF. Breast Cancer Circulating Tumor Cells: Current Clinical Applications and Future Prospects. Clin Chem 2024; 70:68-80. [PMID: 38175590 DOI: 10.1093/clinchem/hvad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Identification and characterization of circulating tumor markers, designated as "liquid biopsies," have greatly impacted the care of cancer patients. Although more recently referring to circulating tumor DNA (ctDNA), the term liquid biopsy initially was coined to refer to any blood-borne biomarker related to malignancy, including circulating tumor cells (CTCs) in blood. In this manuscript, we review the specific state of the art of CTCs in breast cancer. CONTENT Liquid biopsies might play a clinical role across the entire spectrum of breast cancer, from risk assessment, prevention, screening, and treatment. CTC counts have been shown to carry clear, independent prognostic information in the latter situation. However, the clinical utility of CTCs in breast cancer remains to be determined. Nonetheless, in addition to CTC enumeration, analyses of CTCs provide tumor molecular information representing the entire, often-heterogeneous disease, relatively noninvasively and longitudinally. Technological advances have allowed the interrogation of CTC-derived information, providing renewed hope for a clinical role in disease monitoring and precision oncology. SUMMARY This narrative review examines CTCs, their clinical validity, and current prospects of clinical utility in breast cancer with the goal of improving patient outcomes.
Collapse
Affiliation(s)
- Andi K Cani
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Daniel F Hayes
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Zhao H, Wang L, Fang C, Li C, Zhang L. Factors influencing the diagnostic and prognostic values of circulating tumor cells in breast cancer: a meta-analysis of 8,935 patients. Front Oncol 2023; 13:1272788. [PMID: 38090481 PMCID: PMC10711619 DOI: 10.3389/fonc.2023.1272788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 06/29/2024] Open
Abstract
Background Circulating tumor cells (CTCs) could serve as a predictive biomarker in breast cancer (BC). Due to its high heterogeneity, the diagnostic and prognostic values of CTC are challenging. Methods We searched published studies from the databases of PubMed, Cochrane Library, Embase, and MEDLINE. The detection capability and hazard ratios (HRs) of CTCs were extracted as the clinical diagnosis and prognosis evaluation. Subgroup analyses were divided according to the detection methods, continents, treatment periods, therapeutic plans, and cancer stages. Results In this study, 35 publications had been retrieved with 8,935 patients enrolled. The diagnostic efficacy of CTC detection has 74% sensitivity and 98% specificity. The positive CTC detection (CTC+ ) would predict worse OS and PFS/DFS in both mid-therapy and post-therapy (HROS, 3.09; 95% CI, 2.17–4.39; HRPFS/DFS, 2.06; 95% CI, 1.72–2.47). Moreover, CTC+ indicated poor survival irrespective of the treatment phases and sampling times (HROS, 2.43; 95% CI, 1.85–3.19; HRPFS/DFS, 1.82; 95% CI, 1.66–1.99). The CTC+ was associated with poor survival regardless of the continents of patients (HROS = 2.43; 95% CI, 1.85–3.19). Conclusion Our study suggested that CTC+ was associated with a worse OS and PFS/DFS in the Asian population. The detection method, the threshold level of CTC+ , therapeutic approaches, and sampling times would not affect its diagnostic and prognostic values.
Collapse
Affiliation(s)
- Hongfang Zhao
- Clinical Medicine College, Hebei University, Baoding, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Luxuan Wang
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
| | - Chuan Fang
- Clinical Medicine College, Hebei University, Baoding, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| | - Chunhui Li
- Clinical Medicine College, Hebei University, Baoding, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| | - Lijian Zhang
- Clinical Medicine College, Hebei University, Baoding, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| |
Collapse
|
3
|
Matsumura H, Shen LTW, Isozaki A, Mikami H, Yuan D, Miura T, Kondo Y, Mori T, Kusumoto Y, Nishikawa M, Yasumoto A, Ueda A, Bando H, Hara H, Liu Y, Deng Y, Sonoshita M, Yatomi Y, Goda K, Matsusaka S. Virtual-freezing fluorescence imaging flow cytometry with 5-aminolevulinic acid stimulation and antibody labeling for detecting all forms of circulating tumor cells. LAB ON A CHIP 2023; 23:1561-1575. [PMID: 36648503 DOI: 10.1039/d2lc00856d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Circulating tumor cells (CTCs) are precursors to cancer metastasis. In blood circulation, they take various forms such as single CTCs, CTC clusters, and CTC-leukocyte clusters, all of which have unique characteristics in terms of physiological function and have been a subject of extensive research in the last several years. Unfortunately, conventional methods are limited in accurately analysing the highly heterogeneous nature of CTCs. Here we present an effective strategy for simultaneously analysing all forms of CTCs in blood by virtual-freezing fluorescence imaging (VIFFI) flow cytometry with 5-aminolevulinic acid (5-ALA) stimulation and antibody labeling. VIFFI is an optomechanical imaging method that virtually freezes the motion of fast-flowing cells on an image sensor to enable high-throughput yet sensitive imaging of every single event. 5-ALA stimulates cancer cells to induce the accumulation of protoporphyrin (PpIX), a red fluorescent substance, making it possible to detect all cancer cells even if they show no expression of the epithelial cell adhesion molecule, a typical CTC biomarker. Although PpIX signals are generally weak, VIFFI flow cytometry can detect them by virtue of its high sensitivity. As a proof-of-principle demonstration of the strategy, we applied cancer cells spiked in blood to the strategy to demonstrate image-based detection and accurate classification of single cancer cells, clusters of cancer cells, and clusters of a cancer cell(s) and a leukocyte(s). To show the clinical utility of our method, we used it to evaluate blood samples of four breast cancer patients and four healthy donors and identified EpCAM-positive PpIX-positive cells in one of the patient samples. Our work paves the way toward the determination of cancer prognosis, the guidance and monitoring of treatment, and the design of antitumor strategies for cancer patients.
