1
|
Iima M, Honda M, Satake H, Kataoka M. Standardization and advancements efforts in breast diffusion-weighted imaging. Jpn J Radiol 2025; 43:347-354. [PMID: 39641874 PMCID: PMC11868247 DOI: 10.1007/s11604-024-01696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Recent advancements in breast magnetic resonance imaging (MRI) have significantly enhanced breast cancer detection and characterization. Breast MRI offers superior sensitivity, particularly valuable for high-risk screening and assessing disease extent. Abbreviated protocols have emerged, providing efficient cancer detection while reducing scan time and cost. Diffusion-weighted imaging (DWI), a non-contrast technique, has shown promise in differentiating malignant from benign lesions. It offers shorter scanning times and eliminates contrast agent risks. Apparent diffusion coefficient (ADC) values provide quantitative measures for lesion characterization, potentially reducing unnecessary biopsies. Studies have revealed some correlations between ADC values and hormone receptor status in breast cancers, although substantial variability exists among studies. However, standardization remains challenging. Initiatives such as European Society of Breast Imaging (EUSOBI), Diffusion-Weighted Imaging Screening Trial (DWIST), Quantitative Imaging Biomarkers Alliance (QIBA) have proposed guidelines to ensure consistency in imaging protocols and equipment specifications, addressing variability in ADC measurements across different sites and vendors. Advanced techniques like Intravoxel incoherent motion (IVIM) and non-Gaussian DWI offer insights into tissue microvasculature and microstructure. Despite ongoing challenges, the integration of these advanced MRI techniques shows great promise for improving breast cancer diagnosis, characterization, and treatment planning. Continued research and standardization efforts are crucial for maximizing the potential of breast DWI in enhancing patient care and outcomes.
Collapse
Affiliation(s)
- Mami Iima
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan.
| | - Maya Honda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
- Department of Diagnostic Radiology, Kansai Electric Power Hospital, Osaka, Osaka, Japan
| | - Hiroko Satake
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| |
Collapse
|
2
|
Lee CW, Shin HJ, Kim HJ, Baek S, Park SY, Choi WJ, Chae EY, Cha JH, Kim HH, Moon WK. Performance of high-resolution diffusion-weighted magnetic resonance imaging for detecting clinically occult early breast cancers: a multi-reader study. Breast Cancer Res Treat 2025; 210:71-86. [PMID: 39511058 DOI: 10.1007/s10549-024-07537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE To compare mammography, breast ultrasound (US), high-resolution diffusion-weighted magnetic resonance imaging (DW-MRI), dynamic contrast-enhanced breast MRI (DCE-MRI), and their combinations for detecting clinically occult early breast cancers (EBCs), including ductal carcinoma in situ (DCIS). METHODS Three hundred and three consecutive women with screening imaging-detected early breast cancers (60 pure DCIS, 36 DCIS with microinvasion, and 207 invasive carcinoma less than 20 mm) who underwent breast MRI at 3 T including DW-MRI (b-values of 0, 800 and 1200 s/mm2; in-plane resolution, 1.1 × 1.1 mm2 or 1.3 × 1.3 mm2; section thickness, 3 mm) were retrospectively reviewed. Three radiologists independently reviewed each examination. Statistical analysis included Chi-square test, McNemar test for comparison of cancer detection rates, and Fleiss' Kappa for interreader agreement. Mixed-effect logistic regression analysis was employed to evaluate factors associated with cancer detection on DW-MRI. RESULTS The overall cancer detection rates were 54.8% on mammography, 71.0% on breast US, 81.5% on DW-MRI, and 87.1% on DCE-MRI. On McNemar test, DW-MRI detected more cancers than mammography (adjusted p < 0.001), and its combination with mammography showed a similar cancer detection rate to DCE-MRI combined with mammography (adjusted p = 0.808). On multivariable analysis, histologic type, lesion size, ADC and CNR on DW-MRI were independent factors for cancer detection on DW-MRI. The interreader agreement for cancer detection was moderate to substantial (Fleiss' kappa: 0.52-0.65) across each modality. CONCLUSION High-resolution DW-MRI plus mammography showed comparable cancer detection rate to DCE-MRI plus mammography for detecting clinically occult EBCs including DCIS.
