1
|
Sui C, Wu H, Li X, Wang Y, Wei J, Yu J, Wu X. Cancer immunotherapy and its facilitation by nanomedicine. Biomark Res 2024; 12:77. [PMID: 39097732 PMCID: PMC11297660 DOI: 10.1186/s40364-024-00625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Cancer immunotherapy has sparked a wave of cancer research, driven by recent successful proof-of-concept clinical trials. However, barriers are emerging during its rapid development, including broad adverse effects, a lack of reliable biomarkers, tumor relapses, and drug resistance. Integration of nanomedicine may ameliorate current cancer immunotherapy. Ultra-large surface-to-volume ratio, extremely small size, and easy modification surface of nanoparticles enable them to selectively detect cells and kill cancer cells in vivo. Exciting synergistic applications of the two approaches have emerged in treating various cancers at the intersection of cancer immunotherapy and cancer nanomedicine, indicating the potential that the combination of these two therapeutic modalities can lead to new paradigms in the treatment of cancer. This review discusses the status of current immunotherapy and explores the possible opportunities that the nanomedicine platform can make cancer immunotherapy more powerful and precise by synergizing the two approaches.
Collapse
Affiliation(s)
- Chao Sui
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA
| | - Heqing Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an Shaanxi, 710072, China
| | - Yuhang Wang
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiaqi Wei
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - Xiaojin Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China.
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Agostinetto E, Curigliano G, Piccart M. Emerging treatments in HER2-positive advanced breast cancer: Keep raising the bar. Cell Rep Med 2024; 5:101575. [PMID: 38759648 PMCID: PMC11228398 DOI: 10.1016/j.xcrm.2024.101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/22/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Patients with human epidermal receptor 2 (HER2)-positive breast cancer are experiencing a consistent shift toward better survival across the years, thanks to tremendous advancements in treatment strategies. The consistent improvements of outcomes set a high bar for new drug development and the need to explore new ways to overcome resistance mechanisms. Emerging treatments in HER2-positive breast cancer aim to tackle the disease by acting on different targets, including not only HER2 (both at the extra- and intracellular level), but also HER3, PD-(L)1, CTLA4, NKG2A, AKT, PI3K, and, in triple-positive tumors, the estrogen receptors and the cyclin-dependent kinases 4/6. This review describes the evolving treatment landscape of HER2-positive breast cancer, from the current approved therapies to the future perspectives, with a focus on the new agents which are likely to get approved in the next future.
Collapse
Affiliation(s)
- Elisa Agostinetto
- Oncology Department, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B.), Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium.
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milano, Italy
| | - Martine Piccart
- Oncology Department, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B.), Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| |
Collapse
|
3
|
Fantini M, Tsang KY, Arlen PM. Generation of the therapeutic monoclonal antibody NEO-201, derived from a cancer vaccine, which targets human malignancies and immune suppressor cells. Expert Rev Vaccines 2024; 23:812-829. [PMID: 39186325 DOI: 10.1080/14760584.2024.2397011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Cancer vaccines stimulate the activation of specific humoral and cellular adaptive responses against cancer cells.Antibodies generated post vaccination can be isolated and further selected to develop highly specific and potent monoclonal antibodies (mAbs) against tumor-associated antigens. AREAS COVERED This review describes different types of cancer vaccines, the process of the generation of the mAb NEO-201 from the Hollinshead cancer vaccine platform, the characterization of the antigen recognized by NEO-201, the ability of NEO-201 to bind and mediate the killing of cancer cells and immunosuppressive cells (gMDSCs and Tregs) through ADCC and CDC, NEO-201 preclinical and clinical toxicity and efficacy. EXPERT OPINION To overcome the problem of poor clinical efficacy of cancer vaccines, due to the activity of immunosuppressive cells, cancer vaccines could be combined with other immunotherapeutics able to deplete immunosuppressive cells. Results from clinical trials, employing NEO-201 alone or in combination with pembrolizumab, showed that durable stabilization of disease after treatment was due to the ability of NEO-201 to target and reduce the percentage of circulating Tregs and gMDSCs.These findings provide compelling support to combine NEO-201 with cancer vaccines to reintegrate their ability to elicit a robust and durable immune adaptive response against cancer.
Collapse
|
4
|
Vajari MK, Sanaei MJ, Salari S, Rezvani A, Ravari MS, Bashash D. Breast cancer vaccination: Latest advances with an analytical focus on clinical trials. Int Immunopharmacol 2023; 123:110696. [PMID: 37494841 DOI: 10.1016/j.intimp.2023.110696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Breast cancer (BC) is one of the main causes of cancer-related death worldwide. The heterogenicity of breast tumors and the presence of tumor resistance, metastasis, and disease recurrence make BC a challenging malignancy. A new age in cancer treatment is being ushered in by the enormous success of cancer immunotherapy, and therapeutic cancer vaccination is one such area of research. Nevertheless, it has been shown that the application of cancer vaccines in BC as monotherapy could not induce satisfying anti-tumor immunity. Indeed, the application of various vaccine platforms as well as combination therapies like immunotherapy could influence the clinical benefits of BC treatment. We analyzed the clinical trials of BC vaccination and revealed that the majority of trials were in phase I and II meaning that the BC vaccine studies lack favorable outcomes or they need more development. Furthermore, peptide- and cell-based vaccines are the major platforms utilized in clinical trials according to our analysis. Besides, some studies showed satisfying outcomes regarding carbohydrate-based vaccines in BC treatment. Recent advancements in therapeutic vaccines for breast cancer were promising strategies that could be accessible in the near future.
Collapse
Affiliation(s)
- Mahdi Kohansal Vajari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology-Hematology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Rezvani
- Department of Internal Medicine, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnaz Sadat Ravari
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zhang Z, Zhang R, Li D. Molecular Biology Mechanisms and Emerging Therapeutics of Triple-Negative Breast Cancer. Biologics 2023; 17:113-128. [PMID: 37767463 PMCID: PMC10520847 DOI: 10.2147/btt.s426392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is conventionally characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2), accounting for approximately 15-20% of all breast cancers. Compared to other molecular phenotypes, TNBC is typically associated with high malignancy and poor prognosis. Cytotoxic agents have been the mainstay of treatment for the past few decades due to the lack of definitive targets and limited therapeutic interventions. However, recent developments have demonstrated that TNBC has peculiar molecular classifications and biomarkers, which provide the possibility of evolving treatment from basic cytotoxic chemotherapy to an expanding domain of targeted therapies. This review presents a framework for understanding the current clinical experience surrounding molecular biology mechanisms in TNBC (Figure 1). Including immunotherapy, polymerase (PARP) and PI3K/AKT pathway inhibitors, antibody-drug conjugates, and androgen receptor (AR) blockade. Additionally, the role of miRNA therapeutics targeting TNBC and potential strategies targeting cancer stem cells (CSCs) are discussed and highlighted. As more and more treatments arise on the horizon, we believe that patients with TNBC will have a new sense of hope.
