1
|
Peyvandi S, Bulliard M, Yilmaz A, Kauzlaric A, Marcone R, Haerri L, Coquoz O, Huang YT, Duffey N, Gafner L, Lorusso G, Fournier N, Lan Q, Rüegg C. Tumor-educated Gr1+CD11b+ cells drive breast cancer metastasis via OSM/IL-6/JAK-induced cancer cell plasticity. J Clin Invest 2024; 134:e166847. [PMID: 38236642 PMCID: PMC10940099 DOI: 10.1172/jci166847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/17/2024] [Indexed: 03/16/2024] Open
Abstract
Cancer cell plasticity contributes to therapy resistance and metastasis, which represent the main causes of cancer-related death, including in breast cancer. The tumor microenvironment drives cancer cell plasticity and metastasis, and unraveling the underlying cues may provide novel strategies for managing metastatic disease. Using breast cancer experimental models and transcriptomic analyses, we show that stem cell antigen-1 positive (SCA1+) murine breast cancer cells enriched during tumor progression and metastasis had higher in vitro cancer stem cell-like properties, enhanced in vivo metastatic ability, and generated tumors rich in Gr1hiLy6G+CD11b+ cells. In turn, tumor-educated Gr1+CD11b+ (Tu-Gr1+CD11b+) cells rapidly and transiently converted low metastatic SCA1- cells into highly metastatic SCA1+ cells via secreted oncostatin M (OSM) and IL-6. JAK inhibition prevented OSM/IL-6-induced SCA1+ population enrichment, while OSM/IL-6 depletion suppressed Tu-Gr1+CD11b+-induced SCA1+ population enrichment in vitro and metastasis in vivo. Moreover, chemotherapy-selected highly metastatic 4T1 cells maintained high SCA1+ positivity through autocrine IL-6 production, and in vitro JAK inhibition blunted SCA1 positivity and metastatic capacity. Importantly, Tu-Gr1+CD11b+ cells invoked a gene signature in tumor cells predicting shorter overall survival (OS), relapse-free survival (RFS), and lung metastasis in breast cancer patients. Collectively, our data identified OSM/IL-6/JAK as a clinically relevant paracrine/autocrine axis instigating breast cancer cell plasticity and triggering metastasis.
Collapse
Affiliation(s)
- Sanam Peyvandi
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Manon Bulliard
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Alev Yilmaz
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Annamaria Kauzlaric
- Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rachel Marcone
- Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lisa Haerri
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Oriana Coquoz
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yu-Ting Huang
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nathalie Duffey
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laetitia Gafner
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Girieca Lorusso
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nadine Fournier
- Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Qiang Lan
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Curzio Rüegg
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Higgins G, Higgins F, Peres J, Lang DM, Abdalrahman T, Zaman MH, Prince S, Franz T. Intracellular mechanics and TBX3 expression jointly dictate the spreading mode of melanoma cells in 3D environments. Exp Cell Res 2023; 428:113633. [PMID: 37172754 DOI: 10.1016/j.yexcr.2023.113633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Cell stiffness and T-box transcription factor 3 (TBX3) expression have been identified as biomarkers of melanoma metastasis in 2D environments. This study aimed to determine how mechanical and biochemical properties of melanoma cells change during cluster formation in 3D environments. Vertical growth phase (VGP) and metastatic (MET) melanoma cells were embedded in 3D collagen matrices of 2 and 4 mg/ml collagen concentrations, representing low and high matrix stiffness. Mitochondrial fluctuation, intracellular stiffness, and TBX3 expression were quantified before and during cluster formation. In isolated cells, mitochondrial fluctuation decreased and intracellular stiffness increased with increase in disease stage from VGP to MET and increased matrix stiffness. TBX3 was highly expressed in soft matrices but diminished in stiff matrices for VGP and MET cells. Cluster formation of VGP cells was excessive in soft matrices but limited in stiff matrices, whereas for MET cells it was limited in soft and stiff matrices. In soft matrices, VGP cells did not change the intracellular properties, whereas MET cells exhibited increased mitochondrial fluctuation and decreased TBX3 expression. In stiff matrices, mitochondrial fluctuation and TBX3 expression increased in VGP and MET, and intracellular stiffness increased in VGP but decreased in MET cells. The findings suggest that soft extracellular environments are more favourable for tumour growth, and high TBX3 levels mediate collective cell migration and tumour growth in the earlier VGP disease stage but play a lesser role in the later metastatic stage of melanoma.
