1
|
Ding Q, Weng Y, Li Y, Lin W, Lin X, Lin T, Yang H, Xu W, Wang J, Ying H, Qiu S. Inhibition of PNCK inflames tumor microenvironment and sensitizes head and neck squamous cell carcinoma to immune checkpoint inhibitors. J Immunother Cancer 2024; 12:e009893. [PMID: 39395840 PMCID: PMC11474745 DOI: 10.1136/jitc-2024-009893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND The landscape of the tumor microenvironment (TME) is intricately linked to the development of head and neck squamous cell carcinoma (HNSCC) and significantly influences immunotherapy efficacy. Recent research has underscored the pivotal role of PNCK in cancer progression, yet its relationship with immunotherapy remains elusive. METHODS We leveraged sequencing data from our cohort and public databases to evaluate PNCK expression, prognostic significance, and immune efficacy prediction. In vitro and in vivo experiments explored the role of PNCK in HNSCC progression. Animal models assessed the therapeutic effects and survival benefits of PNCK knockdown combined with immune checkpoint inhibitors (ICIs). Single-cell transcriptomics analyzed the impact of PNCK on the TME, and proteomic studies elucidated the mechanisms. RESULTS PNCK exerts multifaceted critical roles in the progression of HNSCC. Lower PNCK expression is associated with improved prognosis, enhanced immune cell infiltration, and increased responsiveness to ICIs. Conversely, PNCK promotes HNSCC cell migration, invasion, proliferation, colony formation, zebrafish angiogenesis, and tumor growth in mice. Moreover, targeting PNCK enhances sensitivity to ICIs and leads to significant alterations in the T-cell and B-cell ratios within the TME. These changes are attributed to the inhibition of nuclear transcription of PNCK-phosphorylated ZEB1, which restricts cytokine release and inflames the immune microenvironment to regulate the TME. CONCLUSIONS Inhibition of PNCK may be a potential strategy for treating HNSCC, as it may activate the immune response and improve the TME, thereby enhancing the efficacy of immunotherapy for HNSCC patients.
Collapse
Affiliation(s)
- Qin Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Youliang Weng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Ying Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Wanzun Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Xiaosan Lin
- Department of Stomatology, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Tingting Lin
- Department of Medical and Radiation Oncology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, China
| | - Hanxuan Yang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Wenqian Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Jianming Wang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Hongmei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Naghib SM, Ahmadi B, Mikaeeli Kangarshahi B, Mozafari MR. Chitosan-based smart stimuli-responsive nanoparticles for gene delivery and gene therapy: Recent progresses on cancer therapy. Int J Biol Macromol 2024; 278:134542. [PMID: 39137858 DOI: 10.1016/j.ijbiomac.2024.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Recent cancer therapy research has found that chitosan (Ch)-based nanoparticles show great potential for targeted gene delivery. Chitosan, a biocompatible and biodegradable polymer, has exceptional properties, making it an ideal carrier for therapeutic genes. These nanoparticles can respond to specific stimuli like pH, temperature, and enzymes, enabling precise delivery and regulated release of genes. In cancer therapy, these nanoparticles have proven effective in delivering genes to tumor cells, slowing tumor growth. Adjusting the nanoparticle's surface, encapsulating protective agents, and using targeting ligands have also improved gene delivery efficiency. Smart nanoparticles based on chitosan have shown promise in improving outcomes by selectively releasing genes in response to tumor conditions, enhancing targeted delivery, and reducing off-target effects. Additionally, targeting ligands on the nanoparticles' surface increases uptake and effectiveness. Although further investigation is needed to optimize the structure and composition of these nanoparticles and assess their long-term safety, these advancements pave the way for innovative gene-focused cancer therapies.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Bahar Ahmadi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
3
|
Villalobo A. Regulation of ErbB Receptors by the Ca2+ Sensor Protein Calmodulin in Cancer. Biomedicines 2023; 11:biomedicines11030661. [PMID: 36979639 PMCID: PMC10045772 DOI: 10.3390/biomedicines11030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Overexpression and mutations of the epidermal growth factor receptor (EGFR/ErbB1/HER1) and other tyrosine kinase receptors of the ErbB family (ErbB2/HER2, ErbB3/HER3 and ErbB4/HER4) play an essential role in enhancing the proliferation, the migratory capacity and invasiveness of many tumor cells, leading to cancer progression and increased malignancy. To understand these cellular processes in detail is essential to understand at a molecular level the signaling pathways and regulatory mechanisms controlling these receptors. In this regard, calmodulin (CaM) is a Ca2+-sensor protein that directly interacts with and regulates ErbB receptors, as well as some CaM-dependent kinases that also regulate these receptors, particularly EGFR and ErbB2, adding an additional layer of CaM-dependent regulation to this system. In this short review, an update of recent advances in this area is presented, covering the direct action of Ca2+/CaM on the four ErbB family members mostly in tumor cells and the indirect action of Ca2+/CaM on the receptors via CaM-regulated kinases. It is expected that further understanding of the CaM-dependent mechanisms regulating the ErbB receptors in future studies could identify new therapeutic targets in these systems that could help to control or delay cancer progression.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area-Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
