1
|
Tai YK, Iversen JN, Chan KKW, Fong CHH, Abdul Razar RB, Ramanan S, Yap LYJ, Yin JN, Toh SJ, Wong CJK, Koh PFA, Huang RYJ, Franco-Obregón A. Secretome from Magnetically Stimulated Muscle Exhibits Anticancer Potency: Novel Preconditioning Methodology Highlighting HTRA1 Action. Cells 2024; 13:460. [PMID: 38474424 DOI: 10.3390/cells13050460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Briefly (10 min) exposing C2C12 myotubes to low amplitude (1.5 mT) pulsed electromagnetic fields (PEMFs) generated a conditioned media (pCM) that was capable of mitigating breast cancer cell growth, migration, and invasiveness in vitro, whereas the conditioned media harvested from unexposed myotubes, representing constitutively released secretome (cCM), was less effective. Administering pCM to breast cancer microtumors engrafted onto the chorioallantoic membrane of chicken eggs reduced tumor volume and vascularity. Blood serum collected from PEMF-exposed or exercised mice allayed breast cancer cell growth, migration, and invasiveness. A secretome preconditioning methodology is presented that accentuates the graded anticancer potencies of both the cCM and pCM harvested from myotubes, demonstrating an adaptive response to pCM administered during early myogenesis that emulated secretome-based exercise adaptations observed in vivo. HTRA1 was shown to be upregulated in pCM and was demonstrated to be necessary and sufficient for the anticancer potency of the pCM; recombinant HTRA1 added to basal media recapitulated the anticancer effects of pCM and antibody-based absorption of HTRA1 from pCM precluded its anticancer effects. Brief and non-invasive PEMF stimulation may represent a method to commandeer the secretome response of muscle, both in vitro and in vivo, for clinical exploitation in breast and other cancers.
Collapse
Affiliation(s)
- Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Jan Nikolas Iversen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Karen Ka Wing Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Charlene Hui Hua Fong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Rafhanah Banu Abdul Razar
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Sharanya Ramanan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Lye Yee Jasmine Yap
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Shi Jie Toh
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Craig Jun Kit Wong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Pei Fern Angele Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Ruby Yun Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Obstetrics & Gynaecology, National University of Singapore, Singapore 119228, Singapore
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- School of Medicine, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
2
|
Huang C, Deng M, Leng D, Sun B, Zheng P, Zhang XD. MIRS: An AI scoring system for predicting the prognosis and therapy of breast cancer. iScience 2023; 26:108322. [PMID: 38026206 PMCID: PMC10665820 DOI: 10.1016/j.isci.2023.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor-infiltrating immune cells (TIICs) and metastasis are crucial characteristics for tumorigenesis. However, the potential role of their combination in breast cancer (BRCA) remains elusive. Herein, on the basis of quantifying TIICs and tumor metastasis together, we established a precise prognostic scoring system named metastatic and immunogenomic risk score (MIRS) using a neural network model. MIRS showed better performance when compared with other published signatures. MIRS stratifies patients into a high risk subtype (MIRShigh) and a low risk subtype (MIRSlow). The MIRShigh patients exhibit significantly lower survival rate compared with MIRSlow patients (P < 0.0001 ), higher response to chemotherapy, but lower response to immunotherapy. Conversely, higher infiltration level of TIICs and significantly prolonged survival (P = 0.029 ) are observed in MIRSlow patients, indicating sensitive response in immunotherapy. This work presents a promising indicator to guide treatment options of the BRCA population and provides a predicted webtool that is almost universally applicable to BRCA patients.
Collapse
Affiliation(s)
- Chen Huang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau SAR 999078, China
- State Key laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau SAR 999078, China
| | - Min Deng
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Dongliang Leng
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Peiyan Zheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaohua Douglas Zhang
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
3
|
Navarro-Yepes J, Kettner NM, Rao X, Bishop CS, Bui TN, Wingate HF, Raghavendra AS, Wang Y, Wang J, Sahin AA, Meric-Bernstam F, Hunt KK, Damodaran S, Tripathy D, Keyomarsi K. Abemaciclib Is Effective in Palbociclib-Resistant Hormone Receptor-Positive Metastatic Breast Cancers. Cancer Res 2023; 83:3264-3283. [PMID: 37384539 PMCID: PMC10592446 DOI: 10.1158/0008-5472.can-23-0705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Cyclin-dependent kinases 4/6 inhibitor (CDK4/6i) plus endocrine therapy (ET) is standard of care for patients with hormone receptor (HR)-positive, HER2-negative metastatic breast cancer (MBC). However, resistance to CDK4/6is plus ET remains a clinical problem with limited therapeutic options following disease progression. Different CDK4/6is might have distinct mechanisms of resistance, and therefore using them sequentially or targeting their differentially altered pathways could delay disease progression. To understand pathways leading to resistance to the CDK4/6is palbociclib and abemaciclib, we generated multiple in vitro models of palbociclib-resistant (PR) and abemaciclib-resistant (AR) cell lines as well as in vivo patient-derived xenografts (PDX) and ex vivo PDX-derived organoids (PDxO) from patients who progressed on CDK4/6i. PR and AR breast cancer cells exhibited distinct transcriptomic and proteomic profiles that sensitized them to different classes of inhibitors; PR cells upregulated G2-M pathways and responded to abemaciclib, while AR cells upregulated mediators of the oxidative phosphorylation pathway (OXPHOS) and responded to OXPHOS inhibitors. PDX and organoid models derived from patients with PR breast cancer remained responsive to abemaciclib. Resistance to palbociclib while maintaining sensitivity to abemaciclib was associated with pathway-specific transcriptional activity but was not associated with any individual genetic alterations. Finally, data from a cohort of 52 patients indicated that patients with HR-positive/HER2-negative MBC who progressed on palbociclib-containing regimens can exhibit a meaningful overall clinical benefit from abemaciclib-based therapy when administered after palbociclib. These findings provide the rationale for clinical trials evaluating the benefit of abemaciclib treatment following progression on a prior CDK4/6i. SIGNIFICANCE Palbociclib-resistant breast cancers respond to abemaciclib and express pathway-specific signatures of sensitivity, providing a biomarker-driven therapeutic option for patients with metastatic breast cancer following disease progression on cyclin-dependent kinases 4/6 inhibitors.
Collapse
Affiliation(s)
- Juliana Navarro-Yepes
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicole M. Kettner
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cassandra Santaella Bishop
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuyen N. Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hannah F. Wingate
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Yan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A. Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Debasish Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Izdebska M, Zielińska W, Krajewski A, Grzanka A. Fascin in migration and metastasis of breast cancer cells - A review. Adv Med Sci 2023; 68:290-297. [PMID: 37660543 DOI: 10.1016/j.advms.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Cancer cell migration and metastasis are the biggest problems in the treatment of cancer patients. The most aggressive breast cancer (BC) is the triple-negative type. Therefore, effective therapeutic targets that limit cell migration are sought. One such target may be fascin, as its overexpression is characteristic to triple-negative breast cancer. The high level of fascin enables the formation of protrusion and thus promotes the invasion of cancer cells. Fascin also shows co-localization or functional relationships with other proteins. These are proteins involved in the epithelial-mesenchymal transition process, vimentin, cadherins, β-catenin, and matrix metalloproteinases 2/9 (MMP-2/9). Fascin is also involved in many signaling pathways protein kinase C-δ (PKCδ), Wnt/β-catenin, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and phosphatidylinositol 3-kinase (PI3K)-Akt. Therefore, in this article, we review currently available in vitro studies and compare them with The Cancer Genome Atlas (TCGA) data analysis of BC patients to demonstrate the role of fascin in the migration and invasion of cancer cells.
