1
|
Jabbarzadeh Kaboli P, Chen HF, Babaeizad A, Roustai Geraylow K, Yamaguchi H, Hung MC. Unlocking c-MET: A comprehensive journey into targeted therapies for breast cancer. Cancer Lett 2024; 588:216780. [PMID: 38462033 DOI: 10.1016/j.canlet.2024.216780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Breast cancer is the most common malignancy among women, posing a formidable health challenge worldwide. In this complex landscape, the c-MET (cellular-mesenchymal epithelial transition factor) receptor tyrosine kinase (RTK), also recognized as the hepatocyte growth factor (HGF) receptor (HGFR), emerges as a prominent protagonist, displaying overexpression in nearly 50% of breast cancer cases. Activation of c-MET by its ligand, HGF, secreted by neighboring mesenchymal cells, contributes to a cascade of tumorigenic processes, including cell proliferation, metastasis, angiogenesis, and immunosuppression. While c-MET inhibitors such as crizotinib, capmatinib, tepotinib and cabozantinib have garnered FDA approval for non-small cell lung cancer (NSCLC), their potential within breast cancer therapy is still undetermined. This comprehensive review embarks on a journey through structural biology, multifaceted functions, and intricate signaling pathways orchestrated by c-MET across cancer types. Furthermore, we highlight the pivotal role of c-MET-targeted therapies in breast cancer, offering a clinical perspective on this promising avenue of intervention. In this pursuit, we strive to unravel the potential of c-MET as a beacon of hope in the fight against breast cancer, unveiling new horizons for therapeutic innovation.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan; Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
2
|
Zhu Y, Zhou M, Li C, Kong W, Hu Y. Gastric cancer with brain metastasis: from molecular characteristics and treatment. Front Oncol 2024; 14:1310325. [PMID: 38577333 PMCID: PMC10991736 DOI: 10.3389/fonc.2024.1310325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Gastric cancer is one of the cancers with increasing incidence and ranks fourth globally among the most frequent causes of cancer-related mortality. Early gastric cancer is often asymptomatic or presents with atypical symptoms, and the majority of patients present with advanced disease upon diagnosis. Brain metastases are present in approximately 1% of gastric cancer patients at the time of diagnosis, which significantly contributed to the overall mortality of the disease worldwide. Conventional therapies for patients with brain metastases remain limited and the median overall survival of patients is only 8 months in advanced cases. Recent studies have improved our understanding of the molecular mechanisms underlying gastric cancer brain metastases, and immunotherapy has become an important treatment option in combination with radiotherapy, chemotherapy, targeted therapy and surgery. This review aims to provide insight into the cellular processes involved in gastric cancer brain metastases, discuss diagnostic approaches, evaluate the integration of immune checkpoint inhibitors into treatment and prognosis, and explore the predictive value of biomarkers in immunotherapy.
Collapse
Affiliation(s)
- Yingze Zhu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Miao Zhou
- Department of Oncology, Tang Shan Central Hospital, Tangshan, China
| | - Congling Li
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Wenyue Kong
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Yuning Hu
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
3
|
Ou Y, Wang M, Xu Q, Sun B, Jia Y. Small molecule agents for triple negative breast cancer: Current status and future prospects. Transl Oncol 2024; 41:101893. [PMID: 38290250 PMCID: PMC10840364 DOI: 10.1016/j.tranon.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis. The number of cases increased by 2.26 million in 2020, making it the most commonly diagnosed cancer type in the world. TNBCs lack hormone receptor (HR) and human epidermal growth factor 2 (HER2), which limits treatment options. Currently, paclitaxel-based drugs combined with other chemotherapeutics remain the main treatment for TNBC. There is currently no consensus on the best therapeutic regimen for TNBC. However, there have been successful clinical trials exploring large-molecule monoclonal antibodies, small-molecule targeted drugs, and novel antibody-drug conjugate (ADC). Although monoclonal antibodies have produced clinical success, their large molecular weight can limit therapeutic benefits. It is worth noting that in the past 30 years, the FDA has approved small molecule drugs for HER2-positive breast cancers. The lack of effective targets and the occurrence of drug resistance pose significant challenges in the treatment of TNBC. To improve the prognosis of TNBC, it is crucial to search for effective targets and to overcome drug resistance. This review examines the clinical efficacy, adverse effects, resistance mechanisms, and potential solutions of targeted small molecule drugs in both monotherapies and combination therapies. New therapeutic targets, including nuclear export protein 1 (XPO1) and hedgehog (Hh), are emerging as potential options for researchers and become integrated into clinical trials for TNBC. Additionally, there is growing interest in the potential of targeted protein degradation chimeras (PROTACs), degraders of rogue proteins, as a future therapy direction. This review provides potentially valuable insights with clinical implications.
Collapse
Affiliation(s)
- Yan Ou
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mengchao Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qian Xu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Binxu Sun
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
4
|
Dong Y, Lin L, Ji Y, Cheng X, Zhang Z. Cabozantinib prevents AGEs-induced degradation of type 2 collagen and aggrecan in human chondrocytes. Aging (Albany NY) 2023; 15:13646-13654. [PMID: 38059882 PMCID: PMC10756107 DOI: 10.18632/aging.205186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/26/2023] [Indexed: 12/08/2023]
Abstract
Osteoarthritis (OA) is a joint degenerative disease commonly observed in the old population, lacks effective therapeutic methods, and markedly impacts the normal lives of patients. Degradation of extracellular matrix (ECM) is reported to participate in OA development, which is a potential target for treating OA. Cabozantinib is an inhibitor of tyrosine kinases and is recently claimed with suppressive properties against inflammation. Herein, the protective function of Cabozantinib on advanced glycation end products (AGEs)-induced damages to chondrocytes was tested. SW1353 chondrocytes were stimulated with 100 μg/ml AGEs with or without 10 and 20 μM Cabozantinib for 24 h. Signally increased reactive oxygen species (ROS) levels, declined reduced glutathione (GSH) levels, and elevated release of inflammatory cytokines were observed in AGEs-stimulated SW1353 chondrocytes, which were markedly reversed by Cabozantinib. Moreover, the notably reduced type II collagen and aggrecan levels, and increased matrix metalloproteinase-13 (MMP-13) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs-5 (ADAMTS-5) levels in AGEs-stimulated SW1353 chondrocytes were largely rescued by Cabozantinib. The downregulated Sry-type high-mobility-group box 9 (SOX-9) observed in AGEs-stimulated SW1353 chondrocytes was abolished by Cabozantinib. Furthermore, the impact of Cabozantinib on type II collagen and aggrecan levels in AGEs-treated SW1353 chondrocytes was abrogated by silencing SOX-9. Collectively, Cabozantinib prevented AGEs-induced degradation of type 2 collagen and aggrecan in human chondrocytes by mediating SOX-9.