| |
Collapse
|
4
|
Tong Q, Qin W, Li Z, Liu C, Wang Z, Chu Y, Xu X. SLC12A5 promotes hepatocellular carcinoma growth and ferroptosis resistance by inducing ER stress and cystine transport changes. Cancer Med 2023; 12:8526-8541. [PMID: 36645171 PMCID: PMC10134347 DOI: 10.1002/cam4.5605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has a poor prognosis and new effective treatments are needed. SLC12A5 plays important roles in multiple complex pathological states and is overexpressed in a variety of malignancies. However, the effects of SLC12A5 in HCC have not been determined. METHODS SLC12A5 expression was assessed by immunostaining and western blotting. A cell viability assay was used to detect cell proliferation. Flow cytometry was used to evaluate the intracellular calcium concentration and cell cycle. Ferroptosis was detected by transmission electron microscopy, lipid peroxidation, and glutathione assays. Subcutaneous tumor formation experiments were used to validate the tumorigenic effect of SLC12A5 in vivo. RNA-seq was used to evaluate the molecular mechanisms underlying the effects of SLC12A5. The therapeutic efficacy of targeting SLC12A5 was assessed in a patient-derived xenograft (PDX) model. RESULTS High SLC12A5 expression was strongly associated with a poor clinical prognosis and promoted HCC growth. Mechanistically, SLC12A5 promoted ER stress to enhance calcium release and upregulated PNCK expression levels. Concomitantly, PNCK was significantly activated by calcium ions released from the ER. PNCK activated and induced the phosphorylation of PI3K/AKT/mTOR pathway components. Furthermore, SLC12A5 inhibited ferroptosis in HCC by upregulating the expression of xCT, a cystine transporter. CONCLUSION High SLC12A5 levels were correlated with a poor prognosis, promoted tumorigenesis, and inhibited ferroptosis in HCC. These findings suggested that SLC12A5 is a therapeutic target and provide insight into the link between ER stress and ferroptosis in HCC.
Collapse
Affiliation(s)
- Qing Tong
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato‐Biliary‐Pancreatic Surgery, Department of SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
- Department of Hepato‐Biliary‐Pancreatic SurgeryThe 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital)UrumqiChina
| | - Wei Qin
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato‐Biliary‐Pancreatic Surgery, Department of SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zheng‐Hao Li
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato‐Biliary‐Pancreatic Surgery, Department of SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Chun Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato‐Biliary‐Pancreatic Surgery, Department of SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zi‐Cheng Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato‐Biliary‐Pancreatic Surgery, Department of SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Yuan Chu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato‐Biliary‐Pancreatic Surgery, Department of SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Xun‐Di Xu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato‐Biliary‐Pancreatic Surgery, Department of SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
- Department of General SurgeryThe South China Hospital of Shenzhen UniversityShenzhenChina
| |
Collapse
|
5
|
Essegian DJ, Chavez V, Bustamante F, Schürer SC, Merchan JR. Cellular and molecular effects of PNCK, a non-canonical kinase target in renal cell carcinoma. iScience 2022; 25:105621. [PMID: 36465101 PMCID: PMC9713373 DOI: 10.1016/j.isci.2022.105621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/30/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is a fatal disease when advanced. While immunotherapy and tyrosine kinase inhibitor-based combinations are associated with improved survival, the majority of patients eventually succumb to the disease. Through a comprehensive pan-cancer, pan-kinome analysis of the Cancer Genome Atlas (TCGA), pregnancy-upregulated non-ubiquitous calcium-calmodulin-dependent kinase (PNCK), was identified as the most differentially overexpressed kinase in RCC. PNCK overexpression correlated with tumor stage, grade and poor survival. PNCK overexpression in RCC cells was associated with increased CREB phosphorylation, increased cell proliferation, and cell cycle progression. PNCK down-regulation, conversely, was associated with the opposite, in addition to increased apoptosis. Pathway analyses in PNCK knockdown cells showed significant down-regulation of hypoxia and angiogenesis pathways, as well as the modulation of the cell cycle, DNA damage, and apoptosis pathways. These results demonstrate for the first time the biological role of PNCK, an understudied kinase, in RCC and validate PNCK as a druggable target.