Collapse
Affiliation(s)
- Zhiying Zhang
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Rui Zhang
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Donghai Li
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| |
Collapse
|
6
|
Anwar F, Naqvi S, Shams S, Sheikh RA, Al-Abbasi FA, Asseri AH, Baig MR, Kumar V. Nanomedicines: intervention in inflammatory pathways of cancer. Inflammopharmacology 2023; 31:1199-1221. [PMID: 37060398 PMCID: PMC10105366 DOI: 10.1007/s10787-023-01217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
Inflammation is a complex defense process that maintains tissue homeostasis. However, this complex cascade, if lasts long, may contribute to pathogenesis of several diseases. Chronic inflammation has been exhaustively studied in the last few decades, for its contribution in development and progression of cancer. The intrinsic limitations of conventional anti-inflammatory and anti-cancer therapies triggered the development of nanomedicines for more effective and safer therapies. Targeting inflammation and tumor cells by nanoparticles, encapsulated with active therapeutic agents, offers a promising outcome with patient survival. Considerable technological success has been achieved in this field through exploitation of tumor microenvironment, and recognition of molecules overexpressed on endothelial cells or macrophages, through enhanced vascular permeability, or by rendering biomimetic approach to nanoparticles. This review focusses on the inflammatory pathways in progression of a tumor, and advancement in nanotechnologies targeting these pathways. We also aim to identify the gaps that hinder the successful clinical translation of nanotherapeutics with further clinical studies that will allow oncologist to precisely identify the patients who may be benefited from nanotherapy at time when promotion or progression of tumor initiates. It is postulated that the nanomedicines, in near future, will shift the paradigm of cancer treatment and improve patient survival.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Saiba Shams
- School of Pharmaceutical Education & Research, (Deemed to be University), New Delhi, 110062, India
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mirza Rafi Baig
- Department of Clinical Pharmacy & Pharmacotherapeutics. Dubai Pharmacy College for Girls, Po Box 19099, Dubai, United Arab Emirates
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
7
|
Yang T, Kang L, Li D, Song Y. Immunotherapy for HER-2 positive breast cancer. Front Oncol 2023; 13:1097983. [PMID: 37007133 PMCID: PMC10061112 DOI: 10.3389/fonc.2023.1097983] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Immunotherapy is a developing treatment for advanced breast cancer. Immunotherapy has clinical significance for the treatment of triple-negative breast cancers and human epidermal growth factor receptor-2 positive (HER2+) breast cancers. As a proved effective passive immunotherapy, clinical application of the monoclonal antibodies trastuzumab, pertuzumab and T-DM1 (ado-trastuzumab emtansine) has significantly improved the survival of patients with HER2+ breast cancers. Immune checkpoint inhibitors that block programmed death receptor-1 and its ligand (PD-1/PD-L1) have also shown benefits for breast cancer in various clinical trials. Adoptive T-cell immunotherapies and tumor vaccines are emerging as novel approaches to treating breast cancer, but require further study. This article reviews recent advances in immunotherapy for HER2+ breast cancers.
Collapse
|
8
|
Sánchez-León ML, Jiménez-Cortegana C, Silva Romeiro S, Garnacho C, de la Cruz-Merino L, García-Domínguez DJ, Hontecillas-Prieto L, Sánchez-Margalet V. Defining the Emergence of New Immunotherapy Approaches in Breast Cancer: Role of Myeloid-Derived Suppressor Cells. Int J Mol Sci 2023; 24:5208. [PMID: 36982282 PMCID: PMC10048951 DOI: 10.3390/ijms24065208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Breast cancer (BC) continues to be the most diagnosed tumor in women and a very heterogeneous disease both inter- and intratumoral, mainly given by the variety of molecular profiles with different biological and clinical characteristics. Despite the advancements in early detection and therapeutic strategies, the survival rate is low in patients who develop metastatic disease. Therefore, it is mandatory to explore new approaches to achieve better responses. In this regard, immunotherapy arose as a promising alternative to conventional treatments due to its ability to modulate the immune system, which may play a dual role in this disease since the relationship between the immune system and BC cells depends on several factors: the tumor histology and size, as well as the involvement of lymph nodes, immune cells, and molecules that are part of the tumor microenvironment. Particularly, myeloid-derived suppressor cell (MDSC) expansion is one of the major immunosuppressive mechanisms used by breast tumors since it has been associated with worse clinical stage, metastatic burden, and poor efficacy of immunotherapies. This review focuses on the new immunotherapies in BC in the last five years. Additionally, the role of MDSC as a therapeutic target in breast cancer will be described.
Collapse
Affiliation(s)
- María Luisa Sánchez-León
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carlos Jiménez-Cortegana
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Silvia Silva Romeiro
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
9
|
Duro-Sánchez S, Alonso MR, Arribas J. Immunotherapies against HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15041069. [PMID: 36831412 PMCID: PMC9954045 DOI: 10.3390/cancers15041069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths among women worldwide. HER2-positive breast cancer, which represents 15-20% of all cases, is characterized by the overexpression of the HER2 receptor. Despite the variety of treatments available for HER2-positive breast cancer, both targeted and untargeted, many patients do not respond to therapy and relapse and eventually metastasize, with a poor prognosis. Immunotherapeutic approaches aim to enhance the antitumor immune response to prevent tumor relapse and metastasis. Several immunotherapies have been approved for solid tumors, but their utility for HER2-positive breast cancer has yet to be confirmed. In this review, we examine the different immunotherapeutic strategies being tested in HER2-positive breast cancer, from long-studied cancer vaccines to immune checkpoint blockade, which targets immune checkpoints in both T cells and tumor cells, as well as the promising adoptive cell therapy in various forms. We discuss how some of these new approaches may contribute to the prevention of tumor progression and be used after standard-of-care therapies for resistant HER2-positive breast tumors, highlighting the benefits and drawbacks of each. We conclude that immunotherapy holds great promise for the treatment of HER2-positive tumors, with the potential to completely eradicate tumor cells and prevent the progression of the disease.
Collapse
Affiliation(s)
- Santiago Duro-Sánchez
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, 08193 Bellaterra, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Macarena Román Alonso
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, 08193 Bellaterra, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Joaquín Arribas
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, 08193 Bellaterra, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
10
|
Yu M, Yang W, Yue W, Chen Y. Targeted Cancer Immunotherapy: Nanoformulation Engineering and Clinical Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204335. [PMID: 36257824 PMCID: PMC9762307 DOI: 10.1002/advs.202204335] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/17/2022] [Indexed: 05/09/2023]
Abstract
With the rapid growth of advanced nanoengineering strategies, there are great implications for therapeutic immunostimulators formulated in nanomaterials to combat cancer. It is crucial to direct immunostimulators to the right tissue and specific immune cells at the right time, thereby orchestrating the desired, potent, and durable immune response against cancer. The flexibility of nanoformulations in size, topology, softness, and multifunctionality allows precise regulation of nano-immunological activities for enhanced therapeutic effect. To grasp the modulation of immune response, research efforts are needed to understand the interactions of immune cells at lymph organs and tumor tissues, where the nanoformulations guide the immunostimulators to function on tissue specific subsets of immune cells. In this review, recent advanced nanoformulations targeting specific subset of immune cells, such as dendritic cells (DCs), T cells, monocytes, macrophages, and natural killer (NK) cells are summarized and discussed, and clinical development of nano-paradigms for targeted cancer immunotherapy is highlighted. Here the focus is on the targeting nanoformulations that can passively or actively target certain immune cells by overcoming the physiobiological barriers, instead of directly injecting into tissues. The opportunities and remaining obstacles for the clinical translation of immune cell targeting nanoformulations in cancer therapy are also discussed.