Collapse
Affiliation(s)
- Yang Dong
- Second Department of Hand Surgery, Yantaishan Hospital, Yantai 264008, Shangdong Province, China
| | - Lianfang Lin
- Second Department of Hand Surgery, Yantaishan Hospital, Yantai 264008, Shangdong Province, China
| | - Yuan Ji
- Second Department of Hand Surgery, Yantaishan Hospital, Yantai 264008, Shangdong Province, China
| | - Xu Cheng
- Second Department of Hand Surgery, Yantaishan Hospital, Yantai 264008, Shangdong Province, China
| | - Zhiwu Zhang
- Second Department of Hand Surgery, Yantaishan Hospital, Yantai 264008, Shangdong Province, China
| |
Collapse
|
5
|
Gou X, Kim BJ, Anurag M, Lei JT, Young MN, Holt MV, Fandino D, Vollert CT, Singh P, Alzubi MA, Malovannaya A, Dobrolecki LE, Lewis MT, Li S, Foulds CE, Ellis MJ. Kinome Reprogramming Is a Targetable Vulnerability in ESR1 Fusion-Driven Breast Cancer. Cancer Res 2023; 83:3237-3251. [PMID: 37071495 PMCID: PMC10543968 DOI: 10.1158/0008-5472.can-22-3484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/20/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Transcriptionally active ESR1 fusions (ESR1-TAF) are a potent cause of breast cancer endocrine therapy (ET) resistance. ESR1-TAFs are not directly druggable because the C-terminal estrogen/anti-estrogen-binding domain is replaced with translocated in-frame partner gene sequences that confer constitutive transactivation. To discover alternative treatments, a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) was deployed to identify druggable kinases that are upregulated by diverse ESR1-TAFs. Subsequent explorations of drug sensitivity validated RET kinase as a common therapeutic vulnerability despite remarkable ESR1-TAF C-terminal sequence and structural diversity. Organoids and xenografts from a pan-ET-resistant patient-derived xenograft model that harbors the ESR1-e6>YAP1 TAF were concordantly inhibited by the selective RET inhibitor pralsetinib to a similar extent as the CDK4/6 inhibitor palbociclib. Together, these findings provide preclinical rationale for clinical evaluation of RET inhibition for the treatment of ESR1-TAF-driven ET-resistant breast cancer. SIGNIFICANCE Kinome analysis of ESR1 translocated and mutated breast tumors using drug bead-based mass spectrometry followed by drug-sensitivity studies nominates RET as a therapeutic target. See related commentary by Wu and Subbiah, p. 3159.
Collapse
Affiliation(s)
- Xuxu Gou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston Texas
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jonathan T. Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Meggie N. Young
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Matthew V. Holt
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Diana Fandino
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Craig T. Vollert
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Employee of Adrienne Helis Malvin Medical Research Foundation, New Orleans, Los Angeles
| | - Purba Singh
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Mohammad A. Alzubi
- Employee of Adrienne Helis Malvin Medical Research Foundation, New Orleans, Los Angeles
| | - Anna Malovannaya
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Lacey E. Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Michael T. Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Radiology, Baylor College of Medicine, Houston, Texas
| | - Shunqiang Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Charles E. Foulds
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Matthew J. Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
6
|
Duan W, Xia S, Tang M, Lin M, Liu W, Wang Q. Targeting of endothelial cells in brain tumours. Clin Transl Med 2023; 13:e1433. [PMID: 37830128 PMCID: PMC10570772 DOI: 10.1002/ctm2.1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Aggressive brain tumours, whether primary gliomas or secondary metastases, are characterised by hypervascularisation and are fatal. Recent research has emphasised the crucial involvement of endothelial cells (ECs) in all brain tumour genesis and development events, with various patterns and underlying mechanisms identified. MAIN BODY Here, we highlight recent advances in knowledge about the contributions of ECs to brain tumour development, providing a comprehensive summary including descriptions of interactions between ECs and tumour cells, the heterogeneity of ECs and new models for research on ECs in brain malignancies. We also discuss prospects for EC targeting in novel therapeutic approaches. CONCLUSION Interventions targeting ECs, as an adjunct to other therapies (e.g. immunotherapies, molecular-targeted therapies), have shown promising clinical efficacy due to the high degree of vascularisation in brain tumours. Developing precise strategies to target tumour-associated vessels based on the heterogeneity of ECs is expected to improve anti-vascular efficacy.