Collapse
Affiliation(s)
- Ghodeejah Higgins
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Faatiemah Higgins
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Dirk M Lang
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Tamer Abdalrahman
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Thomas Franz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa; Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
3
|
Liu W, Yu C, Li J, Fang J. The Roles of EphB2 in Cancer. Front Cell Dev Biol 2022; 10:788587. [PMID: 35223830 PMCID: PMC8866850 DOI: 10.3389/fcell.2022.788587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptors and their Eph receptor-interacting (ephrin) ligands together constitute a vital cell communication system with diverse roles. Experimental evidence revealed Eph receptor bidirectional signaling with both tumor-promoting and tumor-suppressing activities in different cancer types and surrounding environment. Eph receptor B2 (EphB2), an important member of the Eph receptor family, has been proved to be aberrantly expressed in many cancer types, such as colorectal cancer, gastric cancer and hepatocellular carcinoma, resulting in tumor occurrence and progression. However, there are no reviews focusing on the dual roles of EphB2 in cancer. Thus, in this paper we systematically summarize and discuss the roles of EphB2 in cancer. Firstly, we review the main biological features and the related signaling regulatory mechanisms of EphB2, and then we summarize the roles of EphB2 in cancer through current studies. Finally, we put forward our viewpoint on the future prospects of cancer research focusing on EphB2, especially with regard to the effects of EphB2 on tumor immunity.
Collapse
Affiliation(s)
- Wei Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Chengpeng Yu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiwei Fang
- Department of Geriatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Jiwei Fang,
| |
Collapse
|
4
|
Anderton M, van der Meulen E, Blumenthal MJ, Schäfer G. The Role of the Eph Receptor Family in Tumorigenesis. Cancers (Basel) 2021; 13:cancers13020206. [PMID: 33430066 PMCID: PMC7826860 DOI: 10.3390/cancers13020206] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 01/20/2023] Open
Abstract
Simple Summary The Eph receptor family is implicated in both tumour promotion and suppression, depending on the tissue-specific context of available receptor interactions with ligands, adaptor proteins and triggered downstream signalling pathways. This complex interplay has not only consequences for tumorigenesis but also offers a basis from which new cancer-targeting strategies can be developed. This review comprehensively summarises the current knowledge of Eph receptor implications in oncogenesis in a tissue- and receptor-specific manner, with the aim to develop a better understanding of Eph signalling pathways for potential targeting in novel cancer therapies. Abstract The Eph receptor tyrosine kinase family, activated by binding to their cognate ephrin ligands, are important components of signalling pathways involved in animal development. More recently, they have received significant interest due to their involvement in oncogenesis. In most cases, their expression is altered, affecting the likes of cell proliferation and migration. Depending on the context, Eph receptors have the potential to act as both tumour promoters and suppressors in a number of cancers, such as breast cancer, colorectal cancer, lung cancer, prostate cancer, brain cancer and Kaposi’s sarcoma (KS), the latter being intrinsically linked to EphA2 as this is the receptor used for endothelial cell entry by the Kaposi’s sarcoma-associated herpesvirus (KSHV). In addition, EphA2 deregulation is associated with KS, indicating that it has a dual role in this case. Associations between EphA2 sequence variation and KSHV infection/KS progression have been detected, but further work is required to formally establish the links between EphA2 signalling and KS oncogenesis. This review consolidates the available literature of the role of the Eph receptor family, and particularly EphA2, in tumorigenesis, with the aim to develop a better understanding of Eph signalling pathways for potential targeting in novel cancer therapies.
Collapse
Affiliation(s)
- Meg Anderton
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory, Cape Town 7925, South Africa; (M.A.); (E.v.d.M.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Emma van der Meulen
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory, Cape Town 7925, South Africa; (M.A.); (E.v.d.M.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Melissa J. Blumenthal
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory, Cape Town 7925, South Africa; (M.A.); (E.v.d.M.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Correspondence: (M.J.B.); (G.S.); Tel.: +27-21-4047630 (M.J.B.)