Collapse
Affiliation(s)
- Derek J. Essegian
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Valery Chavez
- Division of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Floritza Bustamante
- Division of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Stephan C. Schürer
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jaime R. Merchan
- Division of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
6
|
Construction of a Novel Clinical Stage-Related Gene Signature for Predicting Outcome and Immune Response in Hepatocellular Carcinoma. J Immunol Res 2022; 2022:6535009. [PMID: 35865652 PMCID: PMC9296277 DOI: 10.1155/2022/6535009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) with high heterogeneity is one of the most frequent malignant tumors. However, there were no studies to create a clinical stage-related gene signature for HCC patients. Differentially expressed genes (DEGs) associated with clinical stage of HCC were analyzed based on TCGA datasets. Functional enrichment analysis was carried out by the use of stage-related DEGs. Then, the least absolute shrinkage and selection operator (LASSO) regression and univariate Cox regression were performed to reduce the overfit and the number of genes for further analysis. Next, survival and ROC assays were carried out to demonstrate the model using TCGA. Functional analysis and immune microenvironment analysis related to stage-related DEGs were performed. Reverse transcriptase polymerase chain reaction (RT-PCR) and Cell Counting Kit-8 (CCK-8) assays were applied to examine the expression and function of PNCK in HCC. In this research, there were 21 DEGs between HCC specimens with stage (I-II) and HCC specimens with stage (III-IV), including 20 increased genes and 1 decreased genes. A novel seven-gene signature (including PITX2, PNCK, GLIS1, SCNN1G, MMP1, ZNF488, and SHISA9) was created for the prediction of outcomes of HCC patients. The ROC curves confirmed the prognostic value of the new model. Cox assays demonstrated that the seven-gene signature can independently forecast overall survival. The immune analysis revealed that patients with low risk score exhibited more immune activities. Moreover, we confirmed that PNCK expressions were distinctly increased in HCC, and its silence suppressed the proliferation of HCC cells. Overall, our research offered a robust and reliable gene signature which displayed an important value in the prediction of overall survival of HCC patients and might deliver more effective personalized therapies.
Collapse
|
7
|
Upregulation of PNCK Promotes Metastasis and Angiogenesis via Activating NF-κB/VEGF Pathway in Nasopharyngeal Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:8541582. [PMID: 35535310 PMCID: PMC9078829 DOI: 10.1155/2022/8541582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/12/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
Background Distant metastasis is the major cause of treatment failure in patients with nasopharyngeal carcinoma (NPC). Thus, the identification of the molecular mechanisms and the development of novel therapeutic strategies are important. Previous studies suggest that PNCK promotes tumor growth by suppressing PI3K/AKT/mTOR signaling in NPC. However, the underlying regulatory mechanism of PNCK for NPC invasion and metastasis remains unclear. Methods The PNCK expression level was evaluated in nonmetastatic and metastatic NPC specimens by mRNA sequencing and immunohistochemistry. In vitro migration and invasion and in vivo nude mouse metastasis model and zebrafish model were used to evaluate the effects of PNCK ectopic expression on the metastatic ability of NPC cells. Gene set enrichment and western blot analyses were used to investigate the PNCK downstream signaling pathway. Results Human metastatic NPC samples showed elevated PNCK expression at both mRNA and protein levels. Upregulated PNCK promoted in vitro NPC cell migration, invasion, and the formation of lung metastases; the vascular-labeled fluorescence signal increased in the in vivo zebrafish model. Mechanistically, pathway analysis showed that the upregulation of PNCK may promote cell metastasis by activating the NF-κB/VEGF signaling pathway. Conclusions These findings revealed the specific critical role of PNCK in promoting NPC metastasis and angiogenesis, which suggested that PNCK may have implications as a potential therapeutic target for individualized NPC treatment.