Collapse
Affiliation(s)
- Wenzhe Duan
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Shengkai Xia
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Mengyi Tang
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Manqing Lin
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Wenwen Liu
- Cancer Translational Medicine Research CenterThe Second HospitalDalian Medical UniversityDalianChina
| | - Qi Wang
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
- Cancer Translational Medicine Research CenterThe Second HospitalDalian Medical UniversityDalianChina
| |
Collapse
|
7
|
Yan X, Zhao Z, Tang H. Current status and future of anti-angiogenic drugs in lung cancer. Clin Exp Med 2023; 23:2009-2023. [PMID: 36920592 DOI: 10.1007/s10238-023-01039-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
Lung cancer, as a malignant tumor with both high incidence and mortality in China, is one of the major causes of death in our population and one of the major public health problems in China. Effective treatment of lung cancer is a major public health task for all human beings. Angiogenesis plays an important role in the development of tumor, not only as a basic condition for tumor growth, but also as a significant factor to promote tumor metastasis. Therefore, anti-angiogenesis has become a vital means to inhibit tumor development, and anti-angiogenic drugs can rebalance pro- and anti-angiogenic factors to inhibit tumor cells. This article reviews the mechanism of blood vessel formation in tumor tissues and the mechanism of action of different anti-angiogenic drugs, the combination therapy of anti-angiogenic drugs and other anti-tumor drugs, and the mechanism of anti-angiogenic drug resistance.
Collapse
Affiliation(s)
- Xuan Yan
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, No. 2901, Caolang Road, Shanghai, 201508, People's Republic of China
| | - Zhangyan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, No. 2901, Caolang Road, Shanghai, 201508, People's Republic of China
| | - Haicheng Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, No. 2901, Caolang Road, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
8
|
Srivastava N, Usmani SS, Subbarayan R, Saini R, Pandey PK. Hypoxia: syndicating triple negative breast cancer against various therapeutic regimens. Front Oncol 2023; 13:1199105. [PMID: 37492478 PMCID: PMC10363988 DOI: 10.3389/fonc.2023.1199105] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/05/2023] [Indexed: 07/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the deadliest subtypes of breast cancer (BC) for its high aggressiveness, heterogeneity, and hypoxic nature. Based on biological and clinical observations the TNBC related mortality is very high worldwide. Emerging studies have clearly demonstrated that hypoxia regulates the critical metabolic, developmental, and survival pathways in TNBC, which include glycolysis and angiogenesis. Alterations to these pathways accelerate the cancer stem cells (CSCs) enrichment and immune escape, which further lead to tumor invasion, migration, and metastasis. Beside this, hypoxia also manipulates the epigenetic plasticity and DNA damage response (DDR) to syndicate TNBC survival and its progression. Hypoxia fundamentally creates the low oxygen condition responsible for the alteration in Hypoxia-Inducible Factor-1alpha (HIF-1α) signaling within the tumor microenvironment, allowing tumors to survive and making them resistant to various therapies. Therefore, there is an urgent need for society to establish target-based therapies that overcome the resistance and limitations of the current treatment plan for TNBC. In this review article, we have thoroughly discussed the plausible significance of HIF-1α as a target in various therapeutic regimens such as chemotherapy, radiotherapy, immunotherapy, anti-angiogenic therapy, adjuvant therapy photodynamic therapy, adoptive cell therapy, combination therapies, antibody drug conjugates and cancer vaccines. Further, we also reviewed here the intrinsic mechanism and existing issues in targeting HIF-1α while improvising the current therapeutic strategies. This review highlights and discusses the future perspectives and the major alternatives to overcome TNBC resistance by targeting hypoxia-induced signaling.
Collapse
Affiliation(s)
- Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rajasekaran Subbarayan
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Educations, Chennai, India
| | - Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, New Delhi, India
| | - Pranav Kumar Pandey
- Dr. R.P. Centre for Opthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Yu Y, Huang K, Lin Y, Zhang J, Song C. Tyrosine kinase inhibitors in HER2-positive breast cancer brain metastases: A systematic review and meta-analysis. Cancer Med 2023; 12:15090-15100. [PMID: 37255389 PMCID: PMC10417165 DOI: 10.1002/cam4.6180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 05/04/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Small tyrosine kinase inhibitors (TKIs) show activity against breast cancer brain metastases (BCBM) of the human epidermal growth factor receptor 2 (HER2)-positive subtype. This meta-analysis aimed to objectively explore the efficacy and safety of TKIs. METHODS Electronic databases were searched for relevant clinical trials. We conducted a pairwise meta-analysis, pooled analysis, and estimated summary survival curves to compare survival outcomes following TKIs therapy for BCBM patients using Stata version 16.0 or R x64 4.0.5. RESULTS Thirteen clinical trials involving 987 HER2-positive BCBM patients were analyzed. A trend of longer progression-free survival (PFS) was observed in the TKI-containing arm compared to the non-TKI-containing arm (hazard ratio = 0.64, 95% confidence interval [CI]: 0.35-1.15, p = 0.132), although the difference is not statistically significant. Summary survival curves reported the summary median PFS and overall survival were 7.9 months and 12.3 months. Subgroup analysis revealed that TKIs combined with capecitabine (TKI + Cap) regimens resulted in improved survival outcomes. Tucatinib may be more effective in BCBM patients. The main grade 3-5 adverse events (AEs) were diarrhea (22%, 95% CI: 14%-32%), neutropenia (11%, 95% CI: 5%-18%), hepatic toxicity (7%, 95% CI: 1%-16%), and sensory neuropathy (6%, 95% CI: 2%-12%). CONCLUSION TKIs therapy improved the survival outcomes of HER2-positive BCBM patients, especially when combined with capecitabine and tolerable AEs. We also identified the clinical value of tucatinib, which appears to be the most favorable TKI drug for BCBM patients.