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory, Cape Town 7925, South Africa; (M.A.); (E.v.d.M.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Correspondence: (M.J.B.); (G.S.); Tel.: +27-21-4047630 (M.J.B.)
| |
Collapse
|
5
|
Prognostic Values of Transforming Growth Factor-Beta Subtypes in Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2170606. [PMID: 32351985 PMCID: PMC7174935 DOI: 10.1155/2020/2170606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 12/27/2022]
Abstract
Purpose To explore the potential role of the transforming growth factor-beta (TGF-β) subtypes in the prognosis of ovarian cancer patients. Materials and Methods. The prognostic roles of individual TGF-β subtypes in women with ovarian cancer were retrieved from the Kaplan-Meier plotter (KM plotter) database. In addition, the Oncomine database and immunohistochemistry were used to observe the mRNA and protein expression of TGF-β subtypes between human ovarian carcinoma and normal ovarian samples, respectively. Results TGF-β1 and TGF-β4 were totally uncorrelated with survival outcomes in women with ovarian cancer. Increased TGF-β2 and TGF-β3 mRNA expression was markedly related to unfavorable prognosis, especially in women with serous, poorly differentiated, and late-stage ovarian carcinoma. High expression levels of TGF-β2 were related to worse progression-free survival (PFS) while TGF-β3 was linked to unfavorable overall survival (OS) and PFS in women with TP53-mutated ovarian cancer. TGF-β2 was associated with poor OS and PFS from treatment with chemotherapy with platins, Taxol, or a platin+Taxol. However, overexpression of TGF-β3 was associated with poor OS from the use of platins and poor PFS of Taxol or a platin+Taxol in women with ovarian carcinoma. Furthermore, the expression of TGF-β2 mRNA and protein was higher but only TGF-β3 mRNA expression was higher in cancerous tissues than in normal ovarian samples. Conclusion Higher expression of TGF-β2 functioned as a significant predictor of poor prognosis in women with ovarian cancer, especially those with TP53 mutations or who were undergoing chemotherapy with platins, Taxol, or a platin+Taxol.
Collapse
|
6
|
Mu X, Huang O, Jiang M, Xie Z, Chen D, Zhang X. Prognostic value of ephrin B receptors in breast cancer: An online survival analysis using the microarray data of 3,554 patients. Oncol Lett 2019; 18:742-750. [PMID: 31289549 PMCID: PMC6540016 DOI: 10.3892/ol.2019.10363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 04/17/2019] [Indexed: 01/19/2023] Open
Abstract
The roles of Ephrin B (EphB) receptors in cancer are relatively unknown as these receptors are associated with complex signaling pathways. A limited number of studies have investigated the association between EphB receptors and prognosis. Using the Kaplan-Meier plotter database, the present study investigated the associations between the mRNA expression levels of five EphB receptors and the outcomes of 3,554 patients with breast cancer who had been followed-up for 20 years. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated to assess the relative risk of survival. The results demonstrated that high mRNA expression levels of EphB2 (HR, 0.74; 95% CI, 0.66-0.84; P=2.1×10-6), EphB4 (HR, 0.82; 95% CI, 0.72-0.93; P=0.0023) and EphB6 (HR, 0.69; 95% CI, 0.61-0.78; P=3×10-9) were significantly associated with improved survival, while a high mRNA expression level of EphB3 (HR, 1.14; 95% CI, 1.01-1.28; P=0.029) was associated with worse survival for patients with breast cancer. High expression levels of all EphB receptors, including EphB1 (HR, 1.4; 95% CI, 1.02-1.94; P=0.039), EphB2 (HR, 1.34; 95% CI, 1.07-1.67; P=0.011), EphB3 (HR, 1.39; 95% CI, 1.11-1.73, P=0.0038), EphB4 (HR, 1.33; 95% CI, 1.06-1.67; P=0.013) and EphB6 (HR, 1.32; 95% CI, 1.05-1.65; P=0.016), were associated with an increased risk of mortality in patients with lymph-node-positive breast cancer. High mRNA expression levels of EphB1 were not associated with survival for all patients with breast cancer (HR, 0.85; 95% CI, 0.72-1.01; P=0.058). The results of the present suggested that EphB receptors may be useful as prognostic biomarkers of breast cancer.