Collapse
Affiliation(s)
- Magdalena Izdebska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Wioletta Zielińska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Adrian Krajewski
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland.
| | - Alina Grzanka
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| |
Collapse
|
5
|
Zhou J, Yang S, Zhu D, Li H, Miao X, Gu M, Xu W, Zhang Y, Tang W, Shen R, Zha J, Zhu J, Yuan Z, Gu X. The crosstalk between anoikis and epithelial-mesenchymal transition and their synergistic roles in predicting prognosis in colon adenocarcinoma. Front Oncol 2023; 13:1184215. [PMID: 37350934 PMCID: PMC10284081 DOI: 10.3389/fonc.2023.1184215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/17/2023] [Indexed: 06/24/2023] Open
Abstract
Anoikis and epithelial-mesenchymal transition (EMT) are significant phenomena occurring in distant metastasis of colon adenocarcinoma (COAD). A comprehensive understanding of their crosstalk and the identification of key genes are vital for treating the distant metastasis of COAD. The objective of this study was to design and validate accurate prognostic predictors for COAD patients based on the anoikis and EMT processes. We obtained gene signatures from various databases and performed univariate and multivariate Cox regression analyses, principal component analysis (PCA). The COAD patients were categorized into the worst prognosis group, the Anoikis Potential Index (API) Low + EMT Potential Index (EPI) High group and the others group. Then we utilized gene set enrichment analysis (GSEA) to identify differentially expressed genes and to establish a prognostic risk model. The model classified patients into high- or low-risk groups, with patients in the high-risk group displaying worse survival status. A nomogram was established to predict overall survival rates, demonstrating high specificity and sensitivity. Additionally, we connected the risk model to the tumor microenvironment (TME) using single-sample GSEA and the MCP counter tool, as well as evaluated the sensitivity to common chemotherapeutic drugs, such as Gefitinib and Gemcitabine. Lastly, cell and tissue experiments suggested a positive correlation among anoikis resistance, EMT, and liver/lung metastasis of COAD. This is the first study to comprehensively analyze the crosstalk between anoikis and EMT and offers new therapeutic targets for COAD metastasis patients.
Collapse
Affiliation(s)
- Jiahui Zhou
- Department of Gastrointestinal Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Sheng Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Dawei Zhu
- Department of Gastrointestinal Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hao Li
- Department of Gastrointestinal Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xinsheng Miao
- Department of Gastrointestinal Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Menghui Gu
- Department of Gastrointestinal Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wei Xu
- Department of Gastrointestinal Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yan Zhang
- Department of Gastrointestinal Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wei Tang
- Department of Gastrointestinal Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Renbin Shen
- Department of Gastrointestinal Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jianhua Zha
- Department of Gastrointestinal Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jianhua Zhu
- Department of Gastrointestinal Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zheng Yuan
- Department of Gastrointestinal Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xinhua Gu
- Department of Gastrointestinal Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
6
|
Salman IT, Abulsoud AI, Abo-Elmatty DM, Fawzy A, Mesbah NM, Saleh SM. The long non-coding RNA ZFAS1 promotes colorectal cancer progression via miR200b/ZEB1 axis. Pathol Res Pract 2023; 247:154567. [PMID: 37245266 DOI: 10.1016/j.prp.2023.154567] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common tumor worldwide. CRC is influenced by several types of miRNAs and long non-coding RNAs. This study aims to evaluate the correlation of lncRNA ZFAS1/ miR200b/ ZEB1 protein with presence of CRC. METHODS Quantitative real-time polymerase chain reaction was used to measure serum expression of lncRNA ZFAS1 and microRNA-200b in 60 CRC patients and 28 control subjects. ZEB1 protein in serum was measured by ELISA. RESULTS Lnc ZFAS1 and ZEB1 were up-regulated in CRC patients in compare to control subjects while miR-200b was down-regulated. There was a linear correlation between ZAFS1 expression and miR-200b and ZEB1 in CRC. CONCLUSION ZFAS1 is a key player of CRC progression and could be a potential therapeutic target by sponging miR-200b. In-addition the association between ZFAS1, miR-200b and ZEB1 highlights their potential value as a novel diagnostic biomarker in human CRC.
Collapse
Affiliation(s)
- Islam T Salman
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amal Fawzy
- Department of Clinical and Chemical Pathology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Samy M Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
7
|
Hassan M, Yasir M, Shahzadi S, Kloczkowski A. Exploration of Potential Ewing Sarcoma Drugs from FDA-Approved Pharmaceuticals through Computational Drug Repositioning, Pharmacogenomics, Molecular Docking, and MD Simulation Studies. ACS OMEGA 2022; 7:19243-19260. [PMID: 35721972 PMCID: PMC9202290 DOI: 10.1021/acsomega.2c00518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
Novel drug development is a time-consuming process with relatively high debilitating costs. To overcome this problem, computational drug repositioning approaches are being used to predict the possible therapeutic scaffolds against different diseases. In the current study, computational drug repositioning approaches were employed to fetch the promising drugs from the pool of FDA-approved drugs against Ewing sarcoma. The binding interaction patterns and conformational behaviors of screened drugs within the active region of Ewing sarcoma protein (EWS) were confirmed through molecular docking profiles. Furthermore, pharmacogenomics analysis was employed to check the possible associations of selected drugs with Ewing sarcoma genes. Moreover, the stability behavior of selected docked complexes (drugs-EWS) was checked by molecular dynamics simulations. Taken together, astemizole, sulfinpyrazone, and pranlukast exhibited a result comparable to pazopanib and can be used as a possible therapeutic agent in the treatment of Ewing sarcoma.
Collapse
Affiliation(s)
- Mubashir Hassan
- Institute
of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore 54590, Pakistan
- The
Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
- ,
| | - Muhammad Yasir
- Institute
of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore 54590, Pakistan
| | - Saba Shahzadi
- Institute
of Molecular Sciences and Bioinformatics (IMSB), Nisbet Road, Lahore 52254, Pakistan
| | - Andrzej Kloczkowski
- The
Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
- Department
of Pediatrics, The Ohio State University, Columbus, Ohio 43205, United States
| |
Collapse
|
8
|
Hou L, Hou S, Yin L, Zhao S, Li X. Epithelial-Mesenchymal Transition-Based Gene Signature and Distinct Molecular Subtypes for Predicting Clinical Outcomes in Breast Cancer. Int J Gen Med 2022; 15:3497-3515. [PMID: 35386860 PMCID: PMC8979091 DOI: 10.2147/ijgm.s343885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
Purpose Regulation of inducers and transcription factor families influence epithelial–mesenchymal transition (EMT), a contributing factor to breast cancer invasion and progression. Methods Molecular subtypes were classified based on EMT-related mRNAs using ConsensusClusterPlus package. Differences in tumor immune microenvironment and prognosis were assessed among subtypes. Based on EMT genes, a gene signature for prognosis was built using TCGA training set by performing multivariate and univariate Cox regression analyses. Prediction accuracy of the signature was validated by receiver operating characteristic (ROC) curves and overall survival analysis on internal and external datasets. By conducting univariate and multivariate Cox regression analyses, the risk signature as an independent prognostic indicator was assessed. A nomogram was constructed and validated by calibration analysis and decision curve analysis (DCA). Results Five molecular subtypes were characterized based on EMT genes. Patients in Cluster 2 exhibited an activated immune state and a better prognosis. An 11-EMT gene-signature was built to predict breast cancer prognosis. After validation, the signature showed independence and robustness in predicting clinical outcomes of patients. A nomogram combining the RiskScore and pTNM_stage accurately predicted 1-, 2-, 3-, and 5-year survival chance. In comparison with published model, the current model showed a higher area under the curve (AUC). Conclusion We characterized five breast cancer subtypes with distinct clinical outcomes and immune status. The study developed an 11-EMT gene-signature as an independent prognostic factor for predicting clinical outcomes of breast cancer.