Collapse
Affiliation(s)
- Yushuai Yu
- Department of Breast SurgeryFujian Medical University Union HospitalFuzhouChina
- Breast Cancer Institute, Fujian Medical UniversityFuzhouChina
| | - Kaiyan Huang
- Department of Breast SurgeryFujian Medical University Union HospitalFuzhouChina
- Breast Cancer Institute, Fujian Medical UniversityFuzhouChina
| | - Yuxiang Lin
- Department of Breast SurgeryFujian Medical University Union HospitalFuzhouChina
- Breast Cancer Institute, Fujian Medical UniversityFuzhouChina
- Department of General SurgeryFujian Medical University Union HospitalFuzhouChina
| | - Jie Zhang
- Department of Breast SurgeryFujian Medical University Union HospitalFuzhouChina
- Breast Cancer Institute, Fujian Medical UniversityFuzhouChina
- Department of General SurgeryFujian Medical University Union HospitalFuzhouChina
| | - Chuangui Song
- Department of Breast SurgeryFujian Medical University Union HospitalFuzhouChina
- Breast Cancer Institute, Fujian Medical UniversityFuzhouChina
- Department of General SurgeryFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
10
|
Müller V, Bartsch R, Lin NU, Montemurro F, Pegram MD, Tolaney SM. Epidemiology, clinical outcomes, and unmet needs of patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases: A systematic literature review. Cancer Treat Rev 2023; 115:102527. [PMID: 36893691 DOI: 10.1016/j.ctrv.2023.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND There is an increasing need for developing effective therapies for managing intracranial disease in patients with human epidermal growth factor receptor 2-positive (HER2 +) metastatic breast cancer and brain metastases (BM), as this population is growing and has historically been excluded from large clinical trials. In this systematic literature review, we aimed to provide a comprehensive overview of the epidemiology, unmet needs, and global treatment landscape for patients with HER2 + metastatic breast cancer and BM, with a particular focus on heterogeneity across clinical trial designs in this setting. METHODS We conducted literature searches of PubMed and select congress websites up to March 2022 and filtered for publications with a significant focus on epidemiology, unmet needs, or treatment outcomes in patients with HER2 + metastatic breast cancer and BM. RESULTS Key clinical trials of HER2-targeting treatments for HER2 + metastatic breast cancer had varying eligibility criteria relating to BM, with only two trials-HER2CLIMB and DEBBRAH-including patients with both active and stable BM. We also observed variance across assessed central nervous system (CNS)-focused endpoints (CNS objective response rate vs CNS progression-free survival vs time to CNS progression) and robustness of statistical analysis (prespecified vs exploratory). CONCLUSIONS There is an unmet need for standardization of clinical trial design for patients with HER2 + metastatic breast cancer and BM, to aid the interpretation of the global treatment landscape and ensure patients with all types of BM can access effective treatments.
Collapse
Affiliation(s)
| | | | - Nancy U Lin
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Mark D Pegram
- Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
11
|
Khaki Bakhtiarvand V, Ramezani-Ali Akbari K, Amir Jalali S, Hojjat-Farsangi M, Jeddi-Tehrani M, Shokri F, Shabani M. Myeloid-derived suppressor cells (MDSCs) depletion by cabozantinib improves the efficacy of anti-HER2 antibody-based immunotherapy in a 4T1-HER2 murine breast cancer model. Int Immunopharmacol 2022; 113:109470. [DOI: 10.1016/j.intimp.2022.109470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
|
12
|
Systemic Therapy for Patients with HER2-Positive Breast Cancer and Brain Metastases: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14225612. [PMID: 36428705 PMCID: PMC9688214 DOI: 10.3390/cancers14225612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
AIM Patients with HER2-positive (HER2+) metastatic breast cancer (mBC) develop brain metastases (BM) in up to 30% of cases. Treatment of patients with BM can consist of local treatment (surgery and/or radiotherapy) and/or systemic treatment. We undertook a systematic review and meta-analysis to determine the effect of different systemic therapies in patients with HER2+ mBC and BM. METHODS A systematic search was performed in the databases PubMed, Embase.com, Clarivate Analytics/Web of Science Core Collection and the Wiley/Cochrane Library. Eligible articles included prospective or retrospective studies reporting on the effect of systemic therapy on objective response rate (ORR) and/or median progression free survival (mPFS) in patients with HER2+ mBC and BM. The timeframe within the databases was from inception to 19 January 2022. Fixed-effects meta-analyses were used. Quality appraisal was performed using the ROBINS-I tool. RESULTS Fifty-one studies were included, involving 3118 patients. Most studies, which contained the largest patient numbers, but also often carried a moderate-serious risk of bias, investigated lapatinib and capecitabine (LC), trastuzumab-emtansine (T-DM1) or pyrotinib. The best quality data and/or highest ORR were described with tucatinib (combined with trastuzumab and capecitabine, TTC) and trastuzumab-deruxtecan (T-DXd). TTC demonstrated an ORR of 47.3% in patients with asymptomatic and/or active BM. T-DXd achieved a pooled ORR of 64% (95% CI 43-85%, I2 0%) in a heavily pretreated population with asymptomatic BM (3 studies, n = 96). CONCLUSIONS Though our meta-analysis should be interpreted with caution due to the heterogeneity of included studies and a related serious risk of bias, this review provides a comprehensive overview of all currently available systemic treatment options. T-Dxd and TTC that appear to constitute the most effective systemic therapy in patients with HER2+ mBC and BM, while pyrotinib might be an option in Asian patients.
Collapse
|
13
|
Castellano D, Apolo AB, Porta C, Capdevila J, Viteri S, Rodriguez-Antona C, Martin L, Maroto P. Cabozantinib combination therapy for the treatment of solid tumors: a systematic review. Ther Adv Med Oncol 2022; 14:17588359221108691. [PMID: 35923927 PMCID: PMC9340935 DOI: 10.1177/17588359221108691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Cabozantinib monotherapy is approved for the treatment of several types of solid tumors. Investigation into the use of cabozantinib combined with other therapies is increasing. To understand the evidence in this area, we performed a systematic review of cabozantinib combination therapy for the treatment of solid tumors in adults. Methods This study was designed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses, and the protocol was registered with PROSPERO (CRD42020144680). On 9 October 2020, we searched for clinical trials and observational studies of cabozantinib as part of a combination therapy for solid tumors using Embase, MEDLINE, and Cochrane databases, and by screening relevant congress abstracts. Eligible studies reported clinical or safety outcomes, or biomarker data. Randomized and observational studies with a sample size of fewer than 25 and studies of cabozantinib monotherapy were excluded. For each study, quality was assessed using National Institute for Health and Care Excellence methodology, and the study characteristics were described qualitatively. This study was funded by Ipsen. Results Of 2421 citations identified, 32 articles were included (6 with results from randomized studies, 24 with results from non-randomized phase I or II studies, and 2 with results from both). The most commonly studied tumor types were metastatic urothelial carcinoma/genitourinary tumors and castration-resistant prostate cancer (CRPC). Findings from randomized studies suggested that cabozantinib combined with other therapies may lead to better progression-free survival than some current standards of care in renal cell carcinoma, CRPC, and non-small-cell lung cancer. The most common adverse events were hypertension, diarrhea, and fatigue. Conclusion This review demonstrates the promising efficacy outcomes of cabozantinib combined with other therapies, and a safety profile similar to cabozantinib alone. However, the findings are limited by the fact that most of the identified studies were reported as congress abstracts only. More evidence from randomized trials is needed to explore cabozantinib as a combination therapy further.