Collapse
Affiliation(s)
- Chae Woon Lee
- Department of Radiology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, 150 Seongan-ro, Gangdong-gu, Seoul, 05355, Republic of Korea
| | - Hee Jung Shin
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| | - Hee Jeong Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Seunghee Baek
- Department of Clinical Epidemiology and Biostatistics, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Seo Young Park
- Department of Statistics and Data Science, Korea National Open University, 86, Daehak-ro, Jongro-gu, Seoul, 03087, South Korea
| | - Woo Jung Choi
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Eun Young Chae
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Joo Hee Cha
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Hak Hee Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| |
Collapse
|
3
|
Pesapane F, Battaglia O, Rotili A, Gnocchi G, D’Ecclesiis O, Bellerba F, Penco S, Signorelli G, Nicosia L, Trentin C, Dominelli V, Priolo F, Bozzini A, Gandini S, Cassano E. Comparative diagnostic efficacy of abbreviated and full protocol breast MRI: a systematic review and a meta-analysis. Br J Radiol 2024; 97:1915-1924. [PMID: 39400335 PMCID: PMC11573129 DOI: 10.1093/bjr/tqae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVES This meta-analysis compares the efficacy, limitations, and clinical implications of abbreviated breast MRI (AB-MRI) and full protocol MRI (FP-MRI), focusing on diagnostic accuracy across diverse populations. It extends previous analyses by including studies conducted after 2019 in both screening and diagnostic contexts. METHODS We conducted a systematic review (November 2019 to December 2022), using a bivariate model to calculate summary estimates of sensitivity and specificity. Random effect models were applied for summary area under the curve (AUC), and probability distributions for negative and positive predictive values were obtained. Subgroup analyses explored differences in sensitivity, specificity, and AUC between AB-MRI and FP-MRI. RESULTS From 11 eligible studies (1 prospective, 10 retrospective), statistical analysis revealed a significant difference in sensitivity between FP-MRI (95%) and AB-MRI (86%, P = .005), with no significant difference in specificity (P = .50). AB-MRI's shorter acquisition time suggests potential for higher patient throughput, but challenges remain in detecting small lesions and nonmass enhancements. Some studies recommend additional sequences, like diffusion-weighted imaging, to improve diagnostic performance. CONCLUSIONS While FP-MRI remains the gold standard in breast cancer detection, AB-MRI offers a quicker alternative, especially in high-risk screening. However, its lower sensitivity limits its use as a standalone diagnostic tool. Future research should optimize AB-MRI protocols and consider patient-specific factors to enhance breast cancer screening and diagnostic strategies. ADVANCES IN KNOWLEDGE This meta-analysis expands understanding of AB-MRI's role in breast cancer detection, highlighting its benefits and limitations compared to FP-MRI, particularly in terms of sensitivity and screening efficiency.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Ottavia Battaglia
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Gnocchi
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Oriana D’Ecclesiis
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Bellerba
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Signorelli
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Trentin
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Priolo
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Anna Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
4
|
Piccolo CL, Sarli M, Pileri M, Tommasiello M, Rofena A, Guarrasi V, Soda P, Beomonte Zobel B. Radiomics for Predicting Prognostic Factors in Breast Cancer: Insights from Contrast-Enhanced Mammography (CEM). J Clin Med 2024; 13:6486. [PMID: 39518625 PMCID: PMC11546631 DOI: 10.3390/jcm13216486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Objectives: To evaluate the correlation between radiomic features extracted from contrast-enhanced mammography (CEM) tumor lesions and peritumoral background with prognostic factors in breast cancer (BC). Methods: In this retrospective, single-center study, 134 women with histologically confirmed breast cancer underwent CEM examination. Radiomic features were extracted from manually segmented lesions and lesion contours were automatically delineated using PyRadiomics. The extracted features were categorized into seven classes: First-order Features, Shape Features (2D), Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), and Neighboring Gray Tone Difference Matrix (NGTDM). Histological examination assessed tumor type, grade, receptor structure (ER, PgR, HER2), Ki67 index, and lymph node involvement. Pearson correlation and multivariate regression were applied to evaluate associations between radiomic features and prognostic factors. Results: Significant correlations were found between First-order Features and prognostic factors such as ER, PgR, and Ki67 (p < 0.05). GLCM-based texture features showed strong associations with Ki67 and HER2 (p < 0.01). Radiomic features from peritumoral regions, especially shape and GLSZM metrics, were significantly correlated with Ki67 and lymph node involvement. Conclusions: Radiomic analysis of both tumor and peritumoral regions offers significant insights into BC prognosis. These findings support the integration of radiomics into personalized diagnostic and therapeutic strategies, potentially improving clinical decision making in BC management.