Collapse
|
8
|
He M, Wang X, Chen W, Zhang J, Xiong Y, Cao L, Zhang L, Zhao N, Yang Y, Wang L. PTPIP51 inhibits non-small-cell lung cancer by promoting PTEN-mediated EGFR degradation. Life Sci 2022; 297:120293. [DOI: 10.1016/j.lfs.2021.120293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
|
9
|
Cho YA, Choi S, Park S, Park CK, Ha SY. Expression of Pregnancy Up-regulated Non-ubiquitous Calmodulin Kinase (PNCK) in Hepatocellular Carcinoma. Cancer Genomics Proteomics 2021; 17:747-755. [PMID: 33099476 DOI: 10.21873/cgp.20229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIM Pregnancy up-regulated non-ubiquitous calmodulin kinase (PNCK) is a member of calmodulin kinase, and overexpression of PNCK with involvement in carcinogenesis have been reported in HER-2 amplified breast cancer, clear cell renal cell carcinoma and nasopharygeal carcinoma. However, the expression of PNCK and its clinical implication have not been elucidated in hepatocellular carcinoma (HCC). MATERIALS AND METHODS We investigated PNCK expression at both the protein and mRNA level using immunohistochemistry (IHC) and microarray gene expression profiling in HCC tissue samples, and evaluated its association with clinicopathological parameters and their potential prognostic significance. RESULTS High PNCK protein expression and high PNCK mRNA level was observed in 61.7% and 34.7% of total HCC cases, respectively. PNCK mRNA level was higher in tumor tissues than in background non-tumor tissues, and significantly correlated with protein expression by IHC. High PNCK expression was associated with higher Edmondson grade, intrahepatic metastasis, microvascular invasion and higher AFP levels. Patients with high PNCK expression showed shorter recurrence-free survival and disease-specific survival, and high mRNA expression of PNCK was an independent prognostic factor in disease-specific survival. CONCLUSION Up-regulation of PNCK expression as well as its association with poor prognosis was demonstrated in HCC. PNCK might be a prognostic biomarker of HCC, and could be a potential candidate therapeutic target.
Collapse
Affiliation(s)
- Yoon Ah Cho
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Sangjoon Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sujin Park
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Cheol-Keun Park
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Anatomic Pathology Reference Lab, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
11
|
Southekal S, Mishra NK, Guda C. Pan-Cancer Analysis of Human Kinome Gene Expression and Promoter DNA Methylation Identifies Dark Kinase Biomarkers in Multiple Cancers. Cancers (Basel) 2021; 13:cancers13061189. [PMID: 33801837 PMCID: PMC8001681 DOI: 10.3390/cancers13061189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Kinases are a group of intracellular signaling molecules that play critical roles in various biological processes. Even though kinases comprise one of the most well-known therapeutic targets, many have been understudied and therefore warrant further investigation. DNA methylation is one of the key epigenetic regulators that modulate gene expression. In this study, the human kinome's DNA methylation and gene expression patterns were analyzed using the level-3 TCGA data for 32 cancers. Unsupervised clustering based on kinome data revealed the grouping of cancers based on their organ level and tissue type. We further observed significant differences in overall kinase methylation levels (hyper- and hypomethylation) between the tumor and adjacent normal samples from the same tissue. Methylation expression quantitative trait loci (meQTL) analysis using kinase gene expression with the corresponding methylated probes revealed a highly significant and mostly negative association (~92%) within 1.5 kb from the transcription start site (TSS). Several understudied (dark) kinases (PKMYT1, PNCK, BRSK2, ERN2, STK31, STK32A, and MAPK4) were also identified with a significant role in patient survival. This study leverages results from multi-omics data to identify potential kinase markers of prognostic and diagnostic importance and further our understanding of kinases in cancer.
Collapse
Affiliation(s)
| | | | - Chittibabu Guda
- Correspondence: (N.K.M.); (C.G.); Tel.: +1-402-559-5954 (C.G.)