Collapse
Affiliation(s)
- Daniel Castellano
- Medical Oncology Department, University Hospital 12 de Octubre, Av Cordoba s/n, Madrid 28041, Spain
| | - Andrea B. Apolo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Jaume Capdevila
- Department of Medical Oncology, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Santiago Viteri
- Dr. Rosell Oncology Institute, Teknon Medical Center, QuironSalud Group, Barcelona, Spain
| | | | | | - Pablo Maroto
- Medical Oncology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
14
|
Maroto P, Porta C, Capdevila J, Apolo AB, Viteri S, Rodriguez-Antona C, Martin L, Castellano D. Cabozantinib for the treatment of solid tumors: a systematic review. Ther Adv Med Oncol 2022; 14:17588359221107112. [PMID: 35847482 PMCID: PMC9284205 DOI: 10.1177/17588359221107112] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Cabozantinib is approved, in various settings, for the treatment of renal
cell carcinoma, medullary thyroid cancer, and hepatocellular carcinoma, and
it has been investigated for the treatment of other cancers. With the
available evidence and the real-world performance of cabozantinib compared
with clinical trial data, we performed a systematic review of cabozantinib
monotherapy as treatment for solid tumors in adults. Methods: This study was designed in accordance with Preferred Reporting Items for
Systematic Reviews and Meta-Analyses and registered with PROSPERO
(CRD42020144680). We searched for clinical and observational studies of
cabozantinib monotherapy for solid tumors using Embase, MEDLINE, and
Cochrane databases (October 2020), and screened relevant congress abstracts.
Eligible studies reported clinical or safety outcomes, or biomarker data.
Small studies (n < 25) and studies of cabozantinib
combination therapies were excluded. Quality was assessed using National
Institute for Health and Care Excellence methodology, and study
characteristics were described qualitatively. Results: Of 2888 citations, 114 were included (52 randomized studies, 29 observational
studies, 32 nonrandomized phase I or II studies or pilot trials, and 1
analysis of data from a randomized study and a nonrandomized study). Beyond
approved indications, other tumors studied were castration-resistant
prostate cancer, urothelial carcinoma, Ewing sarcoma, osteosarcoma, uveal
melanoma, non-small-cell lung cancer, Merkel cell carcinoma, glioblastoma,
pheochromocytomas and paragangliomas, cholangiocarcinoma, gastrointestinal
stromal tumor, colorectal cancer, salivary gland cancer, carcinoid and
pancreatic neuroendocrine tumors, and breast, endometrial and ovarian
cancers. The most common adverse events were hypertension, diarrhea, and
fatigue. Conclusion: The identified evidence demonstrates the positive efficacy/effectiveness of
cabozantinib monotherapy in various solid tumor types, with safety findings
being consistent with those observed with other VEGFR-targeting tyrosine
kinase inhibitors. When available, real-world findings were consistent with
the data reported from clinical trials. A limitation of this review is the
high proportion of abstracts; however, this allowed us to capture the most
up-to-date findings.
Collapse
Affiliation(s)
- Pablo Maroto
- Medical Oncology Services, Hospital de la Santa Creu i Sant Pau, Mas Casanovas, Barcelona, 08025, Spain
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Jaume Capdevila
- Department of Medical Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Andrea B Apolo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Santiago Viteri
- UOMI Cancer Center, Clínica Mi Tres Torres, Barcelona, Spain
| | | | | | - Daniel Castellano
- Medical Oncology Department, University Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
15
|
Malekan M, Ebrahimzadeh MA. Vascular Endothelial Growth Factor Receptors [VEGFR] as Target in Breast Cancer Treatment: Current Status in Preclinical and Clinical Studies and Future Directions. Curr Top Med Chem 2022; 22:891-920. [PMID: 35260067 DOI: 10.2174/1568026622666220308161710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/09/2022]
Abstract
Breast cancer [BC] is one of the most common cancers among women, one of the leading causes of a considerable number of cancer-related death globally. Among all procedures leading to the formation of breast tumors, angiogenesis has an important role in cancer progression and outcomes. Therefore, various anti-angiogenic strategies have developed so far to enhance treatment's efficacy in different types of BC. Vascular endothelial growth factors [VEGFs] and their receptors are regarded as the most well-known regulators of neovascularization. VEGF binding to vascular endothelial growth factor receptors [VEGFRs] provides cell proliferation and vascular tissue formation by the subsequent tyrosine kinase pathway. VEGF/VEGFR axis displays an attractive target for anti-angiogenesis and anti-cancer drug design. This review aims to describe the existing literature regarding VEGFR inhibitors, focusing on BC treatment reported in the last two decades.