Collapse
Affiliation(s)
- Xin Mu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Ou Huang
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Zuoquan Xie
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200025, P.R. China
| | - Debo Chen
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xi Zhang
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
7
|
Inagaki Y, Tokunaga T, Yanai M, Wu D, Huang J, Nagase H, Fukuda N, Ozaki T, Soma M, Fujiwara K. Silencing of EPHB2 promotes the epithelial-mesenchymal transition of skin squamous cell carcinoma-derived A431 cells. Oncol Lett 2019; 17:3735-3742. [PMID: 30881495 PMCID: PMC6403506 DOI: 10.3892/ol.2019.10019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/31/2019] [Indexed: 11/05/2022] Open
Abstract
Erythropoietin-producing hepatocellular (Eph) receptors and their ligand ephrins serve crucial roles in the interactions among epithelial cells. Eph receptor/ephrin signaling regulates cell functions, including proliferation, differentiation and migration, via these cell-cell interactions. We reported previously that EPHB2, a member of the Eph receptor family, was highly expressed in chemically induced cutaneous squamous cell carcinoma (cSCC) tissues in mice. Although the higher expression level of EPHB2 has been observed in various human cancers, its roles in the development and progression of cancers are still unclear. In the present study, the functional implications of EPHB2 in the acquisition of malignant phenotypes of cSCC cells was investigated. Silencing of EPHB2 in the human cSCC cell line A431 induced epithelial-mesenchymal transition (EMT)-like morphological changes accompanied by a significant upregulation of epithelial-mesenchymal transition-associated genes such as zinc finger E-box binding homeobox 1/2. In addition, silencing of EPHB2 suppressed anchorage-independent cell growth under 3D culture conditions. Consistent with these observations, EPHB2 exhibited higher levels of expression in tumor spheres formed under 3D culture conditions than in cells cultured in adherent form, and the expression pattern of EMT markers indicated that EMT was suppressed in tumor spheres. The results of the present study indicated that EPHB2 serves a pivotal role in promoting the anchorage-independent growth of A431 cells through the suppression of EMT.
Collapse
Affiliation(s)
- Yoshinori Inagaki
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Tomohiko Tokunaga
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Mitsuru Yanai
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Dan Wu
- Department of Oncology, The 5th Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Jiyi Huang
- Department of Nephropathy, The 5th Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Hiroki Nagase
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
| | - Noboru Fukuda
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Toshinori Ozaki
- Department of DNA Damage Signaling, Research Center, The 5th Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Masayoshi Soma
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan.,Department of Internal Medicine, Sasaki Foundation Kyoundo Hospital, Chiyoda, Tokyo 101-0062, Japan
| | - Kyoko Fujiwara
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan.,Department of Anatomy, Nihon University School of Dentistry, Chiyoda, Tokyo 101-8310, Japan
| |
Collapse
|
8
|
Elliott B, Zackery DL, Eaton VA, Jones RT, Abebe F, Ragin CC, Khan SA. Ethnic differences in TGFβ-signaling pathway may contribute to prostate cancer health disparity. Carcinogenesis 2018; 39:546-555. [PMID: 29474521 DOI: 10.1093/carcin/bgy020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/02/2018] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies show that the incidence and mortality rates of prostate cancer (PCa) are significantly higher in African-American (AA) men when compared with Caucasian (CA) men in the United States. Transforming growth factor β (TGFβ) signaling pathway is linked to health disparities in AAs. Recent studies suggest a role of TGFβ3 in cancer metastases and its effect on the migratory and invasive behavior; however, its role in PCa in AA men has not been studied. We determined the circulating levels of TGFβ3 in AA and CA men diagnosed with PCa using ELISA. We analyzed serum samples from both AA and CA men diagnosed with and without PCa. We show that AA PCa patients had higher levels of TGFβ3 protein compared with AA controls and CA patients. In fact, TGFβ3 protein levels in serum were higher in AA men without PCa compared with the CA population, which may correlate with more aggressive disease seen in AA men. Studies on AA-derived PCa cell lines revealed that TGFβ3 protein levels were also higher in these cells compared with CA-derived PCa cell lines. Our studies also reveal that TGFβ does not inhibit cell proliferation in AA-derived PCa cell lines, but it does induce migration and invasion through activation of PI3K pathway. We suggest that increased TGFβ3 levels are responsible for development of aggressive PCa in AA patients as a consequence of development of resistance to inhibitory effects of TGFβ on cell proliferation and induction of invasive metastatic behavior.