Collapse
Affiliation(s)
- Hiroki Matsumura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Larina Tzu-Wei Shen
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.
| | - Akihiro Isozaki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Hideharu Mikami
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Dan Yuan
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Taichi Miura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Yuto Kondo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Tomoko Mori
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.
| | - Yoshika Kusumoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masako Nishikawa
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsushi Yasumoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Aya Ueda
- Department of Breast and Endocrine Surgery, University of Tsukuba Hospital, 605-8576, Japan
| | - Hiroko Bando
- Department of Breast and Endocrine Surgery, Faculty of Medicine, University of Tsukuba, 305-8575, Japan
| | - Hisato Hara
- Department of Breast and Endocrine Surgery, Faculty of Medicine, University of Tsukuba, 305-8575, Japan
| | - Yuhong Liu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Yunjie Deng
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Masahiro Sonoshita
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Hokkaido 060-0815, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Hokkaido 060-0812, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keisuke Goda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Institute of Technological Sciences, Wuhan University, Hubei 430072, China
- CYBO, Tokyo 101-0022, Japan
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.
- Tsukuba Clinical Research and Development Organization, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
4
|
Andre F, Ismaila N, Allison KH, Barlow WE, Collyar DE, Damodaran S, Henry NL, Jhaveri K, Kalinsky K, Kuderer NM, Litvak A, Mayer EL, Pusztai L, Raab R, Wolff AC, Stearns V. Biomarkers for Adjuvant Endocrine and Chemotherapy in Early-Stage Breast Cancer: ASCO Guideline Update. J Clin Oncol 2022; 40:1816-1837. [PMID: 35439025 DOI: 10.1200/jco.22.00069] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To update recommendations on appropriate use of breast cancer biomarker assay results to guide adjuvant endocrine and chemotherapy decisions in early-stage breast cancer. METHODS An updated literature search identified randomized clinical trials and prospective-retrospective studies published from January 2016 to October 2021. Outcomes of interest included overall survival and disease-free or recurrence-free survival. Expert Panel members used informal consensus to develop evidence-based recommendations. RESULTS The search identified 24 studies informing the evidence base. RECOMMENDATIONS Clinicians may use Oncotype DX, MammaPrint, Breast Cancer Index (BCI), and EndoPredict to guide adjuvant endocrine and chemotherapy in patients who are postmenopausal or age > 50 years with early-stage estrogen receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative (ER+ and HER2-) breast cancer that is node-negative or with 1-3 positive nodes. Prosigna and BCI may be used in postmenopausal patients with node-negative ER+ and HER2- breast cancer. In premenopausal patients, clinicians may use Oncotype in patients with node-negative ER+ and HER2- breast cancer. Current data suggest that premenopausal patients with 1-3 positive nodes benefit from chemotherapy regardless of genomic assay result. There are no data on use of genomic tests to guide adjuvant chemotherapy in patients with ≥ 4 positive nodes. Ki67 combined with other parameters or immunohistochemistry 4 score may be used in postmenopausal patients without access to genomic tests to guide adjuvant therapy decisions. BCI may be offered to patients with 0-3 positive nodes who received 5 years of endocrine therapy without evidence of recurrence to guide decisions about extended endocrine therapy. None of the assays are recommended for treatment guidance in individuals with HER2-positive or triple-negative breast cancer. Treatment decisions should also consider disease stage, comorbidities, and patient preferences.Additional information is available at www.asco.org/breast-cancer-guidelines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - N Lynn Henry
- University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, New York, NY.,Weill Cornell Medical College, New York, NY
| | - Kevin Kalinsky
- Winship Cancer Institute at Emory University, Atlanta, GA
| | | | - Anya Litvak
- Cancer Center at Saint Barnabas Medical Center, Livingston, NJ
| | | | | | - Rachel Raab
- Messino Cancer Centers-A Division of American Oncology Partners, Asheville, NC
| | | | | |
Collapse
|
5
|
Prognostic Implications of MALAT1 and BACH1 Expression and Their Correlation with CTCs and Mo-MDSCs in Triple Negative Breast Cancer and Surgical Management Options. Int J Breast Cancer 2022; 2022:8096764. [PMID: 35096427 PMCID: PMC8791720 DOI: 10.1155/2022/8096764] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Background. Triple negative breast cancer (TNBC) is a biologically separate entity of breast cancer that cannot get benefits from targeted or endocrine therapy. Objective. To assess the expression of MALAT1 and BACH1, as well as monocyte-myeloid-derived suppressor cell (Mo-MDSC) levels and circulating tumor cell (CTC) count in TNBC to correlate these markers with the clinic-pathological criteria of TNCB patients and to evaluate their roles as predictive markers for selection of the patients that can be operated by oncoplastic conserving breast surgery. Methods. Eighty-eight TNBC were managed by modified doughnut breast oncoplastic surgery in early stages and by modified radical mastectomy for patients with late stages unsuitable for breast-conserving. All were examined for MALAT1 and BACH1 expression by immunohistochemistry and RT-PCR as well as Mo-MDSC levels and CTCs. Results. MALAT1 and BACH1 expressions are correlated with the larger size, lymph node, distance metastasis, and TNM staging (
).
and high MO-MDSCs were significantly more in TNBC with MALAT1 and BACH1 overexpression. The survival study proved that DFS for patients with both positive expression of MALAT1 and BACH1 was shorter than that of one positive expression, and both negative expression
,
, and high Mo-MDSCs are associated with poor outcomes. No significant difference between modified round block and modified radical mastectomy techniques as regards recurrence. However, all postoperative management outcomes were significantly better in patients operated by oncoplastic conserving breast surgery. Conclusion. BACH1 and MALAT1 expressions are significantly upregulated in TNBC. They are correlated with CTCs and Mo-MDCs, and all are associated with poor outcomes. Not all TNBC patients have a bad prognosis, patients negative for one of MALAT1 and BACH1 or both, have a slightly good prognosis, and so can be managed by breast oncoplastic conserving surgery.
Collapse
|
6
|
Chantzara E, Xenidis N, Kallergi G, Georgoulias V, Kotsakis A. Circulating tumor cells as prognostic biomarkers in breast cancer: current status and future prospects. Expert Rev Mol Diagn 2021; 21:1037-1048. [PMID: 34328384 DOI: 10.1080/14737159.2021.1962710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction : Despite advances in diagnostic and therapeutic techniques breast cancer is still associated with significant morbidity and mortality. CTCs play a crucial role in the metastatic process, which is the main cause of death in BC patients.Areas covered : This review discusses the prognostic and predictive value of CTCs and their prospective in management of BC patients.Expert opinion : The analysis of CTCs through improved technologies offers a new insight into the metastatic cascade. Assessment of the number and molecular profile of CTCs holds great promises for disease monitoring and therapeutic decisions. However, more research is needed until they can be used in therapeutic decisions in clinical practice.