Collapse
Affiliation(s)
- Mohammad Malekan
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
16
|
To KKW, Cho WCS. Mesenchymal Epithelial Transition Factor (MET): A Key Player in Chemotherapy Resistance and an Emerging Target for Potentiating Cancer Immunotherapy. Curr Cancer Drug Targets 2022; 22:269-285. [PMID: 35255791 DOI: 10.2174/1568009622666220307105107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
Abstract
The MET protein is a cell surface receptor tyrosine kinase predominately expressed in epithelial cells. Upon binding of its only known ligand, hepatocyte growth factor (HGF), MET homodimerizes, phosphorylates, and stimulates intracellular signalling to drive cell proliferation. Amplification or hyperactivation of MET is frequently observed in various cancer types and it is associated with poor response to conventional and targeted chemotherapy. More recently, emerging evidence also suggests that MET/HGF signalling may play an immunosuppressive role and it could confer resistance to cancer immunotherapy. In this review, we summarized the preclinical and clinical evidence of MET's role in drug resistance to conventional chemotherapy, targeted therapy, and immunotherapy. Previous clinical trials investigating MET-targeted therapy in unselected or MET-overexpressing cancers yielded mostly unfavourable results. More recent clinical studies focusing on MET exon 14 alterations and MET amplification have produced encouraging treatment responses to MET inhibitor therapy. The translational relevance of MET inhibitor therapy to overcome drug resistance in cancer patients is discussed.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
17
|
Intracranial Response Rate in Patients with Breast Cancer Brain Metastases after Systemic Therapy. Cancers (Basel) 2022; 14:cancers14040965. [PMID: 35205723 PMCID: PMC8869862 DOI: 10.3390/cancers14040965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary For many years, patients with breast cancer and brain metastases were excluded from participation in clinical trials. It was believed that anticancer drugs could not cross the blood–brain barrier. However, recent evidence strongly suggests that some drugs can act against brain metastases, with the greatest intracranial response rate reported in the case of capecitabine, neratinib plus capecitabine, trastuzumab deruxtecan and tucatinib plus trastuzumab and capecitabine. In this article, we discuss the achievements in systemic therapy of breast cancer patients with brain metastases. We stress on the newest clinical trial results which indicate tremendous progress in HER2-positive breast cancer. On the other hand, in patients with triple-negative breast cancer or hormone-receptor-positive brain metastases, much fewer compounds were discovered. Based on the presented results, patients with active brain metastases should be routinely included in clinical trials with novel agents. Abstract Brain metastases are detected in 5% of patients with breast cancer at diagnosis. The rate of brain metastases is higher in HER2-positive and triple-negative breast cancer patients (TNBC). In patients with metastatic breast cancer, the risk of brain metastases is much higher, with up to 50% of the patients having two aggressive biological breast cancer subtypes. The prognosis for such patients is poor. Until recently, little was known about the response to systemic therapy in brain metastases. The number of trials dedicated to breast cancer with brain metastases was scarce. Our review summarizes the current knowledge on this topic including very significant results of clinical trials which have been presented very recently. We focus on the intracranial response rate of modern drugs, including new antibody–drug conjugates, HER2- targeted tyrosine kinase inhibitors and other targeted therapies. We highlight the most effective and promising drugs. On the other hand, we also suggest that further efforts are needed to improve the prognosis, especially patients with TNBC and brain metastases. The information contained in this article can help oncologists make treatment-related decisions.
Collapse
|
18
|
When the MET receptor kicks in to resist targeted therapies. Oncogene 2021; 40:4061-4078. [PMID: 34031544 DOI: 10.1038/s41388-021-01835-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 02/04/2023]
Abstract
Although targeted therapies have increased the life expectancy of patients with druggable molecular alterations directly involved in tumor development, the efficacy of these therapies is limited by acquired resistances leading to treatment failure. Most targeted therapies, including ones exploiting therapeutic antibodies and kinase inhibitors, are directed against receptor tyrosine kinases (RTKs) or major signaling hubs. Resistances to these therapies arise when inhibition of these targets is bypassed through activation of alternative signaling pathways. In recent years, activation of the receptor tyrosine kinase MET has been shown to promote resistance to various targeted therapies. This casts MET as important actor in resistance. In this review, we describe how the MET receptor triggers resistance to targeted therapies against RTKs such as EGFR, VEGFR, and HER2 and against signaling hubs such as BRAF. We also describe how MET can be its own resistance factor, as illustrated by on-target resistance of lung tumors harboring activating mutations causing MET exon 14 skipping. Interestingly, investigation of all these situations reveals functional physiological relationships between MET and the target of the therapy to which the cancer becomes resistant, suggesting that resistance stems from preexisting mechanisms. Identification of MET as a resistance factor opens the way to co-treatment strategies that are being tested in current clinical trials.
Collapse
|
19
|
Cali Daylan AE, Leone JP. Targeted Therapies for Breast Cancer Brain Metastases. Clin Breast Cancer 2021; 21:263-270. [PMID: 33384227 DOI: 10.1016/j.clbc.2020.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/17/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The management of breast cancer, the most common cancer in the female population, has changed dramatically over years with the introduction of newer therapies. An increased incidence of brain metastases in recent years has created a challenge for oncologists because this population continues to have a poorer prognosis compared to metastatic breast cancer without central nervous system involvement. Historically, the exclusion of breast cancer patients with brain metastases from clinical trials has made treatment options even more limited. Nonetheless, more recently, this unmet need has been recognized by basic and clinical researchers and has led to the development of targeted therapies with better blood-brain barrier penetration and intracranial efficacy. Here we review targeted therapies directed at human epidermal growth factor receptor type 2 (HER2), vascular endothelial growth factor (VEGF), mammalian target of rapamycin (mTOR), epidermal growth factor receptor (EGFR), cyclin-dependent kinase 4 and 6 (CDK4/6) and poly(ADP-ribose) polymerase (PARP) for breast cancer patients with brain metastases. These therapies aim to be more efficacious and less toxic to represent a paradigm shift in the management of breast cancer brain metastases.