Collapse
Affiliation(s)
- Claudia Lucia Piccolo
- Operative Research Unit of Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy; (C.L.P.); (M.S.); (M.T.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Campus Bio-Medico University, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Marina Sarli
- Operative Research Unit of Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy; (C.L.P.); (M.S.); (M.T.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Campus Bio-Medico University, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Matteo Pileri
- Operative Research Unit of Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy; (C.L.P.); (M.S.); (M.T.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Campus Bio-Medico University, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Manuela Tommasiello
- Operative Research Unit of Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy; (C.L.P.); (M.S.); (M.T.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Campus Bio-Medico University, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Aurora Rofena
- Unit of Computer Systems & Bioinformatics, Department of Engineering, Campus Bio-Medico University, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.R.); (V.G.); (P.S.)
| | - Valerio Guarrasi
- Unit of Computer Systems & Bioinformatics, Department of Engineering, Campus Bio-Medico University, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.R.); (V.G.); (P.S.)
| | - Paolo Soda
- Unit of Computer Systems & Bioinformatics, Department of Engineering, Campus Bio-Medico University, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.R.); (V.G.); (P.S.)
| | - Bruno Beomonte Zobel
- Operative Research Unit of Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy; (C.L.P.); (M.S.); (M.T.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Campus Bio-Medico University, Via Alvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
5
|
Petrillo A, Fusco R, Petrosino T, Vallone P, Granata V, Rubulotta MR, Pariante P, Raiano N, Scognamiglio G, Fanizzi A, Massafra R, Lafranceschina M, La Forgia D, Greco L, Ferranti FR, De Soccio V, Vidiri A, Botta F, Dominelli V, Cassano E, Sorgente E, Pecori B, Cerciello V, Boldrini L. A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer. LA RADIOLOGIA MEDICA 2024; 129:864-878. [PMID: 38755477 DOI: 10.1007/s11547-024-01817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE To evaluate the performance of radiomic analysis on contrast-enhanced mammography images to identify different histotypes of breast cancer mainly in order to predict grading, to identify hormone receptors, to discriminate human epidermal growth factor receptor 2 (HER2) and to identify luminal histotype of the breast cancer. METHODS From four Italian centers were recruited 180 malignant lesions and 68 benign lesions. However, only the malignant lesions were considered for the analysis. All patients underwent contrast-enhanced mammography in cranium caudal (CC) and medium lateral oblique (MLO) view. Considering histological findings as the ground truth, four outcomes were considered: (1) G1 + G2 vs. G3; (2) HER2 + vs. HER2 - ; (3) HR + vs. HR - ; and (4) non-luminal vs. luminal A or HR + /HER2- and luminal B or HR + /HER2 + . For multivariate analysis feature selection, balancing techniques and patter recognition approaches were considered. RESULTS The univariate findings showed that the diagnostic performance is low for each outcome, while the results of the multivariate analysis showed that better performances can be obtained. In the HER2 + detection, the best performance (73% of accuracy and AUC = 0.77) was obtained using a linear regression model (LRM) with 12 features extracted by MLO view. In the HR + detection, the best performance (77% of accuracy and AUC = 0.80) was obtained using a LRM with 14 features extracted by MLO view. In grading classification, the best performance was obtained by a decision tree trained with three predictors extracted by MLO view reaching an accuracy of 82% on validation set. In the luminal versus non-luminal histotype classification, the best performance was obtained by a bagged tree trained with 15 predictors extracted by CC view reaching an accuracy of 94% on validation set. CONCLUSIONS The results suggest that radiomics analysis can be effectively applied to design a tool to support physician decision making in breast cancer classification. In particular, the classification of luminal versus non-luminal histotypes can be performed with high accuracy.
Collapse
Affiliation(s)
- Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy.