Collapse
Affiliation(s)
- Lili Hou
- Department of Breast and Thyroid Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, 215128, People's Republic of China
| | - Shuang Hou
- Department of Breast and Thyroid Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, 215128, People's Republic of China
| | - Lei Yin
- Department of Breast and Thyroid Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, 215128, People's Republic of China
| | - Shuai Zhao
- Department of Breast and Thyroid Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, 215128, People's Republic of China
| | - Xiaohua Li
- Department of Breast and Thyroid Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, 215128, People's Republic of China
| |
Collapse
|
9
|
Gambardella G, Viscido G, Tumaini B, Isacchi A, Bosotti R, di Bernardo D. A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response. Nat Commun 2022; 13:1714. [PMID: 35361816 PMCID: PMC8971486 DOI: 10.1038/s41467-022-29358-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer cells within a tumour have heterogeneous phenotypes and exhibit dynamic plasticity. How to evaluate such heterogeneity and its impact on outcome and drug response is still unclear. Here, we transcriptionally profile 35,276 individual cells from 32 breast cancer cell lines to yield a single cell atlas. We find high degree of heterogeneity in the expression of biomarkers. We then train a deconvolution algorithm on the atlas to determine cell line composition from bulk gene expression profiles of tumour biopsies, thus enabling cell line-based patient stratification. Finally, we link results from large-scale in vitro drug screening in cell lines to the single cell data to computationally predict drug responses starting from single-cell profiles. We find that transcriptional heterogeneity enables cells with differential drug sensitivity to co-exist in the same population. Our work provides a framework to determine tumour heterogeneity in terms of cell line composition and drug response.
Collapse
Affiliation(s)
- G Gambardella
- Telethon Institute of Genetics and Medicine, Naples, Italy.,University of Naples Federico II, Department of Chemical, Materials and Industrial Engineering, Naples, Italy
| | - G Viscido
- Telethon Institute of Genetics and Medicine, Naples, Italy.,University of Naples Federico II, Department of Chemical, Materials and Industrial Engineering, Naples, Italy
| | - B Tumaini
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - A Isacchi
- NMSsrl, Nerviano Medical Sciences, 20014, Nerviano, Milan, Italy
| | - R Bosotti
- NMSsrl, Nerviano Medical Sciences, 20014, Nerviano, Milan, Italy
| | - D di Bernardo
- Telethon Institute of Genetics and Medicine, Naples, Italy. .,University of Naples Federico II, Department of Chemical, Materials and Industrial Engineering, Naples, Italy.
| |
Collapse
|
10
|
Johansson A, Yiu-Lin Yu N, Iftimi A, Tobin NP, Van't Veer L, Nordenskjöld B, Benz CC, Fornander T, Perez-Tenorio G, Stål O, Esserman LJ, Yau C, Lindström LS. Clinical and Molecular Characteristics of ER-Positive Ultralow Risk Breast Cancer Tumors Identified by the 70-Gene Signature. Int J Cancer 2022; 150:2072-2082. [PMID: 35179782 PMCID: PMC9083187 DOI: 10.1002/ijc.33969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 11/09/2022]
Abstract
The metastatic potential of estrogen receptor (ER)-positive breast cancers is heterogenous and distant recurrences occur months to decades after primary diagnosis. We have previously shown that patients with tumors classified as ultralow risk by the 70-gene signature have a minimal long-term risk of fatal breast cancer. Here, we evaluate the previously unexplored underlying clinical and molecular characteristics of ultralow risk tumors in 538 ER-positive patients from the Stockholm tamoxifen randomized trial (STO-3). Out of the 98 ultralow risk tumors, 89% were luminal A molecular subtype, whereas 26% of luminal A tumors were of ultralow risk. Compared with other ER-positive tumors, ultralow risk tumors were significantly (Fisher's test, P<0.05) more likely to be of smaller tumor size, lower grade, progesterone receptor (PR)-positive, human epidermal growth factor 2 (HER2)-negative and have low Ki-67 levels (proliferation-marker). Moreover, ultralow risk tumors showed significantly lower expression scores of multi-gene modules associated with the AKT/mTOR-pathway, proliferation (AURKA), HER2/ERBB2-signaling, IGF1-pathway, PTEN-loss, and immune response (IMMUNE1 and IMMUNE2), and higher expression scores of the PIK3CA-mutation-associated module. Furthermore, 706 genes were significantly (FDR<0.001) differentially expressed in ultralow risk tumors, including lower expression of genes involved in immune response, PI3K/Akt/mTOR-pathway, histones, cell cycle, DNA repair, apoptosis, and higher expression of genes coding for epithelial-to-mesenchymal transition, and homeobox proteins, among others. In conclusion, ultralow risk tumors, associated with minimal long-term risk of fatal disease, differ from other ER-positive tumors, including luminal A molecular subtype tumors. Identification of these characteristics is important to improve our prediction of non-fatal versus fatal breast cancer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Annelie Johansson
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Nancy Yiu-Lin Yu
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Adina Iftimi
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Laura Van't Veer
- Department of Laboratory Medicine, University of California San Francisco, 94115, San Francisco, California, United States.,Department of Pathology, University of California San Francisco, 94115, San Francisco, California, United States
| | - Bo Nordenskjöld
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, Linköping
| | - Christopher C Benz
- Department of Medicine, University of California San Francisco, 94115, San Francisco, California, United States.,Buck Institute for Research on Aging, 94945, Novato, California, United States
| | - Tommy Fornander
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Gizeh Perez-Tenorio
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, Linköping
| | - Olle Stål
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, Linköping
| | - Laura J Esserman
- Department of Surgery, University of California San Francisco, 94115, San Francisco, California, United States
| | - Christina Yau
- Buck Institute for Research on Aging, 94945, Novato, California, United States.,Department of Surgery, University of California San Francisco, 94115, San Francisco, California, United States
| | - Linda S Lindström
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Doll MA, Ray AR, Salazar-González RA, Shah PP, Vega AA, Sears SM, Krueger AM, Hong KU, Beverly LJ, Hein DW. Deletion of arylamine N-acetyltransferase 1 in MDA-MB-231 human breast cancer cells reduces primary and secondary tumor growth in vivo with no significant effects on metastasis. Mol Carcinog 2022; 61:481-493. [PMID: 35133049 PMCID: PMC9018511 DOI: 10.1002/mc.23392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
Abstract
Arylamine N-acetyltransferase 1 (NAT1) is frequently upregulated in breast cancer. Previous studies showed that inhibition or depletion of NAT1 in breast cancer cells diminishes anchorage-independent growth in culture, suggesting that NAT1 contributes to breast cancer growth and metastasis. To further investigate the contribution of NAT1 to growth and cell invasive/migratory behavior, we subjected parental and NAT1 knockout (KO) breast cancer cell lines (MDA-MB-231, MCF-7, and ZR-75-1) to multiple assays. The rate of cell growth in suspension was not consistently decreased in NAT1 KO cells across the cell lines tested. Similarly, cell migration and invasion assays failed to produce reproducible differences between the parental and NAT1 KO cells. To overcome the limitations of in vitro assays, we tested parental and NAT1 KO cells in vivo in a xenograft model by injecting cells into the flank of immunocompromised mice. NAT1 KO MDA-MB-231 cells produced primary tumors smaller than those formed by parental cells, which was contributed by an increased rate of apoptosis in KO cells. The frequency of lung metastasis, however, was not altered in NAT1 KO cells. When the primary tumors of the parental and NAT1 KO cells were allowed to grow to a pre-determined size or delivered directly via tail vein, the number and size of metastatic foci in the lung did not differ between the parental and NAT1 KO cells. In conclusion, NAT1 contributes to primary and secondary tumor growth in vivo in MDA-MB-231 breast cancer cells but does not appear to affect its metastatic potential.