Collapse
Affiliation(s)
- Ayse Ece Cali Daylan
- Department of Medicine, St Elizabeth's Medical Center, Boston, MA; Department of Medicine, Tufts University School of Medicine, Boston, MA.
| | - José Pablo Leone
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Pellerino A, Internò V, Mo F, Franchino F, Soffietti R, Rudà R. Management of Brain and Leptomeningeal Metastases from Breast Cancer. Int J Mol Sci 2020; 21:E8534. [PMID: 33198331 PMCID: PMC7698162 DOI: 10.3390/ijms21228534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
The management of breast cancer (BC) has rapidly evolved in the last 20 years. The improvement of systemic therapy allows a remarkable control of extracranial disease. However, brain (BM) and leptomeningeal metastases (LM) are frequent complications of advanced BC and represent a challenging issue for clinicians. Some prognostic scales designed for metastatic BC have been employed to select fit patients for adequate therapy and enrollment in clinical trials. Different systemic drugs, such as targeted therapies with either monoclonal antibodies or small tyrosine kinase molecules, or modified chemotherapeutic agents are under investigation. Major aims are to improve the penetration of active drugs through the blood-brain barrier (BBB) or brain-tumor barrier (BTB), and establish the best sequence and timing of radiotherapy and systemic therapy to avoid neurocognitive impairment. Moreover, pharmacologic prevention is a new concept driven by the efficacy of targeted agents on macrometastases from specific molecular subgroups. This review aims to provide an overview of the clinical and molecular factors involved in the selection of patients for local and/or systemic therapy, as well as the results of clinical trials on advanced BC. Moreover, insight on promising therapeutic options and potential directions of future therapeutic targets against BBB and microenvironment are discussed.
Collapse
Affiliation(s)
- Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Valeria Internò
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Francesca Mo
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Federica Franchino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
- Department of Neurology, Castelfranco Veneto and Treviso Hospital, 31100 Treviso, Italy
| |
Collapse
|
21
|
Blocking c-MET/ERBB1 Axis Prevents Brain Metastasis in ERBB2+ Breast Cancer. Cancers (Basel) 2020; 12:cancers12102838. [PMID: 33019652 PMCID: PMC7601177 DOI: 10.3390/cancers12102838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Targeted monotherapies are ineffective in the treatment of brain metastasis of ERBB2+ breast cancer (BC) underscoring the need for combination therapies. The lack of robust preclinical models has further hampered the assessment of treatment modalities. We report here a clinically relevant orthotopic mouse model of ERBB2+ BC that spontaneously metastasizes to brain and demonstrates that targeting the c-MET/ERBB1 axis with a combination of cabozantinib and neratinib decreases primary tumor growth and prevents brain metastasis in ERBB2+ BC. Abstract Brain metastasis (BrM) remains a significant cause of cancer-related mortality in epidermal growth factor receptor 2-positive (ERBB2+) breast cancer (BC) patients. We proposed here that a combination treatment of irreversible tyrosine kinase inhibitor neratinib (NER) and the c-MET inhibitor cabozantinib (CBZ) could prevent brain metastasis. To address this, we first tested the combination treatment of NER and CBZ in the brain-seeking ERBB2+ cell lines SKBrM3 and JIMT-1-BR3, and in ERBB2+ organoids that expressed the c-MET/ERBB1 axis. Next, we developed and characterized an orthotopic mouse model of spontaneous BrM and evaluated the therapeutic effect of CBZ and NER in vivo. The combination treatment of NER and CBZ significantly inhibited proliferation and migration in ERBB2+ cell lines and reduced the organoid growth in vitro. Mechanistically, the combination treatment of NER and CBZ substantially inhibited ERK activation downstream of the c-MET/ERBB1 axis. Orthotopically implanted SKBrM3+ cells formed primary tumor in the mammary fat pad and spontaneously metastasized to the brain and other distant organs. Combination treatment with NER and CBZ inhibited primary tumor growth and predominantly prevented BrM. In conclusion, the orthotopic model of spontaneous BrM is clinically relevant, and the combination therapy of NER and CBZ might be a useful approach to prevent BrM in BC.
Collapse
|
22
|
de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. J Clin Invest 2020; 130:5074-5087. [PMID: 32870818 PMCID: PMC7524491 DOI: 10.1172/jci137552] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) and the HIF-dependent cancer hallmarks angiogenesis and metabolic rewiring are well-established drivers of breast cancer aggressiveness, therapy resistance, and poor prognosis. Targeting of HIF and its downstream targets in angiogenesis and metabolism has been unsuccessful so far in the breast cancer clinical setting, with major unresolved challenges residing in target selection, development of robust biomarkers for response prediction, and understanding and harnessing of escape mechanisms. This Review discusses the pathophysiological role of HIFs, angiogenesis, and metabolism in breast cancer and the challenges of targeting these features in patients with breast cancer. Rational therapeutic combinations, especially with immunotherapy and endocrine therapy, seem most promising in the clinical exploitation of the intricate interplay of HIFs, angiogenesis, and metabolism in breast cancer cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Ellen C. de Heer
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Mathilde Jalving
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Xu J, Higgins MJ, Tolaney SM, Come SE, Smith MR, Fornier M, Mahmood U, Baselga J, Yeap BY, Chabner BA, Isakoff SJ. A Phase II Trial of Cabozantinib in Hormone Receptor-Positive Breast Cancer with Bone Metastases. Oncologist 2020; 25:652-660. [PMID: 32463152 PMCID: PMC7418363 DOI: 10.1634/theoncologist.2020-0127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We assessed the antitumor activity of cabozantinib, a potent multireceptor oral tyrosine kinase inhibitor, in patients with hormone receptor-positive breast cancer with bone metastases. PATIENTS AND METHODS In this single-arm multicenter phase II study, patients received an initial starting dose of 100 mg, later reduced to 60 mg, per day. The primary endpoint was the bone scan response rate. Secondary endpoints included objective response rate by RECIST, progression-free survival (PFS), and overall survival (OS). RESULTS Of 52 women enrolled, 20 (38%) experienced a partial response on bone scan and 6 (12%) had stable disease. Prior to the first repeat bone scan at 12 weeks, 19 (35%) patients discontinued study treatment because of early clinical progression or unacceptable toxicity. RECIST evaluation based on best overall response by computed tomography revealed stable disease in extraosseous tissues in 26 patients (50%) but no complete or partial responses. In 25 patients with disease control on bone scan at 12 weeks, only 3 (12%) patients developed extraosseous progression. The median PFS was 4.3 months, and median OS was 19.6 months. The most common grade 3 or 4 toxicities were hypertension (10%), anorexia (6%), diarrhea (6%), fatigue (4%), and hypophosphatemia (4%). CONCLUSION Bone scans improved in 38% of patients with metastatic hormone receptor-positive breast cancer and remained stable in an additional 12% for a minimum duration of 12 weeks on cabozantinib. Further investigations should assess the activity of cabozantinib in combination with other hormonal and other breast cancer therapies and determine whether bone scan responses correlate with meaningful antitumor effects. ClinicalTrials.gov identifier. NCT01441947 IMPLICATIONS FOR PRACTICE: Most patients with metastatic hormone receptor-positive (HR+) breast cancer have bone involvement, and many have bone-only disease, which is difficult to evaluate for response. This phase II single-arm study evaluated the clinical activity of the small molecule MET/RET/VEGFR2 inhibitor cabozantinib in patients with metastatic HR+ breast cancer with bone metastases. This study met its primary endpoint, and cabozantinib treatment resulted in a significant bone scan response rate correlating with improved survival. This is the first study to use bone scan response as a primary endpoint in breast cancer. The results support further study of cabozantinib in HR+ breast cancer.