| |
Collapse
|
12
|
Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021; 260:117809. [PMID: 33712155 DOI: 10.1016/j.carbpol.2021.117809] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging and promising strategy in cancer therapy where small interfering RNA (siRNA) system has been deployed for down-regulation of targeted gene and subsequent inhibition in cancer progression; some issues with siRNA, however, linger namely, its off-targeting property and degradation by enzymes. Nanoparticles can be applied for the encapsulation of siRNA thus enhancing its efficacy in gene silencing where chitosan (CS), a linear alkaline polysaccharide derived from chitin, with superb properties such as biodegradability, biocompatibility, stability and solubility, can play a vital role. Herein, the potential of CS nanoparticles has been discussed for the delivery of siRNA in cancer therapy; proliferation, metastasis and chemoresistance are suppressed by siRNA-loaded CS nanoparticles, especially the usage of pH-sensitive CS nanoparticles. CS nanoparticles can provide a platform for the co-delivery of siRNA and anti-tumor agents with their enhanced stability via chemical modifications. As pre-clinical experiments are in agreement with potential of CS-based nanoparticles for siRNA delivery, and these carriers possess biocompatibiliy and are safe, further studies can focus on evaluating their utilization in cancer patients.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Farid Hashemi
- PhD Student of Pharmacology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morteza Bagherian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soodeh Hamzehlou
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
13
|
Bányai L, Trexler M, Kerekes K, Csuka O, Patthy L. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes. eLife 2021; 10:e59629. [PMID: 33427197 PMCID: PMC7877913 DOI: 10.7554/elife.59629] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
A major goal of cancer genomics is to identify all genes that play critical roles in carcinogenesis. Most approaches focused on genes positively selected for mutations that drive carcinogenesis and neglected the role of negative selection. Some studies have actually concluded that negative selection has no role in cancer evolution. We have re-examined the role of negative selection in tumor evolution through the analysis of the patterns of somatic mutations affecting the coding sequences of human genes. Our analyses have confirmed that tumor suppressor genes are positively selected for inactivating mutations, oncogenes, however, were found to display signals of both negative selection for inactivating mutations and positive selection for activating mutations. Significantly, we have identified numerous human genes that show signs of strong negative selection during tumor evolution, suggesting that their functional integrity is essential for the growth and survival of tumor cells.
Collapse
Affiliation(s)
- László Bányai
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Maria Trexler
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Krisztina Kerekes
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Orsolya Csuka
- Department of Pathogenetics, National Institute of OncologyBudapestHungary
| | - László Patthy
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|
14
|
Xu Y, Wang J, Cai S, Chen G, Xiao N, Fu Y, Chen Q, Qiu S. PNCK depletion inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cells in vitro and in vivo. J Cancer 2019; 10:6925-6932. [PMID: 31839828 PMCID: PMC6909947 DOI: 10.7150/jca.33698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/26/2019] [Indexed: 11/22/2022] Open
Abstract
Purpose: Recent studies indicate that pregnancy upregulated non-ubiquitous calmodulin kinase (PNCK) is significantly up-regulated in breast and renal carcinomas. However, the expression profile and its biological relevance of PNCK in nasopharyngeal carcinoma (NPC) have not been elucidated. Methods: The expression level of PNCK was detected in specimens of NPC (n=10) and normal tissues (n=10) by real-time PCR and immunohistochemistry. Celigo Cell Counting and MTT assay were used to measure cell viability. Apoptosis was detected by flow cytometric analysis and caspases 3/7 activity assay. Real-time PCR and Western blotting were performed to evaluate the expression of PNCK. The bioluminescence imaging was used to evaluate the effects of PNCK knockdown on tumor growth using a xenograft animal model. The global gene expression profile was determined in wild type and PNCK-depleted CNE-2 cells via transcriptomics analysis. For mechanical investigation, the changes of PI3K/AKT/mTOR signaling pathway were detected by Western blotting. Results: The mRNA and protein levels of PNCK were increased in human NPC samples. In vitro experiments showed that shRNA or CRISPR-Cas9 mediated silencing of PNCK inhibited proliferation and induced apoptosis in NPC cells. In