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013, Naples, Italy
| | - Teresa Petrosino
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Paolo Vallone
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Maria Rosaria Rubulotta
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Paolo Pariante
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Nicola Raiano
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Giosuè Scognamiglio
- Pathology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Annarita Fanizzi
- Direzione Scientifica, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Raffaella Massafra
- SSD Fisica Sanitaria, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Miria Lafranceschina
- Struttura Semplice Dipartimentale Di Radiodiagnostica Senologica, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Daniele La Forgia
- Struttura Semplice Dipartimentale Di Radiodiagnostica Senologica, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Laura Greco
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Romana Ferranti
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Valeria De Soccio
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Botta
- Breast Imaging Division, IEO Istituto Europeo Di Oncologia, 20141, Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO Istituto Europeo Di Oncologia, 20141, Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO Istituto Europeo Di Oncologia, 20141, Milan, Italy
| | - Eugenio Sorgente
- Radiation Protection and Innovative Technology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Biagio Pecori
- Radiation Protection and Innovative Technology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Vincenzo Cerciello
- Medical Physics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Luca Boldrini
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
6
|
Pötsch N, Sodano C, Baltzer PAT. Performance of Diffusion-weighted Imaging-based Noncontrast MRI Protocols for Diagnosis of Breast Cancer: A Systematic Review and Meta-Analysis. Radiology 2024; 311:e232508. [PMID: 38771179 DOI: 10.1148/radiol.232508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Diffusion-weighted imaging (DWI) is increasingly recognized as a powerful diagnostic tool and tested alternative to contrast-enhanced (CE) breast MRI. Purpose To perform a systematic review and meta-analysis that assesses the diagnostic performance of DWI-based noncontrast MRI protocols (ncDWI) for the diagnosis of breast cancer. Materials and Methods A systematic literature search in PubMed for articles published from January 1985 to September 2023 was performed. Studies were excluded if they investigated malignant lesions or selected patients and/or lesions only, used DWI as an adjunct technique to CE MRI, or were technical studies. Statistical analysis included pooling of diagnostic accuracy and investigating between-study heterogeneity. Additional subgroup comparisons of ncDWI to CE MRI and standard mammography were performed. Results A total of 28 studies were included, with 4406 lesions (1676 malignant, 2730 benign) in 3787 patients. The pooled sensitivity and specificity of ncDWI were 86.5% (95% CI: 81.4, 90.4) and 83.5% (95% CI: 76.9, 88.6), and both measures presented with high between-study heterogeneity (I 2 = 81.6% and 91.6%, respectively; P < .001). CE MRI (18 studies) had higher sensitivity than ncDWI (95.1% [95% CI: 92.9, 96.7] vs 88.9% [95% CI: 82.4, 93.1], P = .004) at similar specificity (82.2% [95% CI: 75.0, 87.7] vs 82.0% [95% CI: 74.8, 87.5], P = .97). Compared with ncDWI, mammography (five studies) showed no evidence of a statistical difference for sensitivity (80.3% [95% CI: 56.3, 93.3] vs 56.7%; [95% CI: 41.9, 70.4], respectively; P = .09) or specificity (89.9% [95% CI: 85.5, 93.1] vs 90% [95% CI: 61.3, 98.1], respectively; P = .62), but ncDWI had a higher area under the summary receiver operating characteristic curve (0.93 [95% CI: 0.91, 0.95] vs 0.78 [95% CI: 0.74, 0.81], P < .001). Conclusion A direct comparison with CE MRI showed a modestly lower sensitivity at similar specificity for ncDWI, and higher diagnostic performance indexes for ncDWI than standard mammography. Heterogeneity was high, thus these results must be interpreted with caution. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Kataoka and Iima in this issue.
Collapse
Affiliation(s)
- Nina Pötsch
- From the Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna and General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Claudia Sodano
- From the Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna and General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Pascal A T Baltzer
- From the Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna and General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
7
|
Alhassan AM. An improved breast cancer classification with hybrid chaotic sand cat and Remora Optimization feature selection algorithm. PLoS One 2024; 19:e0300622. [PMID: 38603682 PMCID: PMC11008855 DOI: 10.1371/journal.pone.0300622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/03/2024] [Indexed: 04/13/2024] Open
Abstract
Breast cancer is one of the most often diagnosed cancers in women, and identifying breast cancer histological images is an essential challenge in automated pathology analysis. According to research, the global BrC is around 12% of all cancer cases. Furthermore, around 25% of women suffer from BrC. Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. Using a BreakHis dataset, we demonstrated in this work the viability of automatically identifying and classifying BrC. The first stage is pre-processing, which employs an Adaptive Switching Modified Decision Based Unsymmetrical Trimmed Median Filter (ASMDBUTMF) to remove high-density noise. After the image has been pre-processed, it is segmented using the Thresholding Level set approach. Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. The suggested strategy facilitates the acquisition of precise functionality attributes, hence simplifying the detection procedure. Additionally, it aids in resolving problems pertaining to global optimization. Following the selection, the best characteristics proceed to the categorization procedure. A DL classifier called the Conditional Variation Autoencoder is used to discriminate between cancerous and benign tumors while categorizing them. Consequently, a classification accuracy of 99.4%, Precision of 99.2%, Recall of 99.1%, F- score of 99%, Specificity of 99.14%, FDR of 0.54, FNR of 0.001, FPR of 0.002, MCC of 0.98 and NPV of 0.99 were obtained using the proposed approach. Furthermore, compared to other research using the current BreakHis dataset, the results of our research are more desirable.