Collapse
Affiliation(s)
- Jing Xu
- Massachusetts General Hospital Cancer CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Michaela J. Higgins
- Department of Medical Oncology, Mater Misericordiae University HospitalDublinIreland
| | - Sara M. Tolaney
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of Medical Oncology, Dana Farber Cancer InstituteBostonMassachusettsUSA
| | - Steven E. Come
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of Medical Oncology, Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Matthew R. Smith
- Massachusetts General Hospital Cancer CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Monica Fornier
- Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Jose Baselga
- Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Research & Development Oncology, AstraZeneca PharmaceuticalsGaithersburgMarylandUSA
| | - Beow Y. Yeap
- Massachusetts General Hospital Cancer CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Bruce A. Chabner
- Massachusetts General Hospital Cancer CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Steven J. Isakoff
- Massachusetts General Hospital Cancer CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
24
|
Kim JS, Kim IA. Evolving treatment strategies of brain metastases from breast cancer: current status and future direction. Ther Adv Med Oncol 2020; 12:1758835920936117. [PMID: 32636942 PMCID: PMC7313341 DOI: 10.1177/1758835920936117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in breast cancer treatment has improved patient survival, resulting in an increased incidence of brain metastasis (BM). Current treatment options for BM are limited and are generally used for palliative purposes. Historically, local treatment, consisting of radiotherapy and surgery, is the standard of care due to delivery limitations of systemic treatments through the blood-brain barrier. However, as novel biological mechanisms for tumors and BM have been discovered, several innovative systemic agents, such as small-molecular-targeted therapy and immunotherapy, have begun to change the treatment paradigm. In addition, efforts to maximize antitumor effects have been attempted using combination therapy, informed by tumor biology. In this comprehensive review, we will highlight various clinical trials investigating the treatment of BM in breast cancer patients, discuss presently available treatment options, and suggest potential directions of future therapeutic targets.
Collapse
Affiliation(s)
- Jae Sik Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Gumi-ro 173, 82 Beon-gil, Bundang gu, Seongnam, 13620, Republic of Korea
| |
Collapse
|
25
|
Erickson AW, Ghodrati F, Habbous S, Jerzak KJ, Sahgal A, Ahluwalia MS, Das S. HER2-targeted therapy prolongs survival in patients with HER2-positive breast cancer and intracranial metastatic disease: a systematic review and meta-analysis. Neurooncol Adv 2020; 2:vdaa136. [PMID: 33305268 PMCID: PMC7720818 DOI: 10.1093/noajnl/vdaa136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Intracranial metastatic disease (IMD) is a serious and known complication of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. The role of targeted therapy for patients with HER2-positive breast cancer and IMD remains unclear. In this study, we sought to evaluate the effect of HER2-targeted therapy on IMD from HER2-positive breast cancer. METHODS We searched MEDLINE, EMBASE, CENTRAL, and gray literature sources for interventional and observational studies reporting survival, response, and safety outcomes for patients with IMD receiving HER2-targeted therapy. We pooled outcomes through meta-analysis and examined confounder effects through forest plot stratification and meta-regression. Evidence quality was evaluated using GRADE (PROSPERO CRD42020161209). RESULTS A total of 97 studies (37 interventional and 60 observational) were included. HER2-targeted therapy was associated with prolonged overall survival (hazard ratio [HR] 0.47; 95% confidence interval [CI], 0.39-0.56) without significantly prolonged progression-free survival (HR 0.52; 95% CI, 0.27-1.02) versus non-targeted therapy; the intracranial objective response rate was 19% (95% CI, 12-27%), intracranial disease control rate 62% (95% CI, 55-69%), intracranial complete response rate 0% (95% CI, 0-0.01%), and grade 3+ adverse event rate 26% (95% CI, 11-45%). Risk of bias was high in 40% (39/97) of studies. CONCLUSION These findings support a potential role for systemic HER2-targeted therapy in the treatment of patients with IMD from HER2-positive metastatic breast cancer.
Collapse
Affiliation(s)
- Anders W Erickson
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Farinaz Ghodrati
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Steven Habbous
- Ontario Health (Cancer Care Ontario), Toronto, Ontario, Canada
| | - Katarzyna J Jerzak
- Division of Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Ontario, Canada
| | - Manmeet S Ahluwalia
- Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sunit Das
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|