addition, in vivo assay revealed that knockdown of PNCK suppressed tumor growth. Consistently, a significant reduction of tumor bioluminescence in mice inoculated with PNCK-knockdown cells compared to that of control cells. In gene expression, the transcriptomics analysis revealed that there were 589 upregulated genes and 589 downregulated genes in PNCK-knockdown cells. Ingenuity Pathway Analysis (IPA) identified significant changes of PI3K/AKT/mTOR signaling pathway in PNCK-knockdown cells. Furthermore, western blot analysis revealed that interference with PNCK reduced the phosphorylation levels of PI3K, AKT and mTOR in CNE-2 cells. Conclusion: This study for the first time demonstrates that knockdown of PNCK could suppress growth and induce apoptosis of NPC cells both in vitro and in vivo by regulating PI3K/AKT/mTOR signaling pathway. These findings suggest that PNCK might be a novel therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Yuanji Xu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Jiling Wang
- Department of Medical Oncology, The First Hospital of Putian City, Putian, China
| | - Shaoli Cai
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China.,The Key Laboratories of Innate Immune Biology of Fujian Province, Fuzhou, China
| | | | - Nanyang Xiao
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China.,The Key Laboratories of Innate Immune Biology of Fujian Province, Fuzhou, China
| | - Yajuan Fu
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China.,The Key Laboratories of Innate Immune Biology of Fujian Province, Fuzhou, China
| | - Qi Chen
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China.,The Key Laboratories of Innate Immune Biology of Fujian Province, Fuzhou, China
| | - Sufang Qiu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| |
Collapse
|
15
|
Birnbaum DJ, Bertucci F, Finetti P, Birnbaum D, Mamessier E. Head and Body/Tail Pancreatic Carcinomas Are Not the Same Tumors. Cancers (Basel) 2019; 11:cancers11040497. [PMID: 30965637 PMCID: PMC6520848 DOI: 10.3390/cancers11040497] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022] Open
Abstract
The association between pancreatic ductal adenocarcinoma (PDAC) location (head vs. Body/Tail (B/T)) and clinical outcome remains controversial. We collected clinicopathological and gene expression data from 249 resected PDAC samples from public data sets, and we compared data between 208 head and 41 B/T samples. The 2-year overall survival (OS) was better for the head than for the B/T PDACs (44 vs. 27%, p = 0.043), especially when comparing tumors with similar TNM classification (T3/4N0M0: 67% vs. 17%, p = 0.002) or from the same molecular class (squamous subtype: 31% vs. 0%, p < 0.0001). Bailey's molecular subtypes were differentially distributed within the two groups, with the immunogenic subtype being underrepresented in the "B/T" group (p = 0.005). Uni- and multivariate analyses indicated that PDAC anatomic location was an independent prognostic factor. Finally, the supervised analysis identified 334 genes differentially expressed. Genes upregulated in the "head" group suggested lymphocyte activation and pancreas exocrine functions. Genes upregulated in the "B/T" group were related to keratinocyte differentiation, in line with the enrichment for squamous phenotype. We identified a robust gene expression signature (GES) associated with B/T PDAC location, suggesting that head and B/T PDAC are different. This GES could serve as an indicator for differential therapeutic management based on PDAC location.
Collapse
Affiliation(s)
- David Jérémie Birnbaum
- Laboratoire Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, 13273 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13385 Marseille, France.
- Département de Chirurgie Générale et Viscérale, AP-HM, 13015 Marseille, France.
| | - François Bertucci
- Laboratoire Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, 13273 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13385 Marseille, France.
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France.
| | - Pascal Finetti
- Laboratoire Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, 13273 Marseille, France.
| | - Daniel Birnbaum
- Laboratoire Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, 13273 Marseille, France.
| | - Emilie Mamessier
- Laboratoire Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, 13273 Marseille, France.
| |
Collapse
|
16
|
Gurdal H, Tuglu M, Bostanabad S, Dalkili� B. Partial agonistic effect of cetuximab on epidermal growth factor receptor and Src kinase activation in triple‑negative breast cancer cell lines. Int J Oncol 2019; 54:1345-1356. [DOI: 10.3892/ijo.2019.4697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/15/2019] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hakan Gurdal
- Department of Medical Pharmacology, Faculty of Medicine, University of Ankara, 06100�Ankara, Turkey
| | - Matilda Tuglu