Collapse
Affiliation(s)
- Mark A Doll
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Andrew R Ray
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Raúl A Salazar-González
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Parag P Shah
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Alexis A Vega
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Sophia M Sears
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Austin M Krueger
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Kyung U Hong
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA.,Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Levi J Beverly
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA.,Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA.,Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
12
|
Hager E, Chen J, Zhao L. Minireview: Parabens Exposure and Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1873. [PMID: 35162895 PMCID: PMC8834979 DOI: 10.3390/ijerph19031873] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
There is increasing recognition that environmental exposure to chemicals, such as endocrine-disruptive chemicals (EDCs), contributes to the development of breast cancer. Parabens are a group of EDCs commonly found in personal care products, foods, and pharmaceuticals. Systemic exposure to parabens has been confirmed by the ubiquitous detection of parabens in human blood and urine samples. Although evidence from in vivo and epidemiological studies linking parabens exposure to breast cancer is limited, the current evidence suggests that parabens may negatively interfere with some endocrine and intracrine targets relevant to breast carcinogenesis. So far, most studies have focused on a single paraben's effects and the direct modulating effects on estrogen receptors or the androgen receptor in vitro. Recent studies have revealed that parabens can modulate local estrogen-converting enzymes, 17β-hydroxysteroid dehydrogenase 1 and 2 and increase local estrogen levels. Also, parabens can crosstalk with the human epidermal growth factor receptor 2 (HER2) pathway and work with ER signaling to increase pro-oncogenic c-Myc expression in ER+/HER2+ breast cancer cells. Future studies investigating paraben mixtures and their crosstalk with other EDCs or signaling pathways both in vitro and in vivo in the context of breast cancer development are warranted.
Collapse
Affiliation(s)
- Emily Hager
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA;
| | - Jiangang Chen
- Department of Public Health, University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA;
| |
Collapse
|
13
|
Tai YK, Chan KKW, Fong CHH, Ramanan S, Yap JLY, Yin JN, Yip YS, Tan WR, Koh APF, Tan NS, Chan CW, Huang RYJ, Li JZ, Fröhlich J, Franco-Obregón A. Modulated TRPC1 Expression Predicts Sensitivity of Breast Cancer to Doxorubicin and Magnetic Field Therapy: Segue Towards a Precision Medicine Approach. Front Oncol 2022; 11:783803. [PMID: 35141145 PMCID: PMC8818958 DOI: 10.3389/fonc.2021.783803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Chemotherapy is the mainstream treatment modality for invasive breast cancer. Unfortunately, chemotherapy-associated adverse events can result in early termination of treatment. Paradoxical effects of chemotherapy are also sometimes observed, whereby prolonged exposure to high doses of chemotherapeutic agents results in malignant states resistant to chemotherapy. In this study, potential synergism between doxorubicin (DOX) and pulsed electromagnetic field (PEMF) therapy was investigated in: 1) MCF-7 and MDA-MB-231 cells in vitro; 2) MCF-7 tumors implanted onto a chicken chorioallantoic membrane (CAM) and; 3) human patient-derived and MCF-7 and MDA-MB-231 breast cancer xenografts implanted into NOD-SCID gamma (NSG) mice. In vivo, synergism was observed in patient-derived and breast cancer cell line xenograft mouse models, wherein PEMF exposure and DOX administration individually reduced tumor size and increased apoptosis and could be augmented by combined treatments. In the CAM xenograft model, DOX and PEMF exposure also synergistically reduced tumor size as well as reduced Transient Receptor Potential Canonical 1 (TRPC1) channel expression. In vitro, PEMF exposure alone impaired the survival of MCF-7 and MDA-MB-231 cells, but not that of non-malignant MCF10A breast cells; the selective vulnerability of breast cancer cells to PEMF exposure was corroborated in human tumor biopsy samples. Stable overexpression of TRPC1 enhanced the vulnerability of MCF-7 cells to both DOX and PEMF exposure and promoted proliferation, whereas TRPC1 genetic silencing reduced sensitivity to both DOX and PEMF treatments and mitigated proliferation. Chronic exposure to DOX depressed TRPC1 expression, proliferation, and responses to both PEMF exposure and DOX in a manner that was reversible upon removal of DOX. TRPC1 channel overexpression and silencing positively correlated with markers of epithelial-mesenchymal transition (EMT), including SLUG, SNAIL, VIMENTIN, and E-CADHERIN, indicating increased and decreased EMT, respectively. Finally, PEMF exposure was shown to attenuate the invasiveness of MCF-7 cells in correlation with TRPC1 expression. We thus demonstrate that the expression levels of TRPC1 consistently predicted breast cancer sensitivity to DOX and PEMF interventions and positively correlated to EMT status, providing an initial rationale for the use of PEMF-based therapies as an adjuvant to DOX chemotherapy for the treatment of breast cancers characterized by elevated TRPC1 expression levels.