Collapse
Affiliation(s)
- Afnan M. Alhassan
- College of Computing and Information Technology, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
8
|
Kim YS, Lee SH, Kim SY, Kim ES, Park AR, Chang JM, Park VY, Yoon JH, Kang BJ, Yun BL, Kim TH, Ko ES, Chu AJ, Kim JY, Youn I, Chae EY, Choi WJ, Kim HJ, Kang SH, Ha SM, Moon WK. Unenhanced Breast MRI With Diffusion-Weighted Imaging for Breast Cancer Detection: Effects of Training on Performance and Agreement of Subspecialty Radiologists. Korean J Radiol 2024; 25:11-23. [PMID: 38184765 PMCID: PMC10788600 DOI: 10.3348/kjr.2023.0528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE To investigate whether reader training improves the performance and agreement of radiologists in interpreting unenhanced breast magnetic resonance imaging (MRI) scans using diffusion-weighted imaging (DWI). MATERIALS AND METHODS A study of 96 breasts (35 cancers, 24 benign, and 37 negative) in 48 asymptomatic women was performed between June 2019 and October 2020. High-resolution DWI with b-values of 0, 800, and 1200 sec/mm² was performed using a 3.0-T system. Sixteen breast radiologists independently reviewed the DWI, apparent diffusion coefficient maps, and T1-weighted MRI scans and recorded the Breast Imaging Reporting and Data System (BI-RADS) category for each breast. After a 2-h training session and a 5-month washout period, they re-evaluated the BI-RADS categories. A BI-RADS category of 4 (lesions with at least two suspicious criteria) or 5 (more than two suspicious criteria) was considered positive. The per-breast diagnostic performance of each reader was compared between the first and second reviews. Inter-reader agreement was evaluated using a multi-rater κ analysis and intraclass correlation coefficient (ICC). RESULTS Before training, the mean sensitivity, specificity, and accuracy of the 16 readers were 70.7% (95% confidence interval [CI]: 59.4-79.9), 90.8% (95% CI: 85.6-94.2), and 83.5% (95% CI: 78.6-87.4), respectively. After training, significant improvements in specificity (95.2%; 95% CI: 90.8-97.5; P = 0.001) and accuracy (85.9%; 95% CI: 80.9-89.8; P = 0.01) were observed, but no difference in sensitivity (69.8%; 95% CI: 58.1-79.4; P = 0.58) was observed. Regarding inter-reader agreement, the κ values were 0.57 (95% CI: 0.52-0.63) before training and 0.68 (95% CI: 0.62-0.74) after training, with a difference of 0.11 (95% CI: 0.02-0.18; P = 0.01). The ICC was 0.73 (95% CI: 0.69-0.74) before training and 0.79 (95% CI: 0.76-0.80) after training (P = 0.002). CONCLUSION Brief reader training improved the performance and agreement of interpretations by breast radiologists using unenhanced MRI with DWI.
Collapse
Affiliation(s)
- Yeon Soo Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su Hyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo-Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Sil Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ah Reum Park
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Min Chang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Vivian Youngjean Park
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Hyun Yoon
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bong Joo Kang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bo La Yun
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Tae Hee Kim
- Department of Radiology, Ajou University Medical Center, Suwon, Republic of Korea
| | - Eun Sook Ko
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul, Republic of Korea
| | - A Jung Chu
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jin You Kim
- Department of Radiology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Inyoung Youn
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Young Chae
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo Jung Choi
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee Jeong Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soo Hee Kang
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Su Min Ha
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
9
|
Gullo RL, Partridge SC, Shin HJ, Thakur SB, Pinker K. Update on DWI for Breast Cancer Diagnosis and Treatment Monitoring. AJR Am J Roentgenol 2024; 222:e2329933. [PMID: 37850579 PMCID: PMC11196747 DOI: 10.2214/ajr.23.29933] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
DWI is a noncontrast MRI technique that measures the diffusion of water molecules within biologic tissue. DWI is increasingly incorporated into routine breast MRI examinations. Currently, the main applications of DWI are breast cancer detection and characterization, prognostication, and prediction of treatment response to neoadjuvant chemotherapy. In addition, DWI is promising as a noncontrast MRI alternative for breast cancer screening. Problems with suboptimal resolution and image quality have restricted the mainstream use of DWI for breast imaging, but these shortcomings are being addressed through several technologic advancements. In this review, we present an up-to-date assessment of the use of DWI for breast cancer imaging, including a summary of the clinical literature and recommendations for future use.