Collapse
Affiliation(s)
- Meihua Yu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Wei Yang
- Department of UrologyXinhua HospitalSchool of MedicineShanghai Jiaotong University1665 Kongjiang RoadShanghai200092P. R. China
| | - Wenwen Yue
- Shanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentDepartment of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University Cancer CenterTongji University School of MedicineShanghai200072P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| |
Collapse
|
11
|
Davodabadi F, Sarhadi M, Arabpour J, Sargazi S, Rahdar A, Díez-Pascual AM. Breast cancer vaccines: New insights into immunomodulatory and nano-therapeutic approaches. J Control Release 2022; 349:844-875. [PMID: 35908621 DOI: 10.1016/j.jconrel.2022.07.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Breast cancer (BC) is known to be a highly heterogeneous disease that is clinically subdivided into four primary molecular subtypes, each having distinct morphology and clinical implications. These subtypes are principally defined by hormone receptors and other proteins involved (or not involved) in BC development. BC therapeutic vaccines [including peptide-based vaccines, protein-based vaccines, nucleic acid-based vaccines (DNA/RNA vaccines), bacterial/viral-based vaccines, and different immune cell-based vaccines] have emerged as an appealing class of cancer immunotherapeutics when used alone or combined with other immunotherapies. Employing the immune system to eliminate BC cells is a novel therapeutic modality. The benefit of active immunotherapies is that they develop protection against neoplastic tissue and readjust the immune system to an anti-tumor monitoring state. Such immunovaccines have not yet shown effectiveness for BC treatment in clinical trials. In recent years, nanomedicines have opened new windows to increase the effectiveness of vaccinations to treat BC. In this context, some nanoplatforms have been designed to efficiently deliver molecular, cellular, or subcellular vaccines to BC cells, increasing the efficacy and persistence of anti-tumor immunity while minimizing undesirable side effects. Immunostimulatory nano-adjuvants, liposomal-based vaccines, polymeric vaccines, virus-like particles, lipid/calcium/phosphate nanoparticles, chitosan-derived nanostructures, porous silicon microparticles, and selenium nanoparticles are among the newly designed nanostructures that have been used to facilitate antigen internalization and presentation by antigen-presenting cells, increase antigen stability, enhance vaccine antigenicity and remedial effectivity, promote antigen escape from the endosome, improve cytotoxic T lymphocyte responses, and produce humoral immune responses in BC cells. Here, we summarized the existing subtypes of BC and shed light on immunomodulatory and nano-therapeutic strategies for BC vaccination. Finally, we reviewed ongoing clinical trials on BC vaccination and highlighted near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
12
|
Wu Y, Wen H, Bernstein ZJ, Hainline KM, Blakney TS, Congdon KL, Snyder DJ, Sampson JH, Sanchez-Perez L, Collier JH. Multiepitope supramolecular peptide nanofibers eliciting coordinated humoral and cellular antitumor immune responses. SCIENCE ADVANCES 2022; 8:eabm7833. [PMID: 35857833 PMCID: PMC9299545 DOI: 10.1126/sciadv.abm7833] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Subunit vaccines inducing antibodies against tumor-specific antigens have yet to be clinically successful. Here, we use a supramolecular α-helical peptide nanofiber approach to design epitope-specific vaccines raising simultaneous B cell, CD8+ T cell, and CD4+ T cell responses against combinations of selected epitopes and show that the concurrent induction of these responses generates strong antitumor effects in mice, with significant improvements over antibody or CD8+ T cell-based vaccines alone, in both prophylactic and therapeutic subcutaneous melanoma models. Nanofiber vaccine-induced antibodies mediated in vitro tumoricidal antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). The addition of immune checkpoint and phagocytosis checkpoint blockade antibodies further improved the therapeutic effect of the nanofiber vaccines against murine melanoma. These findings highlight the potential clinical benefit of vaccine-induced antibody responses for tumor treatments, provided that they are accompanied by simultaneous CD8+ and CD4+ responses, and they illustrate a multiepitope cancer vaccine design approach using supramolecular nanomaterials.
Collapse
Affiliation(s)
- Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hanning Wen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Kelly M Hainline
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tykia S Blakney
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - David J Snyder
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - John H Sampson
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | | | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
13
|
Moragon S, Hernando C, Martinez-Martinez MT, Tapia M, Ortega-Morillo B, Lluch A, Bermejo B, Cejalvo JM. Immunological Landscape of HER-2 Positive Breast Cancer. Cancers (Basel) 2022; 14:3167. [PMID: 35804943 PMCID: PMC9265068 DOI: 10.3390/cancers14133167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Understanding the biological aspects of immune response in HER2+ breast cancer is crucial to implementing new treatment strategies in these patients. It is well known that anti-HER2 therapy has improved survival in this population, yet a substantial percentage may relapse, creating a need within the scientific community to uncover resistance mechanisms and determine how to overcome them. This systematic review indicates the immunological mechanisms through which trastuzumab and other agents target cancer cells, also outlining the main trials studying immune checkpoint blockade. Finally, we report on anti-HER2 vaccines and include a figure exemplifying their mechanisms of action.
Collapse
Affiliation(s)
- Santiago Moragon
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
| | - Cristina Hernando
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
| | - Maria Teresa Martinez-Martinez
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
| | - Marta Tapia
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
| | - Belen Ortega-Morillo
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
| | - Ana Lluch
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
- Instituto de Salud Carlos III, CIBERONC (Centro De Investigacion Biomedica En Red De Cancer), 28220 Madrid, Spain
| | - Begoña Bermejo
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
- Instituto de Salud Carlos III, CIBERONC (Centro De Investigacion Biomedica En Red De Cancer), 28220 Madrid, Spain
| | - Juan Miguel Cejalvo
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
- Instituto de Salud Carlos III, CIBERONC (Centro De Investigacion Biomedica En Red De Cancer), 28220 Madrid, Spain
| |
Collapse
|
14
|
Immunogenicity of a xenogeneic multi-epitope HER2+ breast cancer DNA vaccine targeting the dendritic cell restricted antigen-uptake receptor DEC205. Vaccine 2022; 40:2409-2419. [DOI: 10.1016/j.vaccine.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022]
|
15
|
Abstract
Breast cancer has become the most commonly diagnosed cancer globally. The relapse and metastasis of breast cancer remain a great challenge despite advances in chemotherapy, endocrine therapy, and HER2 targeted therapy in the past decades. Innovative therapeutic strategies are still critically in need. Cancer vaccine is an attractive option as it aims to induce a durable immunologic response to eradicate tumor cells. Different types of breast cancer vaccines have been evaluated in clinical trials, but none has led to significant benefits. Despite the disappointing results at present, new promise from the latest study indicates the possibility of applying vaccines in combination with anti-HER2 monoclonal antibodies or immune checkpoint blockade. This review summarizes the principles and mechanisms underlying breast cancer vaccines, recapitulates the type and administration routes of vaccine, reviews the current results of relevant clinical trials, and addresses the potential reasons for the setbacks and future directions to explore.
Collapse
Affiliation(s)
- Si-Yuan Zhu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Corti C, Giachetti PPMB, Eggermont AMM, Delaloge S, Curigliano G. Therapeutic vaccines for breast cancer: Has the time finally come? Eur J Cancer 2022; 160:150-174. [PMID: 34823982 PMCID: PMC8608270 DOI: 10.1016/j.ejca.2021.10.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
The ability to exploit the immune system as a weapon against cancer has revolutionised the treatment of cancer patients, especially through immune checkpoint inhibitors (ICIs). However, ICIs demonstrated a modest benefit in treating breast cancer (BC), with the exception of certain subsets of triple-negative BCs. An immune-suppressive tumour microenvironment (TME), typically present in BC, is an important factor in the poor response to immunotherapy. After almost two decades of poor clinical trial results, cancer vaccines (CVs), an active immunotherapy, have come back in the spotlight because of some technological advancements, ultimately boosted by coronavirus disease 2019 pandemic. In particular, neoantigens are emerging as the preferred targets for CVs, with gene-based and viral vector-based platforms in development. Moreover, lipid nanoparticles proved to be immunogenic and efficient delivery vehicles. Past clinical trials investigating CVs focused especially on the metastatic disease, where the TME is more likely compromised by inhibitory mechanisms. In this sense, favouring the use of CVs as monotherapy in premalignant or in the adjuvant setting and establishing combination treatments (i.e. CV plus ICI) in late-stage disease are promising strategies. This review provides a full overview of the past and current breast cancer vaccine landscape.
Collapse
Affiliation(s)
- Chiara Corti
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Pier P M B Giachetti
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Alexander M M Eggermont
- Princess Máxima Center, Utrecht, the Netherlands; Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - Suzette Delaloge
- Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy.
| |
Collapse
|
17
|
Huppert LA, Mariotti V, Chien AJ, Soliman HH. Emerging immunotherapeutic strategies for the treatment of breast cancer. Breast Cancer Res Treat 2021; 191:243-255. [PMID: 34716870 DOI: 10.1007/s10549-021-06406-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Immunotherapy has resulted in unprecedented gains in long-term outcomes for many cancer types and has revolutionized the treatment landscape of solid tumor oncology. Checkpoint inhibition in combination with chemotherapy has proven to be effective for the treatment of a subset of advanced triple-negative breast cancer in the first-line setting. This initial success is likely just the tip of the iceberg as there is much that remains unknown about how to best harness the immune system as a therapeutic strategy in all breast cancer subtypes. Therefore, numerous ongoing studies are currently underway to evaluate the safety and efficacy of immunotherapy in breast cancer. In this review, we will discuss emerging immunotherapeutic strategies for breast cancer treatment including the following: (1) Intratumoral therapies, (2) Anti-tumor vaccines, (3) B-specific T-cell engagers, and (4) Chimeric antigen receptor T-cell therapy, and (5) Emerging systemic immunotherapy strategies. For each topic, we will review the existing preclinical and clinical literature, discuss ongoing clinical trials, and highlight future directions in the field.