Collapse
Affiliation(s)
- Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore, Singapore
| | - Karen Ka Wing Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore, Singapore
| | - Charlene Hui Hua Fong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore, Singapore
| | - Sharanya Ramanan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore, Singapore
| | - Jasmine Lye Yee Yap
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore, Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore, Singapore
| | - Yun Sheng Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Angele Pei Fern Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Ching Wan Chan
- Division of General Surgery (Breast Surgery), Department of Surgery, National University Hospital, Singapore, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, Singapore
| | - Ruby Yun Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Ze Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jürg Fröhlich
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Fields at Work GmbH, Zürich, Switzerland
- Institute of Electromagnetic Fields , ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich, Switzerland
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore, Singapore
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, Zürich, Switzerland
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Alfredo Franco-Obregón,
| |
Collapse
|
14
|
Kreis J, Nedić B, Mazur J, Urban M, Schelhorn SE, Grombacher T, Geist F, Brors B, Zühlsdorf M, Staub E. RosettaSX: Reliable gene expression signature scoring of cancer models and patients. Neoplasia 2021; 23:1069-1077. [PMID: 34583245 PMCID: PMC8479477 DOI: 10.1016/j.neo.2021.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022]
Abstract
Gene expression signatures have proven their potential to characterize important cancer phenomena like oncogenic signaling pathway activities, cellular origins of tumors, or immune cell infiltration into tumor tissues. Large collections of expression signatures provide the basis for their application to data sets, but the applicability of each signature in a new experimental context must be reassessed. We apply a methodology that utilizes the previously developed concept of coherent expression of genes in signatures to identify translatable signatures before scoring their activity in single tumors. We present a web interface (www.rosettasx.com) that applies our methodology to expression data from the Cancer Cell Line Encyclopaedia and The Cancer Genome Atlas. Configurable heat maps visualize per-cancer signature scores for 293 hand-curated literature-derived gene sets representing a wide range of cancer-relevant transcriptional modules and phenomena. The platform allows users to complement heatmaps of signature scores with molecular information on SNVs, CNVs, gene expression, gene dependency, and protein abundance or to analyze own signatures. Clustered heatmaps and further plots to drill-down results support users in studying oncological processes in cancer subtypes, thereby providing a rich resource to explore how mechanisms of cancer interact with each other as demonstrated by exemplary analyses of 2 cancer types.
Collapse
Affiliation(s)
- Julian Kreis
- Department of Translational Medicine, Oncology Bioinformatics, Merck KGaA, Darmstadt, Germany; Faculty of Bioscience, University of Heidelberg, Heidelberg, Germany
| | - Boro Nedić
- Department of Translational Medicine, Oncology Bioinformatics, Merck KGaA, Darmstadt, Germany
| | - Johanna Mazur
- Department of Translational Medicine, Oncology Bioinformatics, Merck KGaA, Darmstadt, Germany
| | - Miriam Urban
- Department of Translational Medicine, Oncology Bioinformatics, Merck KGaA, Darmstadt, Germany
| | - Sven-Eric Schelhorn
- Department of Translational Medicine, Oncology Bioinformatics, Merck KGaA, Darmstadt, Germany
| | - Thomas Grombacher
- Department of Translational Medicine, Oncology Bioinformatics, Merck KGaA, Darmstadt, Germany
| | - Felix Geist
- Therapeutic Innovation Platform Oncology & Immuno-Oncology, Merck KGaA, Darmstadt, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Core Center, Heidelberg, Germany
| | - Michael Zühlsdorf
- Therapeutic Innovation Platform Oncology & Immuno-Oncology, Merck KGaA, Darmstadt, Germany
| | - Eike Staub
- Department of Translational Medicine, Oncology Bioinformatics, Merck KGaA, Darmstadt, Germany.
| |
Collapse
|
15
|
Khadri FZ, Issac MSM, Gaboury LA. Impact of Epithelial-Mesenchymal Transition on the Immune Landscape in Breast Cancer. Cancers (Basel) 2021; 13:5099. [PMID: 34680248 PMCID: PMC8533811 DOI: 10.3390/cancers13205099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
The impact of epithelial-mesenchymal transition (EMT) signature on the immune infiltrate present in the breast cancer tumor microenvironment (TME) is still poorly understood. Since there is mounting interest in the use of immunotherapy for the treatment of subsets of breast cancer patients, it is of major importance to understand the fundamental tumor characteristics which dictate the inter-tumor heterogeneity in immune landscapes. We aimed to assess the impact of EMT-related markers on the nature and magnitude of the inflammatory infiltrate present in breast cancer TME and their association with the clinicopathological parameters. Tissue microarrays were constructed from 144 formalin-fixed paraffin-embedded invasive breast cancer tumor samples. The protein expression patterns of Snail, Twist, ZEB1, N-cadherin, Vimentin, GRHL2, E-cadherin, and EpCAM were examined by immunohistochemistry (IHC). The inflammatory infiltrate in the TME was assessed semi-quantitatively on hematoxylin and eosin (H&E)-stained whole sections and was characterized using IHC. The inflammatory infiltrate was more intense in poorly differentiated carcinomas and triple-negative carcinomas in which the expression of E-cadherin and GRHL2 was reduced, while EpCAM was overexpressed. Most EMT-related markers correlated with plasma cell infiltration of the TME. Taken together, our findings reveal that the EMT signature might impact the immune response in the TME.
Collapse
Affiliation(s)
- Fatima-Zohra Khadri
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3T 1J4, Canada; (F.-Z.K.); (M.S.M.I.)
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Marianne Samir Makboul Issac
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3T 1J4, Canada; (F.-Z.K.); (M.S.M.I.)
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Louis Arthur Gaboury
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3T 1J4, Canada; (F.-Z.K.); (M.S.M.I.)
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
16
|
Arafah MA, Ouban A, Ameer OZ, Quek KJ. KI-67 LI Expression in Triple-Negative Breast Cancer Patients and Its Significance. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2021; 15:11782234211016977. [PMID: 34158798 PMCID: PMC8186110 DOI: 10.1177/11782234211016977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
Purpose: Triple-negative breast cancer (TNBC) is a subset of breast cancer which is known to carry a poor prognosis because of lack of targets for hormonal therapy. Research efforts have focused in recent years on discovering biomarkers of management in TNBCs. KI-67 Labelling Index (LI) is a nuclear protein which has proven to play diagnostic and prognostic roles in many cancers. Materials and methods: We analysed the expression of KI-67 LI by immunohistochemistry in TNBC cases from the University hospital. This expression was cross-checked against clinical-pathological criteria of TNBC patients and against Vimentin expression in TNBC patients with significant KI-67 expression. Results: KI-67 LI was significantly expressed in the majority of TNBC cases. This expression was significantly correlated with lymph node metastases, tumour invasion, high tumour nuclear grade, clinical stage, adverse survival outcome, and failure to achieve pathological complete response. TNBCs’ KI-67 LI expression was also correlated with Vimentin expression, the mesenchymal chief marker of the EMT phenomenon. Conclusion: Collectively, our study presents a strong argument for the use of KI-67 LI as a biomarker of aggressive, metastatic TNBC disease with poor outcome. This study, along with mounting evidence in the scientific literature, presents a case for the use of this nuclear protein in diagnosis, prognosis, and follow-up of patients with this difficult diagnosis.