Collapse
Affiliation(s)
- Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Savannah C Partridge
- Department of Radiology, University of Washington School of Medicine, University of Washington, Seattle, WA, USA 98109, USA
| | - Hee Jung Shin
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Sunitha B Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
10
|
Pesapane F, Nicosia L, Tantrige P, Schiaffino S, Liguori A, Montesano M, Bozzini A, Rotili A, Cellina M, Orsi M, Penco S, Pizzamiglio M, Carrafiello G, Cassano E. Inter-reader agreement of breast magnetic resonance imaging and contrast-enhanced mammography in breast cancer diagnosis: a multi-reader retrospective study. Breast Cancer Res Treat 2023; 202:451-459. [PMID: 37747580 DOI: 10.1007/s10549-023-07093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVE Breast magnetic resonance imaging (MRI) and contrast-enhanced mammography (CEM) are nowadays used in breast imaging but studies about their inter-reader agreement are lacking. Therefore, we compared the inter-reader agreement of CEM and MRI in breast cancer diagnosis in the same patients. METHODS Breast MRI and CEM exams performed in a single center (09/2020-09/2021) for an IRB-approved study were retrospectively and independently evaluated by four radiologists of two different centers with different levels of experience who were blinded to the clinical and other imaging data. The reference standard was the histological diagnosis or at least 1-year negative imaging follow-up. Inter-reader agreement was examined using Cohen's and Fleiss' kappa (κ) statistics and compared with the Wald test. RESULTS Of the 750 patients, 395 met inclusion criteria (44.5 ± 14 years old), with 752 breasts available for CEM and MRI. Overall agreement was moderate (κ = 0.60) for MRI and substantial (κ = 0.74) for CEM. For expert readers, the agreement was substantial (κ = 0.77) for MRI and almost perfect (κ = 0.82) for CEM; for non-expert readers was fair (κ = 0.39); and for MRI and moderate (κ = 0.57) for CEM. Pairwise agreement between expert readers and non-expert readers was moderate (κ = 0.50) for breast MRI and substantial (κ = 0.74) for CEM and it showed a statistically superior agreement of the expert over the non-expert readers only for MRI (p = 0.011) and not for CEM (p = 0.062). CONCLUSIONS The agreement of CEM was superior to that of MRI (p = 0.012), including for both expert (p = 0.031) and non-expert readers (p = 0.005).
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Priyan Tantrige
- Department of Radiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Simone Schiaffino
- Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale (EOC), 6900, Lugano, Switzerland
| | - Alessandro Liguori
- Department of Radiology, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Marta Montesano
- Department of Radiology, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Anna Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Michaela Cellina
- Department of Radiology, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, 20131, Milan, Italy
| | - Marcello Orsi
- Department of Radiology, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, 20131, Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Pizzamiglio
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Radiology, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
- Department of Health Sciences, University of Milan, 20122, Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
11
|
Rotili A, Pesapane F, Signorelli G, Penco S, Nicosia L, Bozzini A, Meneghetti L, Zanzottera C, Mannucci S, Bonanni B, Cassano E. An Unenhanced Breast MRI Protocol Based on Diffusion-Weighted Imaging: A Retrospective Single-Center Study on High-Risk Population for Breast Cancer. Diagnostics (Basel) 2023; 13:1996. [PMID: 37370892 DOI: 10.3390/diagnostics13121996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
PURPOSE This study aimed to investigate the use of contrast-free magnetic resonance imaging (MRI) as an innovative screening method for detecting breast cancer in high-risk asymptomatic women. Specifically, the researchers evaluated the diagnostic performance of diffusion-weighted imaging (DWI) in this population. METHODS MR images from asymptomatic women, carriers of a germline mutation in either the BRCA1 or BRCA2 gene, collected in a single center from January 2019 to December 2021 were retrospectively evaluated. A radiologist with experience in breast imaging (R1) and a radiology resident (R2) independently evaluated DWI/ADC maps and, in case of doubts, T2-WI. The standard of reference was the pathological diagnosis through biopsy or surgery, or ≥1 year of clinical and radiological follow-up. Diagnostic performances were calculated for both readers with a 95% confidence interval (CI). The agreement was assessed using Cohen's kappa (κ) statistics. RESULTS Out of 313 women, 145 women were included (49.5 ± 12 years), totaling 344 breast MRIs with DWI/ADC maps. The per-exam cancer prevalence was 11/344 (3.2%). The sensitivity was 8/11 (73%; 95% CI: 46-99%) for R1 and 7/11 (64%; 95% CI: 35-92%) for R2. The specificity was 301/333 (90%; 95% CI: 87-94%) for both readers. The diagnostic accuracy was 90% for both readers. R1 recalled 40/344 exams (11.6%) and R2 recalled 39/344 exams (11.3%). Inter-reader reproducibility between readers was in moderate agreement (κ = 0.43). CONCLUSIONS In female carriers of a BRCA1/2 mutation, breast DWI supplemented with T2-WI allowed breast cancer detection with high sensitivity and specificity by a radiologist with extensive experience in breast imaging, which is comparable to other screening tests. The findings suggest that DWI and T2-WI have the potential to serve as a stand-alone method for unenhanced breast MRI screening in a selected population, opening up new perspectives for prospective trials.