- Department of Medical Pharmacology, Faculty of Medicine, University of Ankara, 06100 Ankara, Turkey
| | - Saber Bostanabad
- Biotechnology Institute of Ankara University, 06110 Ankara, Turkey
| | - Başak Dalkili�
- Department of Medical Pharmacology, Faculty of Medicine, University of Ankara, 06100 Ankara, Turkey
| |
Collapse
|
17
|
Li M, Sun Q, Wang X. Transcriptional landscape of human cancers. Oncotarget 2018; 8:34534-34551. [PMID: 28427185 PMCID: PMC5470989 DOI: 10.18632/oncotarget.15837] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/08/2017] [Indexed: 12/21/2022] Open
Abstract
The homogeneity and heterogeneity in somatic mutations, copy number alterations and methylation across different cancer types have been extensively explored. However, the related exploration based on transcriptome data is lacking. In this study we explored gene expression profiles across 33 human cancer types using The Cancer Genome Atlas (TCGA) data. We identified consistently upregulated genes (such as E2F1, EZH2, FOXM1, MYBL2, PLK1, TTK, AURKA/B and BUB1) and consistently downregulated genes (such as SCARA5, MYOM1, NKAPL, PEG3, USP2, SLC5A7 and HMGCLL1) across various cancers. The dysregulation of these genes is likely to be associated with poor clinical outcomes in cancer. The dysregulated pathways commonly in cancers include cell cycle, DNA replication, repair, and recombination, Notch signaling, p53 signaling, Wnt signaling, TGFβ signaling, immune response etc. We also identified genes consistently upregulated or downregulated in highly-advanced cancers compared to lowly-advanced cancers. The highly (low) expressed genes in highly-advanced cancers are likely to have higher (lower) expression levels in cancers than in normal tissue, indicating that common gene expression perturbations drive cancer initiation and cancer progression. In addition, we identified a substantial number of genes exclusively dysregulated in a single cancer type or inconsistently dysregulated in different cancer types, demonstrating the intertumor heterogeneity. More importantly, we found a number of genes commonly dysregulated in various cancers such as PLP1, MYOM1, NKAPL and USP2 which were investigated in few cancer related studies, and thus represent our novel findings. Our study provides comprehensive portraits of transcriptional landscape of human cancers.
Collapse
Affiliation(s)
- Mengyuan Li
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Qingrong Sun
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaosheng Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
18
|
Eikrem OS, Strauss P, Beisland C, Scherer A, Landolt L, Flatberg A, Leh S, Beisvag V, Skogstrand T, Hjelle K, Shresta A, Marti HP. Development and confirmation of potential gene classifiers of human clear cell renal cell carcinoma using next-generation RNA sequencing. Scand J Urol 2016; 50:452-462. [PMID: 27739342 DOI: 10.1080/21681805.2016.1238007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE A previous study by this group demonstrated the feasibility of RNA sequencing (RNAseq) technology for capturing disease biology of clear cell renal cell carcinoma (ccRCC), and presented initial results for carbonic anhydrase-9 (CA9) and tumor necrosis factor-α-induced protein-6 (TNFAIP6) as possible biomarkers of ccRCC (discovery set) [Eikrem et al. PLoS One 2016;11:e0149743]. To confirm these results, the previous study is expanded, and RNAseq data from additional matched ccRCC and normal renal biopsies are analyzed (confirmation set). MATERIALS AND METHODS Two core biopsies from patients (n = 12) undergoing partial or full nephrectomy were obtained with a 16 g needle. RNA sequencing libraries were generated with the Illumina TruSeq® Access library preparation protocol. Comparative analysis was done using linear modeling (voom/Limma; R Bioconductor). RESULTS The formalin-fixed and paraffin-embedded discovery and confirmation data yielded 8957 and 11,047 detected transcripts, respectively. The two data sets shared 1193 of differentially expressed genes with each other. The average expression and the log2-fold changes of differentially expressed transcripts in both data sets correlated, with R² = .95 and R² = .94, respectively. Among transcripts with the highest fold changes were CA9, neuronal pentraxin-2 and uromodulin. Epithelial-mesenchymal transition was highlighted by differential expression of, for example, transforming growth factor-β1 and delta-like ligand-4. The diagnostic accuracy of CA9 was 100% and 93.9% when using the discovery set as the training set and the confirmation data as the test set, and vice versa, respectively. These data further support TNFAIP6 as a novel biomarker of ccRCC. TNFAIP6 had combined accuracy of 98.5% in the two data sets. CONCLUSIONS This study provides confirmatory data on the potential use of CA9 and TNFAIP6 as biomarkers of ccRCC. Thus, next-generation sequencing expands the clinical application of tissue analyses.