Collapse
Affiliation(s)
- Evagelia Chantzara
- Department of Medical Oncology, University General Hospital of Larissa, Larissa, Thessaly, Greece
| | - Nikolaos Xenidis
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Alexandroupolis, Thrace, Greece
| | - Galatea Kallergi
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Vassilis Georgoulias
- Department of Medical Oncology, Hellenic Oncology Research Group (HORG), Athens, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, Larissa, Thessaly, Greece.,Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Thessaly, Greece
| |
Collapse
|
7
|
The Role of Circulating Tumor Cells in Breast Cancer and Implications for Radiation Treatment Decisions. Int J Radiat Oncol Biol Phys 2020; 109:44-59. [PMID: 32882354 DOI: 10.1016/j.ijrobp.2020.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Tumor biomarkers are used routinely in oncology to assign risk categorization, screen and assist in diagnosis of malignancy, allow for prognostication and prediction of outcomes and treatment response, and allow for monitoring of patients after treatment completion. Although tissue-based biomarkers have a long history of use, the emergence of liquid-based biomarkers, including circulating tumor cells (CTCs), may soon revolutionize the management of patients with cancer. Here, we review the discovery of CTCs and their role as prognostic and predictive biomarkers, with an emphasis on breast cancer. We discuss the platforms for CTC enumeration and focus on studies using the only US Food and Drug Administration-approved platform for CTC enumeration (CellSearch). In addition, we examine the role of CTCs in women with metastatic, inflammatory, and nonmetastatic breast cancer, as well as the clinical evidence for their use as a surrogate for radiation treatment response as well as surveillance after treatment. Finally, we conclude by investigating ongoing clinical studies assessing CTCs as radiation response predictors and discuss unanswered questions.
Collapse
|
8
|
Tsai WS, Hung WS, Wang TM, Liu H, Yang CY, Wu SM, Hsu HL, Hsiao YC, Tsai HJ, Tseng CP. Circulating tumor cell enumeration for improved screening and disease detection of patients with colorectal cancer. Biomed J 2020; 44:S190-S200. [PMID: 35292267 PMCID: PMC9068522 DOI: 10.1016/j.bj.2020.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background The immunochemical fecal occult blood test (iFOBT) for colorectal cancer (CRC) screening and the serum carcinoembryonic antigen (CEA) assay for disease detection of CRC is associated with a high false-positive rate and a low detection sensitivity, respectively. There is an unmet need to define additional modalities to complement these assays. Different subsets of circulating tumor cells (CTCs) are present in the peripheral blood of cancer patients. Whether or not CTCs testing supplements these clinical assays and is valuable for patients with CRC was investigated. Methods CTCs were enriched from pre-operative patients with CRC (n = 109) and the non-cancerous controls (n = 65). CTCs expressing either epithelial cell adhesion molecule (EpCAM) or podoplanin (PDPN, the marker associated with poor cancer prognosis) were defined by immunofluorescence staining and were analyzed alone or in combination with iFOBT or serum CEA. Results Patients with early or advanced stage of CRC can be clearly identified and differentiated from the non-cancerous controls (p < 0.001) by EpCAM+-CTC or PDPN+-CTC count. The sensitivity and specificity of EpCAM+-CTCs was 85.3% and 78.5%, respectively, when the cutoff value was 23 EpCAM+-CTCs/mL of blood; and the sensitivity and specificity of PDPN+-CTCs was 78.0% and 75.4%, respectively, when the cutoff value was 7 PDPN+-CTCs/mL of blood. Combined analysis of iFOBT with the EpCAM+-CTC and PDPN+-CTC count reduced the false-positive rate of iFOBT from 56.3% to 18.8% and 23.4%, respectively. Combined analysis of serum CEA with the EpCAM+-CTC and PDPN+-CTC count increased the disease detection rate from 30.3% to 89.9% and 86.2%, respectively. Conclusion CTC testing could supplement iFOBT to improve CRC screening and supplement serum CEA assay for better disease detection of patients with CRC.
Collapse
|
9
|
Wang SG, Zhang B, Li CG, Zhu JQ, Sun BS, Wang CL. Sorting and gene mutation verification of circulating tumor cells of lung cancer with epidermal growth factor receptor peptide lipid magnetic spheres. Thorac Cancer 2020; 11:2887-2895. [PMID: 32856417 PMCID: PMC7529546 DOI: 10.1111/1759-7714.13625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background This study aimed to identify an efficient, simple, and specific method of detecting mutations in the epidermal growth factor receptor (EGFR) gene in isolated lung cancer circulating tumor cells (CTCs) and to improve the ability to obtain tumor tissue clinically. Methods EGFR peptide lipid magnetic spheres (EG‐P‐LMB) were prepared by reverse evaporation, and characterization and cell capture efficiency assessed. The peripheral blood samples of 30 lung cancer patients were isolated and identified with the EG‐P‐LMB using 20 healthy volunteers as controls. Finally, the isolated CTCs were tested for EGFR gene mutations, and the tissue samples selected for comparison. Results The prepared magnetic spheres had a smaller particle size and higher stability according to the particle size potential test. Their morphology was homogeneous by atomic force observation, and the UV test showed that there were peptides on the surface. The separation efficiency of EG‐P‐LMB was greater than 90% in PBS and greater than 80% in the blood simulation system. Compared with the tissue sample results, the positive rate of EGFR gene mutations was 94%. The CTC test results of 27 patients were consistent with the tissue test results of the corresponding patients, and the consistency with the tissue comparison test results was 90% (27/30). Conclusions EG‐P‐LMB can effectively capture CTCs in the peripheral blood of patients with lung cancer. CTC detection can accurately identify mutations in the EGFR gene and improve the ability to obtain tumor tissue in clinical practice. Key points Significant findings of the study EG‐P‐LMB can effectively capture CTCs in the peripheral blood of patients with lung cancer. CTC detection can accurately identify mutations in the EGFR gene and improve the ability to obtain tumor tissue in clinical practice. What this study adds This study added EGFR peptide lipid magnetic spheres to capture CTCs in the blood. Genetic testing was performed and compared with tissues. It solves the problem of clinically difficult tumor tissue sampling.