Collapse
Affiliation(s)
- Laura A Huppert
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - A Jo Chien
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Hatem H Soliman
- Department of Breast Oncology, H Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
18
|
Abstract
Cancer is a multidimensional and challenging disease to handle. Current statistics reveal that we are far from satisfying cancer treatment. Taking advantage of different therapeutic agents that affect multiple pathways has been established as highly productive. Nevertheless, owing to several hindrances to conventional combination therapy, such as lack of tumor targeting, non-uniform pharmacokinetic of the combined drugs, and off-target side effects, it is well documented that this treatment approach is unlikely to address all the difficulties observed in monotherapy. Co-delivery systems could enhance the therapeutic efficacy of the combination therapy by targeting cancer cells and improving the pharmacokinetic and physicochemical properties of the therapeutic agents. Nevertheless, it seems that present knowledge in responding to the challenges in cancer treatment is still inadequate and far from optimal treatment, which highlights the urgent need for systematic studies direct to identify various aspects of co-delivery systems. Accordingly, to gather informative data, save time, and achieve superior results, the following steps are necessary: (1) implementing computational methods to predict drug-drug interactions (DDIs) in vitro and in vivo, (2) meticulous cancer studies at the cellular and molecular levels to obtain specific criteria for selecting preclinical and clinical models, (3) extensive physiological and pharmacokinetic study of nanocarriers behavior in preclinical models, and (4) finding the optimal formulation and analyzing its behavior in cellular and animal models facilitates bridging in vivo models to clinical trials. This review aims to deliver an overview of co-delivery systems, rationales, and suggestions for further studies in this field.
Collapse
|
19
|
Kumar A, Swain CA, Shevde LA. Informing the new developments and future of cancer immunotherapy : Future of cancer immunotherapy. Cancer Metastasis Rev 2021; 40:549-562. [PMID: 34003425 DOI: 10.1007/s10555-021-09967-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
The application of cancer immunotherapy (CIT) in reinforcing anti-tumor immunity in response to carcinogenesis and metastasis has shown promising advances, along with new therapeutic challenges, in the landscape of cancer care. To promote tumor growth and metastasis, cancer cells aim to manipulate their microenvironment by mediating a crosstalk with various immune cells through the secretion of chemokines, cytokines, and other associated factors. Understanding this crosstalk is the key to discovering the best targets for improved immunotherapies and clinical strategies in cancer treatment. Here, we review the tumor immune crosstalk in cancer growth and metastasis. This review also highlights the development and expansion of CIT over the years. Moreover, we highlight clinical challenges and limitations involving immune-related adverse events, treating cancer patients with pre-existing autoimmune diseases, and the management of immunotherapy-induced treatment resistance. Possible clinical solutions to these current challenges in CIT are also proposed. Altogether, this review can contribute to the formation of pre-clinical and treatment-related strategies that further develop the availability and effectiveness of CIT.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Courtney A Swain
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA. .,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
20
|
Dafni U, Martín-Lluesma S, Balint K, Tsourti Z, Vervita K, Chenal J, Coukos G, Zaman K, Sarivalasis A, Kandalaft LE. Efficacy of cancer vaccines in selected gynaecological breast and ovarian cancers: A 20-year systematic review and meta-analysis. Eur J Cancer 2020; 142:63-82. [PMID: 33221598 DOI: 10.1016/j.ejca.2020.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Therapeutic cancer vaccination is an area of interest, even though promising efficacy has not been demonstrated so far. DESIGN A systematic review and meta-analysis was conducted to evaluate vaccines' efficacy on breast cancer (BC) and ovarian cancer (OC) patients. Our search was based on the PubMed electronic database, from 1st January 2000 to 4th February 2020. OBJECTIVE response rate (ORR) was the primary end-point of interest, while progression-free survival (PFS), overall survival (OS) and toxicity were secondary end-points. Analysis was performed separately for BC and OC patients. Pooled ORRs were estimated by fixed or random effects models, depending on the detected degree of heterogeneity, for all studies with more than five patients. Subgroup analyses by vaccine type and treatment schema as well as sensitivity analyses, were implemented. RESULTS Among 315 articles initially identified, 67 were eligible for our meta-analysis (BC: 46, 1698 patients; OC: 32, 426 patients; where both BC/OC in 11). Dendritic-cell and peptide vaccines were found in more studies, 6/10 BC and 10/13 OC studies, respectively. In our primary BC analysis (21 studies; 428 patients), the pooled ORR estimate was 9% (95%CI[5%,13%]). The primary OC analysis (12 studies; 182 patients), yielded pooled ORR estimate of 4% (95%CI[1%,7%]). Similar were the results derived in sensitivity analyses. No statistically significant differences were detected by vaccine type or treatment schema. Median PFS was 2.6 months (95% confidence interval (CI)[1.9,2.9]) and 13.0 months (95%CI[8.5,16.3]) for BC and OC respectively, while corresponding median OS was 24.8 months (95%CI[15.0,46.0]) and 39.0 months (95%CI[31.0,49.0]). In almost all cases, the observed toxicity was only moderate. CONCLUSION Despite their modest results in terms of ORR, therapeutic vaccines in the last 20 years display relatively long survival rates and low toxicity. Since a plethora of different approaches have been tested, a better understanding of the underlying mechanisms is needed in order to further improve vaccine efficacy.
Collapse
Affiliation(s)
- U Dafni
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| | - S Martín-Lluesma
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla Del Monte, Madrid, 28668, Spain
| | - K Balint
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Z Tsourti
- Scientific Research Consulting Hellas, Statistics Center, Athens, Greece
| | - K Vervita
- Scientific Research Consulting Hellas, Statistics Center, Athens, Greece
| | - J Chenal
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - G Coukos
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - K Zaman
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - A Sarivalasis
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - L E Kandalaft
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
21
|
Metastasis: A Bane of Breast Cancer Therapy. EUROPEAN MEDICAL JOURNAL 2020. [DOI: 10.33590/emj/20-00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The underlying mechanisms of metastasis in patients with breast cancer is still poorly understood. Approximately 6% of patients with breast cancer present with metastasis at the time of diagnosis. Metastatic breast cancer is difficult to treat and patients with breast cancer with distant metastasis have a significantly lower 5-year survival rate compared to patients with localised breast cancer (27% and 99%, respectively). During breast cancer progression, tumour cells first metastasise to nearby draining lymph nodes and then to distant organs, primarily bone, lungs, liver, and brain. In this brief review, the authors discuss breast cancer metastasis, the role of epithelial–mesenchymal transition and the contributions of the immune system to the metastatic process. The authors also briefly discuss whether there is any relationship between tumour size and metastatic potential, and recent advances in treatment for metastatic breast cancer. The studies highlighted suggest that immunotherapy may play a more significant role in future patient care for metastatic breast cancer.