Collapse
Affiliation(s)
- Maria A Arafah
- Department of Pathology, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abderrahman Ouban
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Omar Z Ameer
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Ko Jin Quek
- Faculty of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
17
|
Mottaghi S, Abbaszadeh H. Natural Lignans Honokiol and Magnolol as Potential Anticarcinogenic and Anticancer Agents. A Comprehensive Mechanistic Review. Nutr Cancer 2021; 74:761-778. [PMID: 34047218 DOI: 10.1080/01635581.2021.1931364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plant lignans constitute an important group of polyphenols, which have been demonstrated to significantly induce cancer cell death and suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Numerous epidemiological studies have shown that the intake of lignans is associated with lower risk of several cancers. These natural compounds have the potential to inhibit carcinogenesis, tumor growth, and metastasis by targeting various signaling molecules and pathways. Growing evidence indicates that honokiol and magnolol as natural lignans possess potent anticancer activities against various types of human cancer. The aim of present review is to provide the reader with the newest findings in understanding the cellular and molecular mechanisms mediating anticancer effects of honokiol and magnolol. This review comprehensively elucidates the effects of honokiol and magnolol on the molecular targets and signal transduction pathways implicated in cancer cell proliferation and metastasis. The findings of current review indicate that honokiol and magnolol can be considered as promising carcinopreventive and anticancer agents.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Górecki I, Rak B. The role of microRNAs in epithelial to mesenchymal transition and cancers; focusing on mir-200 family. Cancer Treat Res Commun 2021; 28:100385. [PMID: 34023767 DOI: 10.1016/j.ctarc.2021.100385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/05/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a process associated with cancer malignancy and metastases. Cells undergoing EMT lose their epithelial phenotype and acquire mesenchymal phenotype. This process is accompanied by several molecular changes such as decrease of E-cadherin and increase of N-cadherin which is called the "cadherin swich". MicroRNAs (miRNAs, miRs) are small non-coding RNAs having ability to regulate genes post-transcriptionally. Nowadays they are believed to take part in multiple physiological and pathological processes including cancer development. Comparison between TargetScan7 (www.targetscan.org) results for miR-200b and metanalysis of genes involved in EMT showed that miR-200b has a potential binding site in 60 genes that are involved in EMT (the majority of them were associated with mesenchymal phenotype). Our review summarizes literature findings contributing to experimentally proven interactions between miR-200b and genes involved in EMT process including cell receptors, signaling pathways, cell cycle or cell adhesion. The results of those interactions indicate that miR-200b may have an inhibitory impact on EMT or even in selected cases is able to restore epithelial phenotype.
Collapse
Affiliation(s)
- Ignacy Górecki
- Department of Histology and Embryology, Medical University of Warsaw, Street Chałubińskiego 5, 02-004, Warsaw, Poland
| | - Beata Rak
- Department of Histology and Embryology, Medical University of Warsaw, Street Chałubińskiego 5, 02-004, Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Street Nielubowicza 5, 02-091, Warsaw, Poland; Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Street Banacha 1A, 02-097, Warsaw, Poland.
| |
Collapse
|
19
|
Mottaghi S, Abbaszadeh H. A comprehensive mechanistic insight into the dietary and estrogenic lignans, arctigenin and sesamin as potential anticarcinogenic and anticancer agents. Current status, challenges, and future perspectives. Crit Rev Food Sci Nutr 2021; 62:7301-7318. [PMID: 33905270 DOI: 10.1080/10408398.2021.1913568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large body of evidence indicates that lignans as polyphenolic compounds are beneficial against life-threatening diseases such as cancer. Plant lignans have the potential to induce cancer cell death and interfere with carcinogenesis, tumor growth, and metastasis. Epidemiological studies have revealed that the intake of lignans is inversely associated with the risk of several cancers. Moreover, numerous experimental studies demonstrate that natural lignans significantly suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Dietary lignans arctigenin and sesamin have been found to have potent antiproliferative activities against various types of human cancer. The purpose of this review is to provide the reader with a deeper understanding of the cellular and molecular mechanisms underlying anticancer effects of arctigenin and sesamin. Our review comprehensively describes the effects of arctigenin and sesamin on the signaling pathways and related molecules involved in cancer cell proliferation and invasion. The findings of present review show that the dietary lignans arctigenin and sesamin seem to be promising carcinopreventive and anticancer agents. These natural lignans can be used as dietary supplements and pharmaceuticals for prevention and treatment of cancer.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Singh S, Sutcliffe MD, Repich K, Atkins KA, Harvey JA, Janes KA. Pan-Cancer Drivers Are Recurrent Transcriptional Regulatory Heterogeneities in Early-Stage Luminal Breast Cancer. Cancer Res 2021; 81:1840-1852. [PMID: 33531373 PMCID: PMC8137565 DOI: 10.1158/0008-5472.can-20-1034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 11/16/2022]
Abstract
The heterogeneous composition of solid tumors is known to impact disease progression and response to therapy. Malignant cells coexist in different regulatory states that can be accessed transcriptomically by single-cell RNA sequencing, but these methods have many caveats related to sensitivity, noise, and sample handling. We revised a statistical fluctuation analysis called stochastic profiling to combine with 10-cell RNA sequencing, which was designed for laser-capture microdissection (LCM) and extended here for immuno-LCM. When applied to a cohort of late-onset, early-stage luminal breast cancers, the integrated approach identified thousands of candidate regulatory heterogeneities. Intersecting the candidates from different tumors yielded a relatively stable set of 710 recurrent heterogeneously expressed genes (RHEG), which were significantly variable in >50% of patients. RHEGs were not strongly confounded by dissociation artifacts, cell-cycle oscillations, or driving mutations for breast cancer. Rather, RHEGs were enriched for epithelial-to-mesenchymal transition genes and, unexpectedly, the latest pan-cancer assembly of driver genes across cancer types other than breast. These findings indicate that heterogeneous transcriptional regulation conceivably provides a faster, reversible mechanism for malignant cells to evaluate the effects of potential oncogenes or tumor suppressors on cancer hallmarks. SIGNIFICANCE: Profiling intratumor heterogeneity of luminal breast carcinoma cells identifies a recurrent set of genes, suggesting sporadic activation of pathways known to drive other types of cancer.See related articles by Schaff and colleagues, p. 1853 and Sutcliffe and colleagues, p. 1868.
Collapse
Affiliation(s)
- Shambhavi Singh
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Matthew D Sutcliffe
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Kathy Repich
- Department of Radiology, University of Virginia, Charlottesville, Virginia
| | - Kristen A Atkins
- Department of Pathology, University of Virginia, Charlottesville, Virginia
| | - Jennifer A Harvey
- Department of Radiology, University of Virginia, Charlottesville, Virginia
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia.
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
21
|
Angiogenesis regulation by microRNAs and long non-coding RNAs in human breast cancer. Pathol Res Pract 2021; 219:153326. [PMID: 33601152 DOI: 10.1016/j.prp.2020.153326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are capable of regulating gene expression post-transcriptionally. Since the past decade, a number of in vitro, in vivo, and clinical studies reported the roles of these non-coding RNAs (ncRNAs) in regulating angiogenesis, an important cancer hallmark that is associated with metastases and poor prognosis. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signalling pathways regulated by these ncRNAs will be discussed in this review. In light of the recent trend in exploiting ncRNAs as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agent against angiogenesis was also discussed.