Collapse
Affiliation(s)
- Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giulia Signorelli
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Lorenza Meneghetti
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Cristina Zanzottera
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Sara Mannucci
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
12
|
Pesapane F, De Marco P, Rapino A, Lombardo E, Nicosia L, Tantrige P, Rotili A, Bozzini AC, Penco S, Dominelli V, Trentin C, Ferrari F, Farina M, Meneghetti L, Latronico A, Abbate F, Origgi D, Carrafiello G, Cassano E. How Radiomics Can Improve Breast Cancer Diagnosis and Treatment. J Clin Med 2023; 12:jcm12041372. [PMID: 36835908 PMCID: PMC9963325 DOI: 10.3390/jcm12041372] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Correspondence: ; Tel.: +39-02-574891
| | - Paolo De Marco
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Rapino
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Eleonora Lombardo
- UOC of Diagnostic Imaging, Policlinico Tor Vergata University, 00133 Rome, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Priyan Tantrige
- Department of Radiology, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Carla Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Chiara Trentin
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Federica Ferrari
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Mariagiorgia Farina
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Lorenza Meneghetti
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Antuono Latronico
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesca Abbate
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Daniela Origgi
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Radiology, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
13
|
Mürtz P, Tsesarskiy M, Sprinkart AM, Block W, Savchenko O, Luetkens JA, Attenberger U, Pieper CC. Simplified intravoxel incoherent motion DWI for differentiating malignant from benign breast lesions. Eur Radiol Exp 2022; 6:48. [PMID: 36171532 PMCID: PMC9519819 DOI: 10.1186/s41747-022-00298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
Background To evaluate simplified intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) for differentiating malignant versus benign breast lesions as (i) stand-alone tool and (ii) add-on to dynamic contrast-enhanced magnetic resonance imaging. Methods 1.5-T DWI data (b = 0, 50, 250, 800 s/mm2) were retrospectively analysed for 126 patients with malignant or benign breast lesions. Apparent diffusion coefficient (ADC) ADC (0, 800) and IVIM-based parameters D1′ = ADC (50, 800), D2′ = ADC (250, 800), f1′ = f (0, 50, 800), f2′ = f (0, 250, 800) and D*′ = D* (0, 50, 250, 800) were voxel-wise calculated without fitting procedures. Regions of interest were analysed in vital tumour and perfusion hot spots. Beside the single parameters, the combined use of D1′ with f1′ and D2′ with f2′ was evaluated. Lesion differentiation was investigated for lesions (i) with hyperintensity on DWI with b = 800 s/mm2 (n = 191) and (ii) with suspicious contrast-enhancement (n = 135). Results All lesions with suspicious contrast-enhancement appeared also hyperintense on DWI with b = 800 s/mm2. For task (i), best discrimination was reached for the combination of D1′ and f1′ using perfusion hot spot regions-of-interest (accuracy 93.7%), which was higher than that of ADC (86.9%, p = 0.003) and single IVIM parameters D1′ (88.0%) and f1′ (87.4%). For task (ii), best discrimination was reached for single parameter D1′ using perfusion hot spot regions-of-interest (92.6%), which were slightly but not significantly better than that of ADC (91.1%) and D2′ (88.1%). Adding f1′ to D1′ did not improve discrimination. Conclusions IVIM analysis yielded a higher accuracy than ADC. If stand-alone DWI is used, perfusion analysis is of special relevance.