Collapse
Affiliation(s)
- Bethtrice Elliott
- Center for Cancer Research and Therapeutic Development, Atlanta, GA, USA
| | - DeAdra L Zackery
- Center for Cancer Research and Therapeutic Development, Atlanta, GA, USA
| | - Vanessa A Eaton
- Center for Cancer Research and Therapeutic Development, Atlanta, GA, USA
| | - Re'Josef T Jones
- Center for Cancer Research and Therapeutic Development, Atlanta, GA, USA
| | - Fisseha Abebe
- Center for Cancer Research and Therapeutic Development, Atlanta, GA, USA.,Department of Mathematical Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Camille C Ragin
- Fox Chase Cancer Center-Temple Health, Philadelphia, PA, USA
| | - Shafiq A Khan
- Center for Cancer Research and Therapeutic Development, Atlanta, GA, USA
| |
Collapse
|
9
|
Abstract
A defining feature of HIV-associated neurocognitive disorder (HAND) is the loss of excitatory synaptic connections. Synaptic changes that occur during exposure to HIV appear to result, in part, from a homeostatic scaling response. Here we discuss the mechanisms of these changes from the perspective that they might be part of a coping mechanism that reduces synapses to prevent excitotoxicity. In transgenic animals expressing the HIV proteins Tat or gp120, the loss of synaptic markers precedes changes in neuronal number. In vitro studies have shown that HIV-induced synapse loss and cell death are mediated by distinct mechanisms. Both in vitro and animal studies suggest that HIV-induced synaptic scaling engages new mechanisms that suppress network connectivity and that these processes might be amenable to therapeutic intervention. Indeed, pharmacological reversal of synapse loss induced by HIV Tat restores cognitive function. In summary, studies indicate that there are temporal, mechanistic and pharmacological features of HIV-induced synapse loss that are consistent with homeostatic plasticity. The increasingly well delineated signaling mechanisms that regulate synaptic scaling may reveal pharmacological targets suitable for normalizing synaptic function in chronic neuroinflammatory states such as HAND.
Collapse
Affiliation(s)
- Matthew V Green
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Jonathan D Raybuck
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Xinwen Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Mariah M Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
EphB2 receptor tyrosine kinase promotes hepatic fibrogenesis in mice via activation of hepatic stellate cells. Sci Rep 2018; 8:2532. [PMID: 29416088 PMCID: PMC5803231 DOI: 10.1038/s41598-018-20926-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 01/26/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is the result of an excessive wound-healing response subsequent to chronic liver injury. A feature of liver fibrogenesis is the secretion and deposition of extracellular matrix proteins by activated hepatic stellate cells (HSCs). Here we report that upregulation of EphB2 is a prominent feature of two mouse models of hepatic fibrosis and also observed in humans with liver cirrhosis. EphB2 is upregulated and activated in mouse HSCs following chronic carbon tetrachloride (CCl4) exposure. Moreover, we show that EphB2 deficiency attenuates liver fibrosis and inflammation and this is correlated with an overall reduction in pro-fibrotic markers, inflammatory chemokines and cytokines. In an in vitro system of HSCs activation we observed an impaired proliferation and sub-optimal differentiation into fibrogenic myofibroblasts of HSCs isolated from EphB2-/- mice compared to HSCs isolated from wild type mice. This supports the hypothesis that EphB2 promotes liver fibrosis partly via activation of HSCs. Cellular apoptosis which is generally observed during the regression of liver fibrogenesis was increased in liver specimens of CCl4-treated EphB2-/- mice compared to littermate controls. This data is suggestive of an active repair/regeneration system in the absence of EphB2. Altogether, our data validate this novel pro-fibrotic function of EphB2 receptor tyrosine kinase.