Collapse
|
22
|
De Mattos-Arruda L, Vazquez M, Finotello F, Lepore R, Porta E, Hundal J, Amengual-Rigo P, Ng CKY, Valencia A, Carrillo J, Chan TA, Guallar V, McGranahan N, Blanco J, Griffith M. Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the ESMO Precision Medicine Working Group. Ann Oncol 2020; 31:978-990. [PMID: 32610166 PMCID: PMC7885309 DOI: 10.1016/j.annonc.2020.05.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The use of next-generation sequencing technologies has enabled the rapid identification of non-synonymous somatic mutations in cancer cells. Neoantigens are mutated peptides derived from somatic mutations not present in normal tissues that may result in the presentation of tumour-specific peptides capable of eliciting antitumour T-cell responses. Personalised neoantigen-based cancer vaccines and adoptive T-cell therapies have been shown to prime host immunity against tumour cells and are under clinical trial development. However, the optimisation and standardisation of neoantigen identification, as well as its delivery as immunotherapy are needed to increase tumour-specific T-cell responses and, thus, the clinical efficacy of current cancer immunotherapies. METHODS In this recommendation article, launched by the European Society for Medical Oncology (ESMO), we outline and discuss the available framework for neoantigen prediction and present a systematic review of the current scientific evidence. RESULTS A number of computational pipelines for neoantigen prediction are available. Most of them provide peptide major histocompatibility complex (MHC) binding affinity predictions, but more recent approaches incorporate additional features like variant allele fraction, gene expression, and clonality of mutations. Neoantigens can be predicted in all cancer types with high and low tumour mutation burden, in part by exploiting tumour-specific aberrations derived from mutational frameshifts, splice variants, gene fusions, endogenous retroelements and other tumour-specific processes that could yield more potently immunogenic tumour neoantigens. Ongoing clinical trials will highlight those cancer types and combinations of immune therapies that would derive the most benefit from neoantigen-based immunotherapies. CONCLUSIONS Improved identification, selection and prioritisation of tumour-specific neoantigens are needed to increase the scope of benefit from cancer vaccines and adoptive T-cell therapies. Novel pipelines are being developed to resolve the challenges posed by high-throughput sequencing and to predict immunogenic neoantigens.
Collapse
Affiliation(s)
- L De Mattos-Arruda
- IrsiCaixa, Hospital Universitari Trias i Pujol, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.
| | - M Vazquez
- Barcelona Supercomputing Center, Barcelona, Spain
| | - F Finotello
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - R Lepore
- Barcelona Supercomputing Center, Barcelona, Spain
| | - E Porta
- Barcelona Supercomputing Center, Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - J Hundal
- The McDonnell Genome Institute, Washington University in St Louis, USA
| | | | - C K Y Ng
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - A Valencia
- Barcelona Supercomputing Center, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - J Carrillo
- IrsiCaixa, Hospital Universitari Trias i Pujol, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - T A Chan
- Center for Immunotherapy and Precision-Immuno-Oncology, Cleveland Clinic, Cleveland, USA
| | - V Guallar
- Barcelona Supercomputing Center, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - N McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College, London, UK; Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
| | - J Blanco
- IrsiCaixa, Hospital Universitari Trias i Pujol, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain; Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - M Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
23
|
Cofano F, Monticelli M, Ajello M, Zenga F, Marengo N, Di Perna G, Altieri R, Cassoni P, Bertero L, Melcarne A, Tartara F, Ducati A, Garbossa D. The Targeted Therapies Era Beyond the Surgical Point of View: What Spine Surgeons Should Know Before Approaching Spinal Metastases. Cancer Control 2020; 26:1073274819870549. [PMID: 31865766 PMCID: PMC6728684 DOI: 10.1177/1073274819870549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last few years, the treatment of spinal metastases has significantly
changed. This is due to the advancements in surgical technique, radiotherapy,
and chemotherapy which have enriched the multidisciplinary management. Above
all, the field of molecular biology of tumors is in continuous and prosperous
evolution. In this review, the molecular markers and new approaches that have
radically modified the chemotherapeutic strategy of the most common metastatic
neoplasms will be examined together with clinical and surgical implications. The
experience and skills of several different medical professionals are mandatory:
an interdisciplinary oncology team represents the winning strategy in the
treatment of patients with spinal metastases
Collapse
Affiliation(s)
- Fabio Cofano
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Matteo Monticelli
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Marco Ajello
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Francesco Zenga
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Nicola Marengo
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Giuseppe Di Perna
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Roberto Altieri
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Paola Cassoni
- Dipartimento di Scienze Mediche, Pathology, Universita degli Studi di Torino, Torino, Italy
| | - Luca Bertero
- Dipartimento di Scienze Mediche, Pathology, Universita degli Studi di Torino, Torino, Italy
| | - Antonio Melcarne
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Fulvio Tartara
- Azienda Ospedaliero-Universitaria di Parma, Special surgery, Neurosurgery, Torino, Italy
| | - Alessandro Ducati
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Diego Garbossa
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| |
Collapse
|
24
|
Breast cancer vaccines: Heeding the lessons of the past to guide a path forward. Cancer Treat Rev 2020; 84:101947. [DOI: 10.1016/j.ctrv.2019.101947] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/29/2023]
|
25
|
Arab A, Yazdian-Robati R, Behravan J. HER2-Positive Breast Cancer Immunotherapy: A Focus on Vaccine Development. Arch Immunol Ther Exp (Warsz) 2020; 68:2. [PMID: 31915932 PMCID: PMC7223380 DOI: 10.1007/s00005-019-00566-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Clinical progress in the field of HER2-positive breast cancer therapy has been dramatically improved by understanding of the immune regulatory mechanisms of tumor microenvironment. Passive immunotherapy utilizing recombinant monoclonal antibodies (mAbs), particularly trastuzumab and pertuzumab has proved to be an effective strategy in HER2-positive breast cancer treatment. However, resistance to mAb therapy and relapse of disease are still considered important challenges in clinical practice. There are increasing reports on the induction of cellular and humoral immune responses in HER2-positive breast cancer patients. More recently, increasing efforts are focused on using HER2-derived peptide vaccines for active immunotherapy. Here, we discuss the development of various HER2-derived vaccines tested in animal models and human clinical trials. Different formulations and strategies to improve immunogenicity of the antigens in animal studies are also discussed. Furthermore, other immunotherapeutic approaches to HER2 breast cancer including, CTLA-4 inhibitors, immune checkpoint inhibitors, anti PD-1/PD-L1 antibodies are presented.
Collapse
Affiliation(s)
- Atefeh Arab
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Behravan
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, University of Waterloo, Waterloo, ON, Canada. .,Theraphage Inc., Kitchener, ON, Canada.
| |
Collapse
|
26
|
Krasniqi E, Barchiesi G, Pizzuti L, Mazzotta M, Venuti A, Maugeri-Saccà M, Sanguineti G, Massimiani G, Sergi D, Carpano S, Marchetti P, Tomao S, Gamucci T, De Maria R, Tomao F, Natoli C, Tinari N, Ciliberto G, Barba M, Vici P. Immunotherapy in HER2-positive breast cancer: state of the art and future perspectives. J Hematol Oncol 2019; 12:111. [PMID: 31665051 PMCID: PMC6820969 DOI: 10.1186/s13045-019-0798-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/25/2019] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BC) is a complex disease with primary or acquired incurability characteristics in a significant part of patients. Immunotherapeutical agents represent an emerging option for breast cancer treatment, including the human epidermal growth factor 2 positive (HER2+) subtype. The immune system holds the ability to spontaneously implement a defensive response against HER2+ BC cells through complex mechanisms which can be exploited to modulate this response for obtaining a clinical benefit. Initial immune system modulating strategies consisted mostly in vaccine therapies, which are still being investigated and improved. However, the entrance of trastuzumab into the scenery of HER2+ BC treatment was the real game changing event, which embodied a dominant immune-mediated mechanism. More recently, the advent of the immune checkpoint inhibitors has caused a new paradigm shift for immuno-oncology, with promising initial results also for HER2+ BC. Breast cancer has been traditionally considered poorly immunogenic, being characterized by relatively low tumor mutation burden (TMB). Nevertheless, recent evidence has revealed high tumor infiltrating lymphocytes (TILs) and programmed cell death-ligand 1 (PD-L1) expression in a considerable proportion of HER2+ BC patients. This may translate into a higher potential to elicit anti-cancer response and, therefore, wider possibilities for the use and implementation of immunotherapy in this subset of BC patients. We are herein presenting and critically discussing the most representative evidence concerning immunotherapy in HER2+ BC cancer, both singularly and in combination with therapeutic agents acting throughout HER2-block, immune checkpoint inhibition and anti-cancer vaccines. The reader will be also provided with hints concerning potential future projection of the most promising immutherapeutic agents and approaches for the disease of interest.