Collapse
Affiliation(s)
- Sheng-Guang Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chen-Guang Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Jian-Quan Zhu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Bing-Sheng Sun
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chang-Li Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| |
Collapse
|
10
|
Bittner AK, Keup C, Hoffmann O, Hauch S, Kimmig R, Kasimir-Bauer S. Molecular characterization of circulating tumour cells identifies predictive markers for outcome in primary, triple-negative breast cancer patients. J Cell Mol Med 2020; 24:8405-8416. [PMID: 32558176 PMCID: PMC7412423 DOI: 10.1111/jcmm.15349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/08/2019] [Accepted: 02/08/2020] [Indexed: 12/13/2022] Open
Abstract
mRNA profiles of circulating tumour cells (CTCs) were analysed in patients with triple‐negative breast cancer (TNBC) (pts) before (BT) and after therapy (AT) to identify additional treatment options. 2 × 5 mL blood of 51 TNBC pts and 24 non‐TNBC pts (HR+/HER2−; HR−/HER2+) was analysed for CTCs using the AdnaTest EMT‐2/Stem Cell Select™, followed by mRNA isolation and cDNA analysis for 17 genes by qPCR PIK3CA, AKT2, MTOR and the resistance marker AURKA and ERCC1 were predominantly expressed in all breast cancer subtypes, the latter ones especially AT. In TNBC pts, ERBB3, EGFR, SRC, NOTCH, ALK and AR were uniquely present and ERBB2+/ERBB3 + CTCs were found BT and AT in about 20% of cases. EGFR+/ERBB2+/ERBB3 + CTCs BT and ERBB2+/ERBB3 + CTCs AT significantly correlated with a shorter progression‐free survival (PFS; P = 0.01 and P = 0.02). Platinum‐based therapy resulted in a reduced PFS (P = 0.02) and an induction of PIK3CA expression in CTCs AT. In non‐TNBC pts, BT, the expression pattern in CTCs was similar. AURKA+/ERCC1 + CTCs were found in 40% of HR−/HER2 + pts BT and AT. In the latter group, NOTCH, PARP1 and SRC1 were only present AT and ERBB2 + CTCs completely disappeared AT. These findings might help to predict personalized therapy for TNBC pts in the future.
Collapse
Affiliation(s)
- Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital of Essen, Essen, Germany
| | - Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, Essen, Germany
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital of Essen, Essen, Germany
| | | | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, Essen, Germany
| |
Collapse
|
11
|
Retsky M, Demicheli R, Hrushesky W, James T, Rogers R, Baum M, Vaidya JS, Erhabor O, Forget P. Breast cancer and the black swan. Ecancermedicalscience 2020; 14:1050. [PMID: 32565903 PMCID: PMC7289621 DOI: 10.3332/ecancer.2020.1050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Most current research in cancer is attempting to find ways of preventing patients from dying after metastatic relapse. Driven by data and analysis, this project is an approach to solve the problem upstream, i.e., to prevent relapse. This project started with the unexpected observation of bimodal relapse patterns in breast and a number of other cancers. This was not explainable with the current cancer paradigm that has guided cancer therapy and early detection for many years. After much analysis using computer simulation and input from a number of medical specialties, we eventually came to the conclusion that the surgery to remove the primary tumour produced systemic inflammation for a week after surgery. This systemic inflammation apparently caused exits of cancer cells and micrometastases from dormant states and resulted in relapses in the first 3 years post-surgery. It was determined in a retrospective study that the common inexpensive perioperative non-steroidal anti-inflammatory drug (NSAID) ketorolac could curtail the early relapse events after breast cancer surgery. A second retrospective study strongly confirmed this but an apparently underpowered prospective study showed no advantage. We are analysing these data and are now proposing to test the perioperative NSAID at Beth Israel Deaconess Medical Centre with triple-negative breast cancer (TNBC) patients, the category that could respond best to the perioperative NSAID. If this works as well as we expect, we would then transfer this technology to low- and/or middle-incomes countries (LMICs), starting with Nigeria where early onset type of TNBC is common. There is an unmet need in LMICs, especially in countries like Nigeria (190 million population), for a means to prevent surgery induced relapse that we are attempting to resolve. This work aims, thus, to describe eventual mechanisms, and ways to test a solution addressing an unmet need. But first, we consider the context, including within an historical perspective, important to explain how and why a Kuhnian paradigm shift may be considered.
Collapse
Affiliation(s)
- Michael Retsky
- Harvard T.H. Chan School of Public Health Boston, MA 02115-6021, USA
| | - Romano Demicheli
- University of Milan, Faculty of Medicine and Surgery, Milan 20133, Italy
| | | | - Ted James
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215-5400, USA
| | - Rick Rogers
- Harvard T.H. Chan School of Public Health Boston, MA 02115-6021, USA
| | - Michael Baum
- Emeritus Prof, University College London, London N19 5LW, UK
| | | | | | | |
Collapse
|
12
|
Mansouri S, Mokhtari-Hesari P, Naghavi-Al-Hosseini F, Majidzadeh-A K, Farahmand L. The Prognostic Value of Circulating Tumor Cells in Primary Breast Cancer Prior to any Systematic Therapy: A Systematic Review. Curr Stem Cell Res Ther 2020; 14:519-529. [PMID: 30843493 DOI: 10.2174/1574888x14666190306103759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/04/2019] [Accepted: 02/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Numerous studies have defined the outstanding role of circulating tumor cells (CTC) in the management of cancer, particularly the ones in association with primary tumor metastases. OBJECTIVE The overall aim of the present study was to investigate whether CTCs may serve as a clinical prognostic marker for survival in primary breast cancer. METHODS Articles Published from June 2011 to July 2017 in PubMed, EMBase, and Cochrane library databases were thoroughly screened for selecting the ones meeting the inclusion criteria. RESULT Studies applying CellSearch® method demonstrated the risk ratios (RR) of 2.51 (95% CI: 1.78- 3.54), 3.98 (95% CI: 2.28- 6.95), 5.59 (95% CI: 3.29- 9.51), and 3.38 (95% CI: 1.88- 6.06) for death rate and relapse rates of 2.48 (95% CI: 1.89 - 3.26), 3.62 (95% CI: 2.37 - 5.51), 4.45 (95% CI: 2.94 - 6.73), and 2.88 (95 % CI: 1.99 - 4.17) at four CTC positive cut points (≥ 1, ≥ 2, ≥ 3, and ≥ 5 CTCs/7.5 ml). Two studies applying the AdnaTest® also documented increased death (RR: 1.38, 95 % CI: 0.42- 4.49) and relapse rates (RR: 2.97, 95 % CI: 1.23 - 7.18)). CONCLUSION Results of this meta-analysis allude CTCs as potent prognostic markers in primary breast cancers prior to any systemic therapy especially when it is studied via CellSearch® administration, considering that the more the CTCs, the greater the death and relapse rates.