Collapse
|
11
|
Husa AM, Magić Ž, Larsson M, Fornander T, Pérez-Tenorio G. EPH/ephrin profile and EPHB2 expression predicts patient survival in breast cancer. Oncotarget 2017; 7:21362-80. [PMID: 26870995 PMCID: PMC5008291 DOI: 10.18632/oncotarget.7246] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/23/2016] [Indexed: 11/25/2022] Open
Abstract
The EPH and ephrins function as both receptor and ligands and the output on their complex signaling is currently investigated in cancer. Previous work shows that some EPH family members have clinical value in breast cancer, suggesting that this family could be a source of novel clinical targets. Here we quantified the mRNA expression levels of EPH receptors and their ligands, ephrins, in 65 node positive breast cancer samples by RT-PCR with TaqMan® Micro Fluidics Cards Microarray. Upon hierarchical clustering of the mRNA expression levels, we identified a subgroup of patients with high expression, and poor clinical outcome. EPHA2, EPHA4, EFNB1, EFNB2, EPHB2 and EPHB6 were significantly correlated with the cluster groups and particularly EPHB2 was an independent prognostic factor in multivariate analysis and in four public databases. The EPHB2 protein expression was also analyzed by immunohistochemistry in paraffin embedded material (cohort 2). EPHB2 was detected in the membrane and cytoplasmic cell compartments and there was an inverse correlation between membranous and cytoplasmic EPHB2. Membranous EPHB2 predicted longer breast cancer survival in both univariate and multivariate analysis while cytoplasmic EPHB2 indicated shorter breast cancer survival in univariate analysis. Concluding: the EPH/EFN cluster analysis revealed that high EPH/EFN mRNA expression is an independent prognostic factor for poor survival. Especially EPHB2 predicted poor breast cancer survival in several materials and EPHB2 protein expression has also prognostic value depending on cell localization.
Collapse
Affiliation(s)
- Anna-Maria Husa
- Department of Clinical and Experimental Medicine, Division of Oncology, Linköping University, Linköping, Sweden.,Current address: CCRI, Children's Cancer Research Institute, St. Anna Kinderkrebsforschung e.V., Vienna, Austria
| | - Željana Magić
- Department of Clinical and Experimental Medicine, Division of Oncology, Linköping University, Linköping, Sweden
| | - Malin Larsson
- Bioinformatics Infrastructure for Life Sciences (BILS) and Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Tommy Fornander
- Department of Oncology, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - Gizeh Pérez-Tenorio
- Department of Clinical and Experimental Medicine, Division of Oncology, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Tevis KM, Colson YL, Grinstaff MW. Embedded Spheroids as Models of the Cancer Microenvironment. ADVANCED BIOSYSTEMS 2017; 1:1700083. [PMID: 30221187 PMCID: PMC6135264 DOI: 10.1002/adbi.201700083] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To more accurately study the complex mechanisms behind cancer invasion, progression, and response to treatment, researchers require models that replicate both the multicellular nature and 3D stromal environment present in an in vivo tumor. Multicellular aggregates (i.e., spheroids) embedded in an extracellular matrix mimic are a prevalent model. Recently, quantitative metrics that fully utilize the capability of spheroids are described along with conventional experiments, such as invasion into a matrix, to provide additional details and insights into the underlying cancer biology. The review begins with a discussion of the salient features of the tumor microenvironment, introduces the early work on non-embedded spheroids as tumor models, and then concentrates on the successes achieved with the study of embedded spheroids. Examples of studies include cell movement, drug response, tumor cellular heterogeneity, stromal effects, and cancer progression. Additionally, new methodologies and those borrowed from other research fields (e.g., vascularization and tissue engineering) are highlighted that expand the capability of spheroids to aid future users in designing their cancer-related experiments. The convergence of spheroid research among the various fields catalyzes new applications and leads to a natural synergy. Finally, the review concludes with a reflection and future perspectives for cancer spheroid research.
Collapse
Affiliation(s)
- Kristie M. Tevis
- Departments of Biomedical Engineering, Chemistry, and Medicine, Metcalf Center for Science and Engineering, Boston University, Boston, MA 02215
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02215
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Metcalf Center for Science and Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
13
|
Ungefroren H, Witte D, Lehnert H. The role of small GTPases of the Rho/Rac family in TGF-β-induced EMT and cell motility in cancer. Dev Dyn 2017; 247:451-461. [DOI: 10.1002/dvdy.24505] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine; University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, and University of Lübeck; Lübeck Germany
- Department of General and Thoracic Surgery; UKSH, Campus Kiel; Kiel Germany
| | - David Witte
- First Department of Medicine; University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, and University of Lübeck; Lübeck Germany
| | - Hendrik Lehnert
- First Department of Medicine; University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, and University of Lübeck; Lübeck Germany
| |
Collapse
|
14
|
Melzer C, Hass R, von der Ohe J, Lehnert H, Ungefroren H. The role of TGF-β and its crosstalk with RAC1/RAC1b signaling in breast and pancreas carcinoma. Cell Commun Signal 2017; 15:19. [PMID: 28499439 PMCID: PMC5429551 DOI: 10.1186/s12964-017-0175-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022] Open
Abstract
This article focusses on the role of TGF-β and its signaling crosstalk with the RHO family GTPases RAC1 and RAC1b in the progression of breast and pancreatic carcinoma. The aggressive nature of these tumor types is mainly due to metastatic dissemination. Metastasis is facilitated by desmoplasia, a peculiar tumor microenvironment and the ability of the tumor cells to undergo epithelial-mesenchymal transition (EMT) and to adopt a motile and invasive phenotype. These processes are controlled entirely or in part by TGF-β and the small RHO GTPase RAC1 with both proteins acting as tumor promoters in late-stage cancers. Data from our and other studies point to signaling crosstalk between TGF-β and RAC1 and the related isoform, RAC1b, in pancreatic and mammary carcinoma cells. Based on the exciting observation that RAC1b functions as an endogenous inhibitor of RAC1, we propose a model on how the relative abundance or activity of RAC1 and RAC1b in the tumor cells may determine their responses to TGF-β and, ultimately, the metastatic capacity of the tumor.