Collapse
Affiliation(s)
- E Krasniqi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - G Barchiesi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - L Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - M Mazzotta
- Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - A Venuti
- HPV-UNIT, UOSD Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostic and Technological Innovation (RIDAIT), Translational Research Functional Departmental Area, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - M Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - G Sanguineti
- Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - G Massimiani
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - D Sergi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - S Carpano
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - P Marchetti
- Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy.,Medical Oncology Unit B, Policlinico Umberto I, Rome, Italy
| | - S Tomao
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Policlinico Umberto I, 'Sapienza' University of Rome, Rome, Italy
| | - T Gamucci
- Medical Oncology, Sandro Pertini Hospital, Rome, Italy
| | - R De Maria
- Institute of General Pathology, Catholic University of the Sacred Heart, Rome, Italy.,Department of Medical Oncology, Policlinico Universitario "A. Gemelli", Rome, Italy
| | - F Tomao
- Department of Gynecology-Obstetrics and Urology, "Sapienza" University of Rome, Rome, Italy
| | - C Natoli
- Department of Medical, Oral and Biotechnological Sciences and Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - N Tinari
- Department of Medical, Oral and Biotechnological Sciences and Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - G Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - M Barba
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy.
| | - P Vici
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| |
Collapse
|
27
|
Nicolini A, Barak V, Biava P, Ferrari P, Rossi G, Carpi A. The Use of Immunotherapy to Treat Metastatic Breast Cancer. Curr Med Chem 2019; 26:941-962. [PMID: 29424297 DOI: 10.2174/0929867325666180209124052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022]
Abstract
This article reviews the principal attempts of immune-modulation or immune therapy in metastatic breast cancer. It considers their rationale and reports on results from the relevant key clinical trials. Immune-modulatory or immune-stimulating cytokines used alone or combined with conventional therapies is among the principal approaches of immune manipulation in breast cancer. As this issue has recently been reviewed by us, the aim of the current article is to discuss our updated and unpublished data on this topic. Overall survival in luminal (28 patients) and non-luminal (9 patients) molecular subtypes is 91 and 59 months respectively that is about two and half or three times longer than expected. Thereafter, we focus on monoclonal antibodies (mAb) based-therapies including novel strategies to overcome resistance to anti-HER2 mAb. The main vaccine platforms in different molecular subtypes and immune therapies in triple negative metastatic breast cancer (m-TNBC) are discussed in the last sections. Some phase III investigations have already changed the current clinical practice. In fact, pertuzumab plus trastuzumab and docetaxel is the recommended first line regimen in HER2 positive locally recurrent or metastatic breast cancer and bevacizumab plus paclitaxel or docetaxel is a reasonable option for m-TNBC. In some other observational or phase I/II studies on first-line trastuzumab plus chemotherapy and hormonal therapy and in that on HER2 peptide/protein vaccines promising although preliminary findings have been reported to be further validated. In the remaining studies, results were disappointing. In the future, finding new predictive biomarkers and exploring more suitable synergizing combinations, time and dose-dependent-scheduled sequences of currently and further investigated immunological approaches are main challenges.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Italy
| | - Vivian Barak
- Immunology Lab for tumor diagnosis, Hadassah University, Jerusalem, Israel
| | - Piermario Biava
- Scientific Institute of Research and Care Multimedica, Milan, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Italy
| | - Giuseppe Rossi
- Unit of Epidemiology and Biostatistics, Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
28
|
Costa R, Zaman S, Sharpe S, Helenowski I, Shaw C, Han H, Soliman H, Czerniecki B. A brief report of toxicity end points of HER2 vaccines for the treatment of patients with HER2 + breast cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:309-316. [PMID: 30679903 PMCID: PMC6338114 DOI: 10.2147/dddt.s188925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2)-targeted vaccines are under development, but have so far demonstrated only modest clinical efficacy. Additionally, there has been a lack of adequate safety assessment in large-scale prospective clinical trials. Therefore, we performed a meta-analysis of available clinical trial data to summarize the toxicity profiles of these treatments. Literature search was conducted in February 2018. The trials analyzed had at least one study arm consisting of HER2 vaccine monotherapy. Heterogeneity across studies was analyzed using I2 statistics. Data were analyzed using random-effects meta-analysis for absolute risk (AR). Eight trials and 248 patients were included. There was no evidence of heterogeneity between studies for grades 3/4 adverse events (AEs) or for death. The AR for treatment-related serious AEs was 5% with no treatment-related deaths. The AR of all-grade fatigue, injection site reaction, and fever/chills/rigors was 33%, 23%, and 31%, respectively. Asymptomatic drop in left ventricle ejection fraction was rare (8%). HER2 vaccines are well tolerated with increased AR of fatigue, injection site reactions, and fever/chills/rigors.
Collapse
Affiliation(s)
- Ricardo Costa
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA,
| | - Saif Zaman
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Susan Sharpe
- Moffitt Biomedical Library, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Irene Helenowski
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Colleen Shaw
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA,
| | - Hyo Han
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA,
| | - Hatem Soliman
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA,
| | - Brian Czerniecki
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA,
| |
Collapse
|
29
|
Tan W, Yang M, Yang H, Zhou F, Shen W. Predicting the response to neoadjuvant therapy for early-stage breast cancer: tumor-, blood-, and imaging-related biomarkers. Cancer Manag Res 2018; 10:4333-4347. [PMID: 30349367 PMCID: PMC6188192 DOI: 10.2147/cmar.s174435] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neoadjuvant therapy (NAT) has been used increasingly in patients with locally advanced or early-stage breast cancer. However, the accurate evaluation and prediction of response to NAT remain the great challenge. Biomarkers could prove useful to identify responders or nonresponders, or even to distinguish between early and delayed responses. These biomarkers could include markers from the tumor itself, such as versatile proteins, genes, and ribonucleic acids, various biological factors or peripheral blood cells, and clinical and pathological features. Possible predictive markers could also include multiple features from functional imaging, such as standard uptake values in positron emission tomography, apparent diffusion coefficient in magnetic resonance, or radiomics imaging biomarkers. In addition, cells that indirectly present the immune status of tumor cells and/or their host could also potentially be used as biomarkers, eg, tumor-infiltrating lymphocytes, tumor-associated macrophages, and myeloid-derived suppressor cells. Though numerous biomarkers have been widely investigated, only estrogen and/or progesterone receptors and human epidermal growth factor receptor have been proven to be reliable biomarkers to predict the response to NAT. They are the only biomarkers recommended in several international guidelines. The other aforementioned biomarkers warrant further validation studies. Some multigene profiling assays that are commercially available, eg, Oncotype DX and MammaPrint, should be used with caution when extrapolated to NAT settings. A panel of combined multilevel biomarkers might be able to predict the response to NAT more robustly than individual biomarkers. To establish such a panel and its prediction model, reliable methods and extensive clinical validation are warranted.