Collapse
Affiliation(s)
- Sepideh Mansouri
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Parisa Mokhtari-Hesari
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Naghavi-Al-Hosseini
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Yap YS, Leong MC, Chua YW, Loh KWJ, Lee GE, Lim EH, Dent R, Ng RCH, Lim JHC, Singh G, Tan A, Guan G, Wu A, Lee YF, Bhagat AAS, Lim DWT. Detection and prognostic relevance of circulating tumour cells (CTCs) in Asian breast cancers using a label-free microfluidic platform. PLoS One 2019; 14:e0221305. [PMID: 31553731 PMCID: PMC6760773 DOI: 10.1371/journal.pone.0221305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/04/2019] [Indexed: 12/22/2022] Open
Abstract
Objectives We aimed to study the prevalence of CTCs in breast cancer (BC) patients undergoing neoadjuvant or palliative therapy with a label-free microfluidic platform (ClearCell FX), and its prognostic relevance in metastatic BC (mBC). Materials and methods Peripheral blood samples were collected from 108 BC patients before starting a new line of treatment (“baseline”), majority of whom had mBC (76/108; 70.4%). CTCs were retrieved by dean flow fractionation that enriched for larger cells, and enumerated using immunofluorescence-based staining. Progression-free survival (PFS) in mBC patients was analysed using Kaplan-Meier method; cox proportional hazard models were used for univariable and multivariable analyses. Results The detection rate of CTCs before starting a new line of treatment was 75.9% (n = 108; median: 8 CTCs/7.5 ml blood) at a cut off of ≥2 CTCs. PFS was inferior for mBC patients with baseline CTC count ≥5 CTCs/7.5 ml blood vs. those with < 5 CTCs/7.5 ml blood (median PFS: 4.3 vs. 7.0 months; p-value: 0.037). The prognostic relevance of CTCs was most significant in patients with HER2- mBC (median PFS: 4.1 vs. 8.3 months; p-value: 0.032), luminal (HR+HER2-) subtype (median PFS: 4.2 vs. 8.3 months; p-value: 0.048), and patients who had one or more prior treatments (median PFS: 4.2 vs. 7.0 months; p-value: 0.02). On multivariable analysis, baseline CTC level (hazard ratio (HR): 1.84, p-value: 0.02) and pre-treatment status (HR: 1.87, p-value: 0.05) were independent predictors of PFS. Conclusions This work demonstrates the prognostic significance of CTCs in mBC detected using a label-free size-based enrichment platform.
Collapse
Affiliation(s)
- Yoon-Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- * E-mail:
| | | | - Yong Wei Chua
- Department of Pathology, Singapore General Hospital, Singapore
| | - Kiley Wei Jen Loh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Guek Eng Lee
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Elaine Hsuen Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Institute of Molecular and Cell Biology, A*Star, Singapore
| | - Rebecca Dent
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | | | - John Heng-Chi Lim
- Clinical Trials and Epidemiology Office, National Cancer Centre Singapore, Singapore
| | | | | | | | | | | | | | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Institute of Molecular and Cell Biology, A*Star, Singapore
| |
Collapse
|
14
|
Thery L, Meddis A, Cabel L, Proudhon C, Latouche A, Pierga JY, Bidard FC. Circulating Tumor Cells in Early Breast Cancer. JNCI Cancer Spectr 2019; 3:pkz026. [PMID: 31360902 PMCID: PMC6649836 DOI: 10.1093/jncics/pkz026] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/24/2019] [Accepted: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
Circulating tumor cells (CTCs) are particularly rare in non-metastatic breast cancer, and the clinical validity of CTC detection in that clinical setting was initially not well recognized. A cytological CTC detection device (CellSearch) fulfilling the CLIA requirements for analytical validity was subsequently developed and, in 2008, we reported the first study (REMAGUS02) showing that distant metastasis-free survival was shorter in early breast cancer patients with one or more CTCs. In the past 10 years, other clinical studies and meta-analyses have established CTC detection as a level-of-evidence 1 prognostic biomarker for local relapses, distant relapses, and overall survival. This review summarizes available data on CTC detection and the promises of this proliferation- and subtype-independent metastasis-associated biomarker in early breast cancer patients.