Collapse
Affiliation(s)
- Catharina Melzer
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Hendrik Lehnert
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.,First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Hendrik Ungefroren
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany. .,First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany. .,Department of General and Thoracic Surgery, UKSH, Campus Kiel, Kiel, Germany.
| |
Collapse
|
15
|
Schötterl S, Hübner M, Armento A, Veninga V, Wirsik NM, Bernatz S, Lentzen H, Mittelbronn M, Naumann U. Viscumins functionally modulate cell motility-associated gene expression. Int J Oncol 2017; 50:684-696. [DOI: 10.3892/ijo.2017.3838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/19/2016] [Indexed: 11/05/2022] Open
|
16
|
Odenthal J, Takes R, Friedl P. Plasticity of tumor cell invasion: governance by growth factors and cytokines. Carcinogenesis 2016; 37:1117-1128. [PMID: 27664164 DOI: 10.1093/carcin/bgw098] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/15/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023] Open
Abstract
Tumor cell migration, the basis for metastatic dissemination, is an adaptive process which depends upon coordinated cell interaction with the environment, influencing cell-matrix and cell-cell adhesion, cytoskeletal dynamics and extracellular matrix remodeling. Growth factors and cytokines, released within the reactive tumor microenvironment and their intracellular effector signals strongly impact mechanocoupling functions in tumor cells and thereby control the mode and extent of tumor invasion, including collective and single-cell migration and their interconversions. Besides their role in controlling tumor cell growth and survival, cytokines and growth factors thus provide complex orchestration of the metastatic cascade and tumor cell adaptation to environmental challenge. We here review the mechanisms by which growth factors and cytokines control the reciprocal interactions between tumor cells and their microenvironment, and the consequences for the efficacy and plasticity of invasion programs and metastasis.
Collapse
Affiliation(s)
- Julia Odenthal
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands.,Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Robert Takes
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands, .,Department of Genitourinary Medical Oncology - Research, Houston, TX 77030, USA and.,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
17
|
p53MutaGene: an online tool to estimate the effect of p53 mutational status on gene regulation in cancer. Cell Death Dis 2016; 7:e2148. [PMID: 26986515 PMCID: PMC4823943 DOI: 10.1038/cddis.2016.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 01/07/2023]
Abstract
p53MutaGene is the first online tool for statistical validation of hypotheses regarding the effect of p53 mutational status on gene regulation in cancer. This tool is based on several large-scale clinical gene expression data sets and currently covers breast, colon and lung cancers. The tool detects differential co-expression patterns in expression data between p53 mutated versus p53 normal samples for the user-specified genes. Statistically significant differential co-expression for a gene pair is indicative that regulation of two genes is sensitive to the presence of p53 mutations. p53MutaGene can be used in ‘single mode' where the user can test a specific pair of genes or in ‘discovery mode' designed for analysis of several genes. Using several examples, we demonstrate that p53MutaGene is a useful tool for fast statistical validation in clinical data of p53-dependent gene regulation patterns. The tool is freely available at http://www.bioprofiling.de/tp53
Collapse
|
18
|
Wu AM, Ni WF, Huang ZY, Li QL, Wu JB, Xu HZ, Yin LH. Analysis of differentially expressed lncRNAs in differentiation of bone marrow stem cells into neural cells. J Neurol Sci 2015; 351:160-167. [PMID: 25820029 DOI: 10.1016/j.jns.2015.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/11/2015] [Accepted: 03/05/2015] [Indexed: 12/24/2022]
Abstract