Collapse
Affiliation(s)
- Oystein S Eikrem
- a Department of Clinical Medicine , University of Bergen , Bergen , Norway.,b Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Philipp Strauss
- a Department of Clinical Medicine , University of Bergen , Bergen , Norway.,b Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Christian Beisland
- a Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Urology , Haukeland University Hospital , Bergen , Norway
| | - Andreas Scherer
- d Spheromics , Kontiolahti , Finland.,e Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland
| | - Lea Landolt
- a Department of Clinical Medicine , University of Bergen , Bergen , Norway
| | - Arnar Flatberg
- f Department of Cancer Research and Molecular Medicine , Norwegian University of Science and Technology , Trondheim , Norway
| | - Sabine Leh
- a Department of Clinical Medicine , University of Bergen , Bergen , Norway.,g Department of Pathology , Haukeland University Hospital , Bergen , Norway
| | - Vidar Beisvag
- f Department of Cancer Research and Molecular Medicine , Norwegian University of Science and Technology , Trondheim , Norway
| | - Trude Skogstrand
- a Department of Clinical Medicine , University of Bergen , Bergen , Norway
| | - Karin Hjelle
- a Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Urology , Haukeland University Hospital , Bergen , Norway
| | - Anjana Shresta
- a Department of Clinical Medicine , University of Bergen , Bergen , Norway
| | - Hans-Peter Marti
- a Department of Clinical Medicine , University of Bergen , Bergen , Norway.,b Department of Medicine , Haukeland University Hospital , Bergen , Norway
| |
Collapse
|
19
|
Alinejad V, Hossein Somi M, Baradaran B, Akbarzadeh P, Atyabi F, Kazerooni H, Samadi Kafil H, Aghebati Maleki L, Siah Mansouri H, Yousefi M. Co-delivery of IL17RB siRNA and doxorubicin by chitosan-based nanoparticles for enhanced anticancer efficacy in breast cancer cells. Biomed Pharmacother 2016; 83:229-240. [DOI: 10.1016/j.biopha.2016.06.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 01/13/2023] Open
|
20
|
Montales MTE, Melnyk SB, Liu SJ, Simmen FA, Liu YL, Simmen RCM. Metabolic history impacts mammary tumor epithelial hierarchy and early drug response in mice. Endocr Relat Cancer 2016; 23:677-90. [PMID: 27402613 PMCID: PMC4997088 DOI: 10.1530/erc-16-0136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/08/2016] [Indexed: 12/22/2022]
Abstract
The emerging links between breast cancer and metabolic dysfunctions brought forth by the obesity pandemic predict a disproportionate early disease onset in successive generations. Moreover, sensitivity to chemotherapeutic agents may be influenced by the patient's metabolic status that affects the disease outcome. Maternal metabolic stress as a determinant of drug response in progeny is not well defined. Here, we evaluated mammary tumor response to doxorubicin in female mouse mammary tumor virus-Wnt1 transgenic offspring exposed to a metabolically compromised environment imposed by maternal high-fat diet. Control progeny were from dams consuming diets with regular fat content. Maternal high-fat diet exposure increased tumor incidence and reduced tumor latency but did not affect tumor volume response to doxorubicin, compared with control diet exposure. However, doxorubicin-treated tumors from high-fat-diet-exposed offspring demonstrated higher proliferation status (Ki-67), mammary stem cell-associated gene expression (Notch1, Aldh1) and basal stem cell-like (CD29(hi)CD24(+)) epithelial subpopulation frequencies, than tumors from control diet progeny. Notably, all epithelial subpopulations (CD29(hi)CD24(+), CD29(lo)CD24(+), CD29(hi)CD24(+)Thy1(+)) in tumors from high-fat-diet-exposed offspring were refractory to doxorubicin. Further, sera from high-fat-diet-exposed offspring promoted sphere formation of mouse mammary tumor epithelial cells and of human MCF7 cells. Untargeted metabolomics analyses identified higher levels of kynurenine and 2-hydroxyglutarate in plasma of high-fat diet than control diet offspring. Kynurenine/doxorubicin co-treatment of MCF7 cells enhanced the ability to form mammosphere and decreased apoptosis, relative to doxorubicin-only-treated cells. Maternal metabolic dysfunctions during pregnancy and lactation may be targeted to reduce breast cancer risk and improve early drug response in progeny, and may inform clinical management of disease.
Collapse
Affiliation(s)
- Maria Theresa E Montales
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Stepan B Melnyk
- Department of PediatricsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas, USA Arkansas Children's Hospital Research InstituteUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shi J Liu
- Department of Pharmaceutical SciencesUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Frank A Simmen
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas, USA The Winthrop P Rockefeller Cancer InstituteUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Y Lucy Liu
- The Winthrop P Rockefeller Cancer InstituteUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas, USA Department of Internal MedicineUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rosalia C M Simmen
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas, USA The Winthrop P Rockefeller Cancer InstituteUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|