Collapse
Affiliation(s)
- Laura Thery
- Department of Medical Oncology, Institut Curie, Paris and Saint Cloud, France
| | | | - Luc Cabel
- Department of Medical Oncology, Institut Curie, Paris and Saint Cloud, France.,Circulating Tumor Biomarkers Laboratory, Institut Curie, Inserm CIC 1428, PSL Research University, Paris, France.,UVSQ, Paris Saclay University, Saint Cloud, France
| | - Charlotte Proudhon
- Circulating Tumor Biomarkers Laboratory, Institut Curie, Inserm CIC 1428, PSL Research University, Paris, France
| | - Aurelien Latouche
- Inserm U900, Institut Curie, Saint Cloud, France.,Conservatoire national des arts et métiers, Paris, France
| | - Jean-Yves Pierga
- Department of Medical Oncology, Institut Curie, Paris and Saint Cloud, France.,Circulating Tumor Biomarkers Laboratory, Institut Curie, Inserm CIC 1428, PSL Research University, Paris, France.,Université Paris Descartes, Paris, France
| | - Francois-Clement Bidard
- Department of Medical Oncology, Institut Curie, Paris and Saint Cloud, France.,Circulating Tumor Biomarkers Laboratory, Institut Curie, Inserm CIC 1428, PSL Research University, Paris, France.,UVSQ, Paris Saclay University, Saint Cloud, France
| |
Collapse
|
15
|
Agelaki S, Dragolia M, Markonanolaki H, Alkahtani S, Stournaras C, Georgoulias V, Kallergi G. Phenotypic characterization of circulating tumor cells in triple negative breast cancer patients. Oncotarget 2018; 8:5309-5322. [PMID: 28029660 PMCID: PMC5354910 DOI: 10.18632/oncotarget.14144] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022] Open
Abstract
Introduction Patients with triple negative breast cancer (TNBC), are considered as a poor prognosis group for whom no targeted therapies are currently available. The aim of the present study was to phenotypically characterize their CTCs in order to explore potential therapeutic targets. Methods PBMC's cytospins were prepared from 45 early (before and after adjuvant chemotherapy), 10 metastatic TNBC and 21 hormone receptor (HR) -positive patients. The expression of Cytokeratins (CK), ER, PR, EGFR and HER2 on CTCs was assessed using immunofluoresence staining and ARIOL analysis. Results In early stage TNBC, ER, PR, HER2 and EGFR expressing-CTCs were detected in 24.4%, 24.4%, 20% and 40% of patients before the initiation of adjuvant chemotherapy, and in 17.8%, 13.3% 6.7% and 51.1% respectively after the completion of adjuvant treatment. Triple staining experiments revealed distinct subpopulations of CTC expressed HR, and ErbB family receptors. In patients with metastatic disease, the frequency of HER2+ CTCs was significantly increased compared to adjuvant setting (60% vs 20%, p=0.014). The presence of CK+PR− CTCs, before adjuvant treatment was associated with reduced OS (p=0.032) and DFI (p=0.04). Furthermore, the frequency of ER-, PR- and HER2+ CTCs was higher in HR(+) than in TNBC tumors (57.1%, p=0.006; 52.4%, p=0.021 and 52.38%, p=0.009, respectively). Conclusions The CTCs in patients with early TNBC are phenotypically heterogeneous based on the expression of HR, EGFR and HER2 both before and after the completion of adjuvant chemotherapy whereas the presence of HER2+ CTCs prevails during disease evolution. These findings could be of clinical relevance in terms of CTC targeting.
Collapse
Affiliation(s)
- Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Voutes, Heraklion, Greece.,Department of Medical Oncology, University General Hospital of Heraklion, Voutes, Heraklion, Greece
| | - Melina Dragolia
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Voutes, Heraklion, Greece
| | - Harris Markonanolaki
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Voutes, Heraklion, Greece
| | - Saad Alkahtani
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia.,Department of Biochemistry, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Vassilis Georgoulias
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Voutes, Heraklion, Greece
| | - Galatea Kallergi
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Voutes, Heraklion, Greece.,Department of Biochemistry, University of Crete Medical School, Voutes, Heraklion, Greece
| |
Collapse
|
16
|
Lu YJ, Wang P, Wang X, Peng J, Zhu YW, Shen N. The significant prognostic value of circulating tumor cells in triple-negative breast cancer: a meta-analysis. Oncotarget 2018; 7:37361-37369. [PMID: 27008698 PMCID: PMC5095082 DOI: 10.18632/oncotarget.8156] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/29/2016] [Indexed: 01/10/2023] Open
Abstract
Background The clinical validity of circulating tumor cells (CTCs) is still controversial in patients with triple-negative breast cancer (TNBC). Methods A comprehensive literature search was performed to identify relevant articles in the PubMed, Web of Science, MEDLINE, and Embase databases through September 2015. The outcomes of interest were disease progression and overall survival. The hazard ratio (HR) and 95% confidence interval (95% CI) were considered the effect indicators and were pooled in meta-analyses under a fixed- or random-effect model according to heterogeneity. Results Ten of the eligible studies were included for a total of 642 enrolled TNBC patients. Overall analyses revealed that the presence of CTCs predicted aggressive disease progression (HR = 2.18, 95% CI = 1.59-2.99, Pheterogeneity = 0.010, I2 = 52.2%) and reduced overall survival (HR = 2.02, 95% CI = 1.59-2.57, Pheterogeneity = 0.169, I2 = 26.6%). Further subgroup analyses demonstrated that CTC-positive patients also had poor disease progression and overall survival in different subsets, including cancer stage. Conclusion Our meta-analysis provides strong evidence that detection of CTC in the peripheral blood is an independent prognosticator of poor survival outcomes for TNBC patients.
Collapse
Affiliation(s)
- Yan-Jun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wang
- Institute and Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Peng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao-Wu Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Liu X, Ran R, Shao B, Rugo HS, Yang Y, Hu Z, Wei Z, Wan F, Kong W, Song G, Jiang H, Liang X, Zhang R, Yan Y, Xu G, Li H. Combined peripheral natural killer cell and circulating tumor cell enumeration enhance prognostic efficiency in patients with metastatic triple-negative breast cancer. Chin J Cancer Res 2018; 30:315-326. [PMID: 30046226 DOI: 10.21147/j.issn.1000-9604.2018.03.04] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective Triple-negative breast cancer (TNBC) is a heterogeneous disease with poor prognosis. Circulating tumor cells (CTCs) are a promising predictor for breast cancer prognoses but their reliability regarding progression-free survival (PFS) is controversial. We aim to verify their predictive value in TNBC. Methods In present prospective cohort study, we used the Pep@MNPs method to enumerate CTCs in baseline blood samples from 75 patients with TNBC (taken at inclusion in this study) and analyzed correlations between CTC numbers and outcomes and other clinical parameters. Results Median PFS was 6.0 (range: 1.0-25.0) months for the entire cohort, in whom we found no correlations between baseline CTC status and initial tumor stage (P=0.167), tumor grade (P=0.783) or histological type (P=0.084). However, among those getting first-line treatment, baseline CTC status was positively correlated with ratio of peripheral natural killer (NK) cells (P=0.032), presence of lung metastasis (P=0.034) and number of visceral metastatic site (P=0.037). Baseline CTC status was predictive for PFS in first-line TNBC (P=0.033), but not for the cohort as a whole (P=0.118). This prognostic limitation of CTC could be ameliorated by combining CTC and NK cell enumeration (P=0.049). Conclusions Baseline CTC status was predictive of lung metastasis, peripheral NK cell ratio and PFS in TNBC patients undergoing first-line treatment. We have developed a combined CTC-NK enumeration strategy that allows us to predict PFS in TNBC without any preconditions.