Many studies have reported micro RNAs involved in the differentiation of bone marrow mesenchymal stem cells (BMSCs) into neural cells; however, the roles of long non-coding RNAs (lncRNAs) in the differentiation of BMSCs into neural cells remain poorly understood. We used microarray assays to compare the lncRNA and messenger RNA (mRNA) expression profiles in BMSCs and neural-induced BMSCs. We found a total of 24 lncRNAs and 738 mRNAs that were upregulated and 32 lncRNAs and 682 mRNAs that were downregulated in samples induced for 3h; 27 lncRNAs and 864 mRNAs that were upregulated and 37 lncRNAs and 968 mRNAs that were downregulated in 6h samples; and 23 lncRNAs and 1159 mRNAs that were upregulated or downregulated in both the 3h and 6h samples. For 23 differentially lncRNAs and 83 differentially mRNAs, 256 matched lncRNA-mRNA pairs were found. GO (Gene ontology) analysis showed that these lncRNAs were associated with biological processes, cellular components, and molecular functions. Twenty-five pathways were identified by pathway analysis. Then, RT-qPCR validation of the differentially expressed H19, Esco2, Pcdhb18, and RGD1560277 genes confirmed the microarray data. Our study revealed the expression patterns of lncRNAs in the differentiation of BMSCs into neural cells, and many lncRNAs were differentially expressed in induced BMSCs, suggesting that they may play key roles in processes of differentiation. Our findings may promote the use of BMSCs to treat neurodegenerative diseases and trauma.
Collapse
Affiliation(s)
- Ai-Min Wu
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, 2# Fuxue Road, Wenzhou 325027, People's Republic of China; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, 109# XueYuan Western Road, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Wen-Fei Ni
- The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, 109# XueYuan Western Road, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Zhe-Yu Huang
- The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, 109# XueYuan Western Road, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Qing-Long Li
- The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, 109# XueYuan Western Road, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Jian-Bo Wu
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, 2# Fuxue Road, Wenzhou 325027, People's Republic of China
| | - Hua-Zi Xu
- The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, 109# XueYuan Western Road, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Li-Hui Yin
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, 2# Fuxue Road, Wenzhou 325027, People's Republic of China.
| |
Collapse
|
19
|
Wang F, Lv P, Liu X, Zhu M, Qiu X. microRNA-214 enhances the invasion ability of breast cancer cells by targeting p53. Int J Mol Med 2015; 35:1395-402. [PMID: 25738546 DOI: 10.3892/ijmm.2015.2123] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/12/2015] [Indexed: 11/05/2022] Open
Abstract
Breast cancer (BC) is the foremost cause of cancer-related mortality in women worldwide. An increasing number of studies has confirmed that microRNAs (miRNAs or miRs) play an important role in the development and progression of BC. microRNA-214 (miR-214), a member of the miRNA family, has been demonstrated to function as both a tumor suppressor and oncogene in various types of human cancer. However, the biological function of miR-214 in BC remains unclear. The present study was designed to investigate the potential role of miR-214 in the development and progression of BC. Our results revealed that miR-214 expression was significantly increased in the BC tissues compared with the adjacent benign tissues, and that the upregulation of miR-214 was significantly associated with the invasion ability of the BC cells. Furthermore, p53, which has been reported to be downregulated in BC, was predicted to be the target gene of miR-214 using bioinformatics software programs. Moreover, luciferase reporter vectors were constructed and it was confirmed that p53 is a target of miR-214. Following the transfection of miR-214 into BC cells, we found that the overexpression of miR-214 markedly enhanced cell invasion through the downregulation of p53 expression. By contrast, the overexpression of p53 abrogated the effects of miR-214. In conclusion, this study demonstrates that miR-214 functions as an oncogene in BC, at least partly by promoting cell invasion through the downregulation of p53. Therefore, miR-214 may be a potential therapeutic target for the treatment of BC.
Collapse
Affiliation(s)
- Fang Wang
- Second Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pengwei Lv
- Second Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xinwei Liu
- Second Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mingzhi Zhu
- Second Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xinguang Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|