Collapse
|
22
|
Terkelsen T, Pernemalm M, Gromov P, Børresen-Dale AL, Krogh A, Haakensen VD, Lethiö J, Papaleo E, Gromova I. High-throughput proteomics of breast cancer interstitial fluid: identification of tumor subtype-specific serologically relevant biomarkers. Mol Oncol 2021; 15:429-461. [PMID: 33176066 PMCID: PMC7858121 DOI: 10.1002/1878-0261.12850] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Despite significant advancements in breast cancer (BC) research, clinicians lack robust serological protein markers for accurate diagnostics and tumor stratification. Tumor interstitial fluid (TIF) accumulates aberrantly externalized proteins within the local tumor space, which can potentially gain access to the circulatory system. As such, TIF may represent a valuable starting point for identifying relevant tumor-specific serological biomarkers. The aim of the study was to perform comprehensive proteomic profiling of TIF to identify proteins associated with BC tumor status and subtype. A liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of 35 TIFs of three main subtypes: luminal (19), Her2 (4), and triple-negative (TNBC) (12) resulted in the identification of > 8800 proteins. Unsupervised hierarchical clustering segregated the TIF proteome into two major clusters, luminal and TNBC/Her2 subgroups. High-grade tumors enriched with tumor infiltrating lymphocytes (TILs) were also stratified from low-grade tumors. A consensus analysis approach, including differential abundance analysis, selection operator regression, and random forest returned a minimal set of 24 proteins associated with BC subtypes, receptor status, and TIL scoring. Among them, a panel of 10 proteins, AGR3, BCAM, CELSR1, MIEN1, NAT1, PIP4K2B, SEC23B, THTPA, TMEM51, and ULBP2, was found to stratify the tumor subtype-specific TIFs. In particular, upregulation of BCAM and CELSR1 differentiates luminal subtypes, while upregulation of MIEN1 differentiates Her2 subtypes. Immunohistochemistry analysis showed a direct correlation between protein abundance in TIFs and intratumor expression levels for all 10 proteins. Sensitivity and specificity were estimated for this protein panel by using an independent, comprehensive breast tumor proteome dataset. The results of this analysis strongly support our data, with eight of the proteins potentially representing biomarkers for stratification of BC subtypes. Five of the most representative proteomics databases currently available were also used to estimate the potential for these selected proteins to serve as putative serological markers.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Pernemalm
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pavel Gromov
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anna-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Anders Krogh
- Department of Computer Science, University of Copenhagen, Denmark.,Department of Biology, University of Copenhagen, Denmark
| | - Vilde D Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Janne Lethiö
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.,Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
23
|
Abstract
Drug metabolizing enzymes catalyze the biotransformation of many of drugs and chemicals. The drug metabolizing enzymes are distributed among several evolutionary families and catalyze a range of detoxication reactions, including oxidation/reduction, conjugative, and hydrolytic reactions that serve to detoxify potentially toxic compounds. This detoxication function requires that drug metabolizing enzymes exhibit substrate promiscuity. In addition to their catalytic functions, many drug metabolizing enzymes possess functions unrelated to or in addition to catalysis. Such proteins are termed 'moonlighting proteins' and are defined as proteins with multiple biochemical or biophysical functions that reside in a single protein. This review discusses the diverse moonlighting functions of drug metabolizing enzymes and the roles they play in physiological functions relating to reproduction, vision, cell signaling, cancer, and transport. Further research will likely reveal new examples of moonlighting functions of drug metabolizing enzymes.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, ANU College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, NY, USA
| |
Collapse
|
24
|
Silveira DA, Gupta S, Mombach JCM. Systems biology approach suggests new miRNAs as phenotypic stability factors in the epithelial-mesenchymal transition. J R Soc Interface 2020; 17:20200693. [PMID: 33050781 PMCID: PMC7653381 DOI: 10.1098/rsif.2020.0693] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a cellular programme on which epithelial cells undergo a phenotypic transition to mesenchymal ones acquiring metastatic properties such as mobility and invasion. TGF-β signalling can promote the EMT process. However, the dynamics of the concentration response of TGF-β-induced EMT is not well explained. In this work, we propose a logical model of TGF-β dose dependence of EMT in MCF10A breast cells. The model outcomes agree with experimentally observed phenotypes for the wild-type and perturbed/mutated cases. As important findings of the model, it predicts the coexistence of more than one hybrid state and that the circuit between TWIST1 and miR-129 is involved in their stabilization. Thus, miR-129 should be considered as a phenotypic stability factor. The circuit TWIST1/miR-129 associates with ZEB1-mediated circuits involving miRNAs 200, 1199, 340, and the protein GRHL2 to stabilize the hybrid state. Additionally, we found a possible new autocrine mechanism composed of the circuit involving TGF-β, miR-200, and SNAIL1 that contributes to the stabilization of the mesenchymal state. Therefore, our work can extend our comprehension of TGF-β-induced EMT in MCF10A cells to potentially improve the strategies for breast cancer treatment.
Collapse
|
25
|
Sterneck E, Poria DK, Balamurugan K. Slug and E-Cadherin: Stealth Accomplices? Front Mol Biosci 2020; 7:138. [PMID: 32760736 PMCID: PMC7371942 DOI: 10.3389/fmolb.2020.00138] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
During physiological epithelial-mesenchymal transition (EMT), which is important for embryogenesis and wound healing, epithelial cells activate a program to remodel their structure and achieve a mesenchymal fate. In cancer cells, EMT confers increased invasiveness and tumor-initiating capacity, which contribute to metastasis and resistance to therapeutics. However, cellular plasticity that navigates between epithelial and mesenchymal states and maintenance of a hybrid or partial E/M phenotype appears to be even more important for cancer progression. Besides other core EMT transcription factors, the well-characterized Snail-family proteins Snail (SNAI1) and Slug (SNAI2) play important roles in both physiological and pathological EMT. Often mentioned in unison, they do, however, differ in their functions in many scenarios. Indeed, Slug expression does not always correlate with complete EMT or loss of E-cadherin (CDH1). For example, Slug plays important roles in mammary epithelial cell progenitor cell lineage commitment and differentiation, DNA damage responses, hematopoietic stem cell self-renewal, and in pathologies such as pulmonary fibrosis and atherosclerosis. In this Perspective, we highlight Slug functions in mammary epithelial cells and breast cancer as a “non-EMT factor” in basal epithelial cells and stem cells with focus reports that demonstrate co-expression of Slug and E-cadherin. We speculate that Slug and E-cadherin may cooperate in normal mammary gland and breast cancer/stem cells and advocate for functional assessment of such Slug+/E-cadherinlow/+ (SNAI2+/CDH1low/+) “basal-like epithelial” cells. Thus, Slug may be regarded as less of an EMT factor than driver of the basal epithelial cell phenotype.
Collapse
Affiliation(s)
- Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Dipak K Poria
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
26
|
Autenshlyus AI, Bernado AV, Studenikina AA, Proskura AV, Davletova KI, Zhurakovskiy IP, Arkhipov SA, Varaksin NA, Sidorov SV, Lyakhovich VV. Personalized Approach to Determination of Histidine-Rich Glycoprotein and E-Cadherin in Supernatants of Immunocompetent Blood Cells and Breast Biopsy Specimens in Breast Malignant and Non-Malignant Disease. DOKL BIOCHEM BIOPHYS 2020; 490:1-4. [PMID: 32342301 DOI: 10.1134/s1607672920010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/23/2022]
Abstract
The material of patients with invasive carcinoma of no special type (ICNT) and nonmalignant diseases (ND) of the mammary gland was studied. When comparing the concentrations of histidine-rich glycoprotein (HRG) and E-cadherin (CDH1), statistically significant differences between ICNT and ND by HRG in the supernatant of blood cells and its spontaneous production by biopsies and by CDH1 at its induced production, as well as by influence indices of polyclonal activators on the production of CDH1 were found. When comparing the expression of immunohistochemical markers, no statistically significant differences between ICNT and ND were obtained.