Collapse
Affiliation(s)
- Xiaoran Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ran Ran
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Bin Shao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hope S Rugo
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco 94115, USA
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, the National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, the National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zewen Wei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, the National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Fengling Wan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Weiyao Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Guohong Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hanfang Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xu Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ruyan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ying Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Guobing Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
18
|
Tan Y, Wu H. The significant prognostic value of circulating tumor cells in colorectal cancer: A systematic review and meta-analysis. Curr Probl Cancer 2018; 42:95-106. [DOI: 10.1016/j.currproblcancer.2017.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/19/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022]
|
19
|
Dasgupta A, Lim AR, Ghajar CM. Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol Oncol 2017; 11:40-61. [PMID: 28085223 PMCID: PMC5423226 DOI: 10.1002/1878-0261.12022] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022] Open
Abstract
Tumor cells leave the primary tumor and enter the circulation. Once there, they are called circulating tumor cells (CTCs). A fraction of CTCs are capable of entering distant sites and persisting as disseminated tumor cells (DTCs). An even smaller fraction of DTCs are capable of progressing toward metastases. It is known that the DTC microenvironment plays an important role in sustaining their survival, regulating their growth, and conferring resistance to therapy. But we still have much to learn about the nature of these rare cell populations to predict which will progress and what exactly should cause concern for future relapse. Although recent technological advances in our ability to detect and molecularly and functionally characterize CTCs and DTCs promise to unravel this ambiguity, the timing of dissemination and the precise source of CTCs and DTCs profiled will impact the conclusions that can be made from these endeavors. In this review, we discuss the biology of CTCs and DTCs; the technologies to detect, isolate, and profile these cells; and the exceptions we must apply to our understanding of what role these cells play in the metastatic process. We conclude that a greater effort to understand the unique biology of these cells in context will positively impact our ability to use these cells to predict outcome, monitor treatment efficacy, and reveal therapeutically relevant targets to deplete these populations and ultimately prevent metastasis.
Collapse
Affiliation(s)
- Arko Dasgupta
- Public Health Sciences Division/Translational Research Program and Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Andrea R. Lim
- Public Health Sciences Division/Translational Research Program and Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Program in Molecular and Cellular BiologyUniversity of WashingtonSeattleWAUSA
| | - Cyrus M. Ghajar
- Public Health Sciences Division/Translational Research Program and Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| |
Collapse
|
20
|
Chudasama DY, Freydina DV, Freidin MB, Leung M, Montero Fernandez A, Rice A, Nicholson AG, Karteris E, Anikin V, Lim E. Inertia based microfluidic capture and characterisation of circulating tumour cells for the diagnosis of lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:480. [PMID: 28149842 DOI: 10.21037/atm.2016.12.28] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Routine clinical application of circulating tumour cells (CTCs) for blood based diagnostics is yet to be established. Despite growing evidence of their clinical utility for diagnosis, prognosis and treatment monitoring, the efficacy of a robust platform and universally accepted diagnostic criteria remain uncertain. We evaluate the diagnostic performance of a microfluidic CTC isolation platform using cytomorphologic criteria in patients undergoing lung cancer surgery. METHODS Blood was processed from 51 patients undergoing surgery for known or suspected lung cancer using the ClearBridge ClearCell FX systemTM (ClearBridge Biomedics, Singapore). Captured cells were stained on slides with haematoxylin and eosin (H&E) and independently assessed by two pathologist teams. Diagnostic performance was evaluated against the pathologists reported diagnosis of cancer from surgically obtained specimens. RESULTS Cancer was diagnosed in 43.1% and 54.9% of all cases. In early stage primary lung cancer, between the two reporting teams, a positive diagnosis of CTCs was made for 50% and 66.7% of patients. The agreement between the reporting teams was 80.4%, corresponding to a kappa-statistic of 0.61±0.11 (P<0.001), indicating substantial agreement. Sensitivity levels for the two teams were calculated as 59% (95% CI, 41-76%) and 41% (95% CI, 24-59%), with a specificity of 53% for both. CONCLUSIONS The performance of the tested microfluidic antibody independent device to capture CTCs using standard cytomorphological criteria provides the potential of a diagnostic blood test for lung cancer.
Collapse
Affiliation(s)
- Dimple Y Chudasama
- National Heart and Lung Institute, Imperial College London, London, UK;; Division of Thoracic Surgery, Harefield Hospital, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK;; Division of Biosciences, Brunel University London, London, UK
| | - Daria V Freydina
- National Heart and Lung Institute, Imperial College London, London, UK;; Academic Division of Thoracic Surgery, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| | - Maxim B Freidin
- National Heart and Lung Institute, Imperial College London, London, UK;; Academic Division of Thoracic Surgery, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| | - Maria Leung
- National Heart and Lung Institute, Imperial College London, London, UK;; Academic Division of Thoracic Surgery, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| | - Angeles Montero Fernandez
- National Heart and Lung Institute, Imperial College London, London, UK;; Department of Histopathology, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| | - Alexandra Rice
- National Heart and Lung Institute, Imperial College London, London, UK;; Department of Histopathology, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| | - Andrew G Nicholson
- National Heart and Lung Institute, Imperial College London, London, UK;; Department of Histopathology, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| | | | - Vladimir Anikin
- Division of Thoracic Surgery, Harefield Hospital, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| | - Eric Lim
- National Heart and Lung Institute, Imperial College London, London, UK;; Academic Division of Thoracic Surgery, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
21
|
Banys-Paluchowski M, Krawczyk N, Fehm T. Potential Role of Circulating Tumor Cell Detection and Monitoring in Breast Cancer: A Review of Current Evidence. Front Oncol 2016; 6:255. [PMID: 27990412 PMCID: PMC5130993 DOI: 10.3389/fonc.2016.00255] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/18/2016] [Indexed: 11/13/2022] Open
Abstract
The phenomenon of hematogenous tumor cell dissemination in patients with solid tumors has been extensively explored over the last decades. Breast cancer research investigated at first disseminated tumor cells in the bone marrow; however, the focus soon moved to circulating tumor cells (CTCs) in the peripheral blood as blood is easily accessible without an invasive procedure. The prognostic significance of CTC presence has been shown in large studies both in adjuvant and metastatic setting and commercially available detection assays have been evaluated for monitoring in clinical trials. Beyond detection and enumeration of CTCs, the characterization of single tumor cells may enhance our knowledge on disease progression and thus optimize treatment choices.