Collapse
Affiliation(s)
- Wenyong Tan
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, People's Republic of China, ;
- Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People Hospital), Jinan University, Shenzhen, People's Republic of China,
| | - Ming Yang
- Shenzhen Jingmai Medical Scientific and Technique Company, Shenzhen, People's Republic of China
| | - Hongli Yang
- Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People Hospital), Jinan University, Shenzhen, People's Republic of China,
| | - Fangbin Zhou
- Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People Hospital), Jinan University, Shenzhen, People's Republic of China,
| | - Weixi Shen
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, People's Republic of China, ;
| |
Collapse
|
30
|
Tian H, He Y, Song X, Jiang L, Luo J, Xu Y, Zhang W, Gao X, Yao W. Nitrated T helper cell epitopes enhance the immunogenicity of HER2 vaccine and induce anti-tumor immunity. Cancer Lett 2018; 430:79-87. [DOI: 10.1016/j.canlet.2018.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/06/2018] [Accepted: 05/15/2018] [Indexed: 01/27/2023]
|
31
|
Tong CWS, Wu M, Cho WCS, To KKW. Recent Advances in the Treatment of Breast Cancer. Front Oncol 2018; 8:227. [PMID: 29963498 PMCID: PMC6010518 DOI: 10.3389/fonc.2018.00227] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy in women. It is classified into a few major molecular subtypes according to hormone and growth factor receptor expression. Over the past few years, substantial advances have been made in the discovery of new drugs for treating BC. Improved understanding of the biologic heterogeneity of BC has allowed the development of more effective and individualized approach to treatment. In this review, we provide an update about the current treatment strategy and discuss the various emerging novel therapies for the major molecular subtypes of BC. A brief account of the clinical development of inhibitors of poly(ADP-ribose) polymerase, cyclin-dependent kinases 4 and 6, phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway, histone deacetylation, multi-targeting tyrosine kinases, and immune checkpoints for personalized treatment of BC is included. However, no targeted drug has been approved for the most aggressive subtype-triple negative breast cancer (TNBC). Thus, we discuss the heterogeneity of TNBC and how molecular subtyping of TNBC may help drug discovery for this deadly disease. The emergence of drug resistance also poses threat to the successful development of targeted therapy in various molecular subtypes of BC. New clinical trials should incorporate advanced methods to identify changes induced by drug treatment, which may be associated with the upregulation of compensatory signaling pathways in drug resistant cancer cells.
Collapse
Affiliation(s)
- Christy W S Tong
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Mingxia Wu
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Kenneth K W To
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
32
|
Temizoz B, Kuroda E, Ishii KJ. Combination and inducible adjuvants targeting nucleic acid sensors. Curr Opin Pharmacol 2018; 41:104-113. [PMID: 29870915 DOI: 10.1016/j.coph.2018.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023]
Abstract
Innate immune sensing of nucleic acids derived from invading pathogens or tumor cells via pattern recognition receptors is crucial for mounting protective immune responses against infectious disease and cancer. Recently, discovery of tremendous amounts of nucleic acid sensors as well as identification of natural and synthetic ligands for these receptors revealed the potential of adjuvants targeting nucleic acid sensing pathways for designing efficacious vaccines. Especially, current data indicated that unique adjuvants targeting TLR9 and stimulator of interferon genes (STING)-dependent cytosolic nucleic acid sensing pathways along with the combinations of already existing adjuvants are promising candidates for this purpose. Here, we review current vaccine adjuvants targeting nucleic acid sensors and their modes of action.
Collapse
Affiliation(s)
- Burcu Temizoz
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, Osaka, Japan; Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), Osaka, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, Osaka, Japan; Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), Osaka, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, Osaka, Japan; Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), Osaka, Japan.
| |
Collapse
|
33
|
Al-Awadhi A, Lee Murray J, Ibrahim NK. Developing anti-HER2 vaccines: Breast cancer experience. Int J Cancer 2018; 143:2126-2132. [PMID: 29693245 DOI: 10.1002/ijc.31551] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/26/2022]
Abstract
Breast cancer accounts for more than one million new cases annually and is the leading cause of death in women globally. HER2 overexpression induces cellular and humoral immune responses against the HER2 protein and is associated with higher tumor proliferation rates. Trastuzumab-based therapies are effectively and widely used as standard of care in HER2-amplified/overexpressed breast cancer patients; one cited mechanism of action is the induction of passive immunity and antibody-dependent cellular cytotoxicity against malignant breast cancer cells. These findings drove the efforts to generate antigen-specific immunotherapy to trigger the patient's immune system to target HER2-overexpressing tumor cells, which led to the development of various vaccines against the HER2 antigen. This article discusses the various anti-HER2 vaccine formulations and strategies and their potential role in the metastatic and adjuvant settings.
Collapse
Affiliation(s)
- Aydah Al-Awadhi
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - James Lee Murray
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nuhad K Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
34
|
Sander AF, Lollini PL. Virus-like antigen display for cancer vaccine development, what is the potential? Expert Rev Vaccines 2018; 17:285-288. [PMID: 29560746 DOI: 10.1080/14760584.2018.1455505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Adam F Sander
- a Centre for Medical Parasitology at the Department of Immunology and Microbiology and Department of Infectious Diseases , University of Copenhagen, Copenhagen University Hospital , Copenhagen , Denmark
| | - Pier-Luigi Lollini
- b Department of Experimental, Diagnostic and Specialty Medicine , University of Bologna , Bologna , Italy
| |
Collapse
|
35
|
Nakasone ES, Hurvitz SA, McCann KE. Harnessing the immune system in the battle against breast cancer. Drugs Context 2018; 7:212520. [PMID: 29456568 PMCID: PMC5810622 DOI: 10.7573/dic.212520] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most prevalent malignancy in women and the second most common cause of cancer-related death worldwide. Despite major innovations in early detection and advanced therapeutics, up to 30% of women with node-negative breast cancer and 70% of women with node-positive breast cancer will develop recurrence. The recognition that breast tumors are infiltrated by a complex array of immune cells that influence their development, progression, and metastasis, as well as their responsiveness to systemic therapies has sparked major interest in the development of immunotherapies. In fact, not only the native host immune system can be altered to promote potent antitumor response, but also its components can be manipulated to generate effective therapeutic strategies. We present here a review of the major approaches to immunotherapy in breast cancers, both successes and failures, as well as new therapies on the horizon.
Collapse
Affiliation(s)
- Elizabeth S Nakasone
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sara A Hurvitz
- Division of Hematology/Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kelly E McCann
- Division of Hematology/Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
36
|
Palladini A, Thrane S, Janitzek CM, Pihl J, Clemmensen SB, de Jongh WA, Clausen TM, Nicoletti G, Landuzzi L, Penichet ML, Balboni T, Ianzano ML, Giusti V, Theander TG, Nielsen MA, Salanti A, Lollini PL, Nanni P, Sander AF. Virus-like particle display of HER2 induces potent anti-cancer responses. Oncoimmunology 2018; 7:e1408749. [PMID: 29399414 PMCID: PMC5790387 DOI: 10.1080/2162402x.2017.1408749] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
Overexpression of human epidermal growth factor receptor-2 (HER2) occurs in 20–30% of invasive breast cancers. Monoclonal antibody therapy is effective in treating HER2-driven mammary carcinomas, but its utility is limited by high costs, side effects and development of resistance. Active vaccination may represent a safer, more effective and cheaper alternative, although the induction of strong and durable autoantibody responses is hampered by immune-tolerogenic mechanisms. Using a novel virus-like particle (VLP) based vaccine platform we show that directional, high-density display of human HER2 on the surface of VLPs, allows induction of therapeutically potent anti-HER2 autoantibody responses. Prophylactic vaccination reduced spontaneous development of mammary carcinomas by 50%-100% in human HER2 transgenic mice and inhibited the growth of HER2-positive tumors implanted in wild-type mice. The HER2-VLP vaccine shows promise as a new cost-effective modality for prevention and treatment of HER2-positive cancer. The VLP platform may represent an effective tool for development of vaccines against other non-communicable diseases.
Collapse
Affiliation(s)
- Arianna Palladini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Susan Thrane
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christoph M Janitzek
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jessica Pihl
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Stine B Clemmensen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.,ExpreS2ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | | | - Thomas M Clausen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Giordano Nicoletti
- Rizzoli Orthopedic Institute, Laboratory of Experimental Oncology, Bologna, Italy
| | - Lorena Landuzzi
- Rizzoli Orthopedic Institute, Laboratory of Experimental Oncology, Bologna, Italy
| | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery and Department of Microbiology, Immunology and Molecular Genetics, The Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Tania Balboni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Marianna L Ianzano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Veronica Giusti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Thor G Theander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten A Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Pier-Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Patrizia Nanni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
37
|
Farran B, Müller S, Montenegro RC. Gastric cancer management: Kinases as a target therapy. Clin Exp Pharmacol Physiol 2018; 44:613-622. [PMID: 28271563 DOI: 10.1111/1440-1681.12743] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022]
Abstract
The molecular diagnostics revolution has reshaped the practice of oncology by facilitating the identification of genetic, epigenetic and proteomic modifications correlated with cancer, thus delineating 'oncomaps' for various cancer types. These advances have enhanced our understanding of gastric cancer, one of the most fatal diseases worldwide, and culminated in the approval of novel molecular therapies such as trastuzumab. Gastric tumours display recurrent aberrations in key kinase oncogenes such as Her2, epidermal growth factor receptor (EGFR), PI3K, mTOR or c-Met, suggesting that these receptors are amenable to inhibition using specific drug agents. In this review, we examine the mutational landscape of gastric cancer, the use of kinase inhibitors as targeted therapies in gastric tumours and the clinical trials underway for novel inhibitors, highlighting successes, failures and future directions.