Collapse
Affiliation(s)
- A I Autenshlyus
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia. .,Research Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.
| | - A V Bernado
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - A A Studenikina
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - A V Proskura
- Research Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - K I Davletova
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - I P Zhurakovskiy
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia.,Research Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - S A Arkhipov
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia.,Research Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - N A Varaksin
- AO "Vector-Best", 630559, Koltsovo, Novosibirsk Region, Russia
| | - S V Sidorov
- National Research Novosibirsk State University, Novosibirsk, Russia
| | - V V Lyakhovich
- Research Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| |
Collapse
|
27
|
Jørgensen CLT, Forsare C, Bendahl PO, Falck AK, Fernö M, Lövgren K, Aaltonen K, Rydén L. Expression of epithelial-mesenchymal transition-related markers and phenotypes during breast cancer progression. Breast Cancer Res Treat 2020; 181:369-381. [PMID: 32300922 PMCID: PMC7188722 DOI: 10.1007/s10549-020-05627-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Purpose The study aimed to investigate expression of epithelial-to-mesenchymal transition (EMT)-related proteins and phenotypes during breast cancer progression and to relate this to patient outcome. Methods Protein expression patterns of E-cadherin, N-cadherin, twist, and vimentin were examined by immunohistochemistry on formalin-fixed paraffin-embedded samples from primary tumors (PTs) (n = 419), synchronous lymph node metastases (LNMs) (n = 131) and recurrences (n = 34) from patients included in an observational prospective primary breast cancer study. Markers were evaluated individually and combined as defined EMT phenotypes (epithelial, mesenchymal, partial EMT, and negative). EMT profiles were compared between matched tumor progression stages, and related to clinicopathological data and distant recurrence-free interval (DRFi). Results N-cadherin-positivity, vimentin-positivity, mesenchymal and partial EMT phenotypes were associated with more aggressive tumor characteristics such as triple-negative subtype. Single EMT markers and phenotype discordance rates between paired tumor samples were observed in the range of 2–35%. Non-epithelial phenotypes were more frequently identified in recurrences compared to PTs, however, no skewness of expression or phenotype was detected between PTs and matched LNMs or between PTs and matched recurrences (Exact McNemar test). Interestingly, patients with a twist positive PT had shorter DRFi, compared to patients with a twist negative PT (hazard ratio (HR) 2.4, 95% confidence interval (CI) 1.2–5.1, P = 0.02). Essentially, the same effect was seen in multivariable analysis (HR 2.5, 95% CI 0.97–6.6, P = 0.06). Conclusion The epithelial phenotype was indicated to be lost between PTs and recurrences as a reflection of tumor progression. Twist status of the PT was related to long-term prognosis warranting further investigation in larger cohorts. Electronic supplementary material The online version of this article (10.1007/s10549-020-05627-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte Levin Tykjær Jørgensen
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Medicon Village, Building 404, 22381, Lund, Sweden.
| | - Carina Forsare
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Medicon Village, Building 404, 22381, Lund, Sweden
| | - Pär-Ola Bendahl
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Medicon Village, Building 404, 22381, Lund, Sweden
| | - Anna-Karin Falck
- Department of Surgery, Helsingborg Hospital, Helsingborg, Sweden
| | - Mårten Fernö
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Medicon Village, Building 404, 22381, Lund, Sweden
| | - Kristina Lövgren
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Medicon Village, Building 404, 22381, Lund, Sweden
| | - Kristina Aaltonen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lisa Rydén
- Division of Surgery, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden.,Department of Surgery, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
28
|
Mesquita FP, Moreira-Nunes CA, da Silva EL, Lima LB, Daniel JP, Zuerker WJ, Brayner M, de Moraes MEA, Montenegro RC. MAPK14 (p38α) inhibition effects against metastatic gastric cancer cells: A potential biomarker and pharmacological target. Toxicol In Vitro 2020; 66:104839. [PMID: 32243890 DOI: 10.1016/j.tiv.2020.104839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Gastric cancer has been considering one of the worst cancer types since it is diagnosed in advanced stages, currently in the metastatic stage. Therefore, the challenge is to find out a biomarker and a pharmacology target that would help face this worldwide health issue. In this sense, the mitogen-activated protein kinase (MAPK) signaling pathway has become an important aim of the studies in several cancers. Therefore, we evaluated the role of MAPK14 (p38α) inhibitor SB-245392 in the cellular process, such as proliferation, cell death, and cell migration, and whether MAPK14 gene could be a potential biomarker in gastric cancer models. The results clearly suggest that p38α inhibition significantly impairs the cell proliferation, induces modest apoptosis and strongly inhibits cell migration of gastric cancer cell (AGP-01). Gene expression analysis showed that c-MYC level was decreased and TP53 was increased after SB-245392 treatment. Furthermore, MAPK14 was found in high levels in gastric cancer samples compared to normal samples in the TCGA database, especially in advanced stages (stage 3 and 4), which is significantly associated with low rate survival of the patients. In conclusion, the MAPK14 could be a potential biomarker for advanced gastric cancer as well as a pharmacological target, which could improve the survival rate of patients.
Collapse
Affiliation(s)
- Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Caroline Aquino Moreira-Nunes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Emerson Lucena da Silva
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Luina Benevides Lima
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Júlio Paulino Daniel
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - William J Zuerker
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, United States of America
| | - Mirna Brayner
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | | | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
29
|
Li P, Butcher NJ, Minchin RF. Arylamine N-Acetyltransferase 1 Regulates Expression of Matrix Metalloproteinase 9 in Breast Cancer Cells: Role of Hypoxia-Inducible Factor 1-α. Mol Pharmacol 2019; 96:573-579. [DOI: 10.1124/mol.119.117432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
|
30
|
N-Acetyltransferase 1 Knockout Elevates Acetyl Coenzyme A Levels and Reduces Anchorage-Independent Growth in Human Breast Cancer Cell Lines. JOURNAL OF ONCOLOGY 2019; 2019:3860426. [PMID: 31531019 PMCID: PMC6720663 DOI: 10.1155/2019/3860426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
Elevated expression of N-acetyltransferase 1 (NAT1) is associated with invasive and lobular breast carcinomas as well as with bone metastasis following an epithelial-to-mesenchymal transition. We investigated the effect of NAT1 gene deletion in three different human breast cancer cell lines, MDA-MB-231, MCF-7, and ZR-75-1. Human NAT1 was knocked out using CRISPR/Cas9 technology and two different guide RNAs. None of the NAT1 knockout (KO) cell lines exhibited detectable NAT1 activity when measured using its selective substrate p-aminobenzoic acid (PABA). Endogenous acetyl coenzyme A levels (cofactor for acetylation pathways) in NAT1 KO cell lines were significantly elevated in the MDA-MB-231 (p < 0.001) and MCF-7 (p=0.0127) but not the ZR-75-1 (p > 0.05). Although the effects of NAT1 KO on cell-doubling time were inconsistent across the three breast cancer cell lines, the ability of the NAT1 KO cell lines to form anchorage-independent colonies in soft agar was dramatically and consistently reduced in each of the breast cancer cell lines. The NAT1 KO clones for MDA-MB-231, MCF-7, and ZR-75-1 had a reduction greater than 20-, 6-, and 7- folds in anchorage-independent cell growth, respectively, compared to their parental cell lines (p < 0.0001, p < 0.0001, and p < 0.05, respectively). The results indicate that NAT1 may be an important regulator of cellular acetyl coenzyme A levels and strongly suggest that elevated NAT1 expression in breast cancers contribute to their anchorage-independent growth properties and ultimately metastatic potential.
Collapse
|