Collapse
Affiliation(s)
| | - Natalia Krawczyk
- Department of Obstetrics and Gynecology, University of Duesseldorf , Duesseldorf , Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University of Duesseldorf , Duesseldorf , Germany
| |
Collapse
|
22
|
Ren C, Han C, Fu D, Wang D, Chen H, Chen Y, Shen M. Circulating tumor cells in breast cancer beyond the genotype of primary tumor for tailored therapy. Int J Cancer 2015; 138:1586-600. [PMID: 26178386 DOI: 10.1002/ijc.29679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/30/2015] [Indexed: 12/21/2022]
Abstract
Although TNM staging based on tumor, node lymph status and metastasis status-is the most widely used method in the clinic to classify breast cancer (BC) and assess prognosis, it offers limited information for different BC subgroups. Circulating tumor cells (CTCs) are regarded as minimal residual disease and are proven to have a strong relationship with BC. Detection of ≥5 CTCs per 7.5 mL in peripheral blood predicts poor prognosis in metastatic BC irrespective of other clinical parameters, whereas, in early-stage BC, detection of CK19(+) CTCs are also associated with poor prognosis. Increasing data and clinical trials show that CTCs can improve prognostic accuracy and help tailor treatment for patients with BC. However, heterogeneous CTCs in the process of an epithelial-mesenchymal transition (EMT) in BC makes it a challenge to detect these rare cells. Moreover, the genotypic and phenotypic features of CTCs are different from primary BC tumors. Molecular analysis of CTCs in BC may benefit patients by identifying those amenable to tailored therapy. We propose that CTCs should be used alongside the TNM staging system and the genotype of primary tumor to guide tailored BC diagnosis and treatment.
Collapse
Affiliation(s)
- Chuanli Ren
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
- Department of Epidemiology and Biostatistics, Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chongxu Han
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Deyuan Fu
- Breast Oncology Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Daxin Wang
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Hui Chen
- Geriatric Medicine Department, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Yong Chen
- Oncology Department, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Ming Shen
- Department of Physical Chemistry, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Abstract
In today's era of personalized medicine, the use of radiation therapy for breast cancer is still tailored to the type of surgery and the stage of the cancer. The future of breast radiation oncology would hopefully entail selecting patients for whom there is a clear benefit for the use of radiation therapy. To get to this point we need reliable predictors of radiation response. Cancer stem cells have been correlated to radiation resistance and outcome for patients with breast cancer, and there is considerable interest in whether cancer stem cell markers or biologic surrogates may be predictive of response to radiation therapy. We review the data or in some cases lack of data regarding stem cell correlates as predictors of radiation resistance as well as the correlation of known predictors with stem cell biology. More research is certainly needed to investigate potential predictors of radiation response, stem cell or otherwise, to move us toward the goal of personalized radiation therapy.
Collapse
|
24
|
Hall C, Karhade M, Laubacher B, Anderson A, Kuerer H, DeSynder S, Lucci A. Circulating Tumor Cells After Neoadjuvant Chemotherapy in Stage I-III Triple-Negative Breast Cancer. Ann Surg Oncol 2015; 22 Suppl 3:S552-8. [PMID: 25968619 DOI: 10.1245/s10434-015-4600-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is characterized by a lack of estrogen and progesterone receptor expression and HER-2 gene amplification. Circulating tumor cells (CTCs) can be identified in 25 % of nonmetastatic breast cancer patients, and the identification of ≥1 CTC predicts outcome. This study was designed to determine whether CTCs present after neoadjuvant chemotherapy (NACT) predicted worse outcome in nonmetastatic TNBC patients. METHODS CTCs were assessed in 57 TNBC patients with nonmetastatic TNBC after the completion of NACT. CTCs (per 7.5 ml blood) were identified using the Cell Search(®) System (Janssen). Log-rank test and Cox regression analysis were applied to establish the association of CTCs with relapse-free (RFS) and overall survival (OS). RESULTS Median follow-up was 30 months, and mean age was 53 years. Fifty-four patients (95 %) had >2-cm tumors, 42 (84 %) were nuclear grade 3, and 42 (74 %) had positive axillary lymph nodes. One or more CTC was identified in 30 % of patients. CTC presence was not associated with primary tumor size, high grade, or lymph node positivity. Multivariate analysis demonstrated that detection of ≥1 CTC predicted decreased RFS (log-rank P = 0.03, HR 5.25, 95 % CI 1.34-20.56) and OS (log-rank P = 0.03, HR 7.04, 95 % CI 1.26-39.35). CONCLUSIONS One or more CTCs present after NACT predicted relapse and survival in nonmetastatic TNBC patients. This information would be helpful in future clinical trial design of adjuvant treatments for TNBC patients who are at risk for relapse after completing NACT.
Collapse
Affiliation(s)
- Carolyn Hall
- Department of Surgical Oncology, Unit 444, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mandar Karhade
- Department of Surgical Oncology, Unit 444, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Laubacher
- Department of Surgical Oncology, Unit 444, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber Anderson
- Department of Surgical Oncology, Unit 444, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henry Kuerer
- Department of Surgical Oncology, Unit 444, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah DeSynder
- Department of Surgical Oncology, Unit 444, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony Lucci
- Department of Surgical Oncology, Unit 444, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
25
|
Hart CD, Galardi F, De Luca F, Pestrin M, Di Leo A. Circulating Tumour Cells as Liquid Biopsy in Breast Cancer—Advancing from Prognostic to Predictive Potential. CURRENT BREAST CANCER REPORTS 2015. [DOI: 10.1007/s12609-014-0177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Beije N, Jager A, Sleijfer S. Circulating tumor cell enumeration by the CellSearch system: The clinician’s guide to breast cancer treatment? Cancer Treat Rev 2015; 41:144-50. [DOI: 10.1016/j.ctrv.2014.12.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 02/02/2023]
|
27
|
Bissolati M, Sandri MT, Burtulo G, Zorzino L, Balzano G, Braga M. Portal vein-circulating tumor cells predict liver metastases in patients with resectable pancreatic cancer. Tumour Biol 2014; 36:991-6. [DOI: 10.1007/s13277-014-2716-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/07/2014] [Indexed: 12/15/2022] Open
|