Collapse
Affiliation(s)
- Batoul Farran
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Susanne Müller
- Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt am Main, DE, Germany
| | - Raquel C Montenegro
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
38
|
Costa RLB, Soliman H, Czerniecki BJ. The clinical development of vaccines for HER2 + breast cancer: Current landscape and future perspectives. Cancer Treat Rev 2017; 61:107-115. [PMID: 29125981 DOI: 10.1016/j.ctrv.2017.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 11/28/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a tumor associated antigen over-expressed in 20-30% of cases of breast cancer. Passive immune therapy with HER2-directed monoclonal antibodies (mabs) has changed the natural history of this subset of breast tumors both in the localized and metastatic settings. The safety and efficacy of HER2 vaccines have been assessed in early phase clinical trials but to date clinically relevant results in late phase trials remain an elusive target. Here, we review the recent translational discoveries related to the interactions between the adaptive immune system and the HER2 antigen in breast cancer, results of published clinical trials, and future directions in the field of HER2 vaccine treatment development.
Collapse
Affiliation(s)
- R L B Costa
- Lee Moffitt Cancer Center, Department of Breast Cancer, Tampa, United States.
| | - H Soliman
- Lee Moffitt Cancer Center, Department of Breast Cancer, Tampa, United States
| | - B J Czerniecki
- Lee Moffitt Cancer Center, Department of Breast Cancer, Tampa, United States
| |
Collapse
|
39
|
Caballero I, Aira LE, Lavastida A, Popa X, Rivero J, González J, Mesa M, González N, Coba K, Lorenzo-Luaces P, Wilkinson B, Santiesteban Y, Santiesteban Y, Troche M, Suarez E, Crombet T, Sánchez B, Casacó A, Macías A, Mazorra Z. Safety and Immunogenicity of a Human Epidermal Growth Factor Receptor 1 (HER1)-Based Vaccine in Prostate Castration-Resistant Carcinoma Patients: A Dose-Escalation Phase I Study Trial. Front Pharmacol 2017; 8:263. [PMID: 28539888 PMCID: PMC5423955 DOI: 10.3389/fphar.2017.00263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Metastatic castration-resistant prostate cancer (CRPC) remains incurable due to the lack of effective therapies. Activation of the human epidermal growth factor receptor 1 (HER1) in prostate cancer contributes to metastatic progression as well as to disease relapse. Here, we determined the toxicity and immunogenicity of a HER1-based cancer vaccine in CRPC patients included in a phase I clinical trial. CRPC patients (n = 24) were intramuscularly vaccinated with HER1 vaccine consisting of the extracellular domain of HER1 molecule (ECD) and very small size proteoliposome from Neisseria meningitidis (VSSP) and Montanide ISA-51 VG as adjuvants. Patients were included in five groups according to the vaccine dose (100, 200, 400, 600, and 800 μg). The primary endpoints were safety and immunogenicity. The anti-HER1 antibodies were measured by an ELISA, the recognition of an HER1 positive tumor cell line and the inhibition of HER1 phosphorylation by sera were determined by flow cytometry and western blot analysis, respectively. The HER1-specific T cell response was assessed by determination of IFN-γ-producing T cells using ELISpot assay. The vaccine was well tolerated. No grade III or IV adverse events were reported. High titers of anti-HER1 antibodies were observed in most of the evaluated patients. There were no significant differences regarding the geometric means of the anti-HER1 titers among the dose groups except the group of 100 μg in which antibody titers were significantly lower. A Th1-type IgG subclasses pattern was predominant in most patients. Only patients receiving the higher doses of vaccine showed significant tumor cell recognition and HER1 phosphorylation inhibition by hyperimmune sera. Forty two percent of the patients showed a specific T cell response against HER1 peptides pool in post-treatment samples. There was a trend toward survival benefit in those patients showing high anti-HER1 specific antibody titers and a significant association between cellular immune response and clinical outcome.
Collapse
Affiliation(s)
- Iraida Caballero
- Department of Oncology, Hermanos Ameijeiras HospitalHavana, Cuba
| | - Lazaro E Aira
- Department of Clinical Immunology, Center of Molecular ImmunologyHavana, Cuba
| | - Anabel Lavastida
- Department of Clinical Immunology, Center of Molecular ImmunologyHavana, Cuba
| | - Xitlally Popa
- Department of Clinical Immunology, Center of Molecular ImmunologyHavana, Cuba
| | | | - Joaquín González
- Department of Oncology, Hermanos Ameijeiras HospitalHavana, Cuba
| | - Mónica Mesa
- Tumor Immunology Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Narjara González
- Tumor Immunology Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Kelly Coba
- Faculty of Medicine "Victoria de Girón"Havana, Cuba
| | | | - Barbara Wilkinson
- Clinical Trials Direction, Center of Molecular ImmunologyHavana, Cuba
| | | | | | - Mayelin Troche
- Clinical Trials Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Eduardo Suarez
- Department of Innovation, Center of Molecular ImmunologyHavana, Cuba
| | - Tania Crombet
- Clinical Trials Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Belinda Sánchez
- Tumor Immunology Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Angel Casacó
- Clinical Trials Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Amparo Macías
- Clinical Trials Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Zaima Mazorra
- Department of Clinical Immunology, Center of Molecular ImmunologyHavana, Cuba
| |
Collapse
|
40
|
Migali C, Milano M, Trapani D, Criscitiello C, Esposito A, Locatelli M, Minchella I, Curigliano G. Strategies to modulate the immune system in breast cancer: checkpoint inhibitors and beyond. Ther Adv Med Oncol 2016; 8:360-74. [PMID: 27583028 DOI: 10.1177/1758834016658423] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Is breast cancer (BC) immunogenic? Many data suggest that it is. Many observations demonstrated the prognostic role of tumor-infiltrating lymphocytes (TILs) in triple negative (TN) and human epidermal growth factor receptor 2 (HER-2)-positive BC. TNBCs are poorly differentiated tumors with high genetic instability and very high heterogeneity. This heterogeneity enhances the 'danger signals' and select clone variants that could be more antigenic or, in other words, that could more strongly stimulate a host immune antitumor response. The response to chemotherapy is at least partly dependent on an immunological reaction against those tumor cells that are dying during the chemotherapy. One of the mechanisms whereby chemotherapy can stimulate the immune system to recognize and destroy malignant cells is commonly known as immunogenic cell death (ICD). ICD elicits an adaptive immune response. Which are the clinical implications of all 'immunome' data produced in the last years? First, validate prognostic or predictive role of TILs. Second, validate immune genomic signatures that may be predictive and prognostic in patients with TN disease. Third, incorporate an 'immunoscore' into traditional classification of BC, thus providing an essential prognostic and potentially predictive tool in the pathology report. Fourth, implement clinical trials for BC in the metastatic setting with drugs that target immune-cell-intrinsic checkpoints. Blockade of one of these checkpoints, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or the programmed cell death 1 (PD-1) receptor may provide proof of concepts for the activity of an immune-modulation approach in the treatment of a BC.
Collapse
Affiliation(s)
- Cristina Migali
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Milano, Italy
| | - Monica Milano
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Milano, Italy
| | - Dario Trapani
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Milano, Italy
| | - Carmen Criscitiello
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Milano, Italy
| | - Angela Esposito
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Milano, Italy
| | - Marzia Locatelli
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Milano, Italy
| | - Ida Minchella
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Milano, Italy
| | - Giuseppe Curigliano
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milano, Italy
| |
Collapse
|