Collapse
Affiliation(s)
- Petra Mürtz
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Mark Tsesarskiy
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alois M Sprinkart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Wolfgang Block
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Radiotherapy and Radiation Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Oleksandr Savchenko
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
14
|
Performance of abbreviated protocols versus unenhanced MRI in detecting occult breast lesions of mammography in patients with dense breasts. Sci Rep 2022; 12:13660. [PMID: 35953551 PMCID: PMC9372172 DOI: 10.1038/s41598-022-17945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
To assess the diagnostic ability of abbreviated protocols of MRI (AP-MRI) compared with unenhanced MRI (UE-MRI) in mammographically occult cancers in patients with dense breast tissue. The retrospective analysis consisted of 102 patients without positive findings on mammography who received preoperative MRI full diagnostic protocols (FDP) between January 2015 and December 2018. Two breast radiologists read the UE, AP, and FDP. The interpretation times were recorded. The comparisons of the sensitivity, specificity and area under the curve of each MRI protocol, and the sensitivity of these protocols in each subgroup of different size tumors used the Chi-square test. The paired sample t-test was used for evaluating the difference of reading time of the three protocols. Among 102 women, there were 68 cancers and two benign lesions in 64 patients and 38 patients had benign or negative findings. Both readers found the sensitivity and specificity of AP and UE-MRI were similar (p > 0.05), whereas compared with FDP, UE had lower sensitivity (Reader 1/Reader 2: p = 0.023, 0.004). For different lesion size groups, one of the readers found that AP and FDP had higher sensitivities than UE-MRI for detecting the lesions ≤ 10 mm in diameter (p = 0.041, p = 0.023). Compared with FDP, the average reading time of UE-MRI and AP was remarkably reduced (p < 0.001). AP-MRI had more advantages than UE-MRI to detect mammographically occult cancers, especially for breast tumors ≤ 10 mm in diameter.
Collapse
|
15
|
Meyer HJ, Martin M, Denecke T. DWI of the Breast - Possibilities and Limitations. ROFO-FORTSCHR RONTG 2022; 194:966-974. [PMID: 35439830 DOI: 10.1055/a-1775-8572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The MRI of the breast is of great importance in the diagnosis of disorders of the breast. This can be stated for the primary diagnosis as well as the follow up. Of special interest is diffusion weighted imaging (DWI), which has an increasingly important role. The present review provides results regarding the diagnostic and prognostic relevance of DWI for disorders of the breast. METHODS Under consideration of the recently published literature, the clinical value of DWI of the breast is discussed. Several diagnostic applications are shown, especially for the primary diagnosis of unclear tumors of the breast, the prediction of the axillary lymph node status and the possibility of a native screening. Moreover, correlations between DWI and histopathology features and treatment prediction with DWI are provided. RESULTS Many studies have shown the diagnostic value of DWI for the primary diagnosis of intramammary lesions. Benign lesions of the breast have significantly higher apparent diffusion coefficients (ADC values) compared to malignant tumors. This can be clinically used to reduce unnecessary biopsies in clinical routine. However, there are inconclusive results for the prediction of the histological subtype of the breast cancer. DWI can aid in the prediction of treatment to neoadjuvant chemotherapy. CONCLUSION DWI is a very promising imaging modality, which should be included in the standard protocol of the MRI of the breast. DWI can provide clinically value in the diagnosis as well as for prognosis in breast cancer. KEY POINTS · DWI can aid in the discrimination between benign and malignant tumors of the breast and therefore avoiding unnecessary biopsies.. · The ADC value cannot discriminate between immunhistochemical subtypes of the breast cancer. · The ADC value of breast cancer increases under neoadjuvant chemotherapy and can by this aid in treatment prediction.. · There is definite need of standardisation for clinical translation. CITATION FORMAT · Meyer HJ, Martin M, Denecke T. DWI of the Breast - Possibilities and Limitations. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1775-8572.
Collapse
Affiliation(s)
- Hans Jonas Meyer
- Diagnostic and Interventional Radiology, University of Leipzig Faculty of Medicine, Leipzig, Germany
| | - Mireille Martin
- Diagnostic and Interventional Radiology, University of Leipzig Faculty of Medicine, Leipzig, Germany
| | - Timm Denecke
- Diagnostic and Interventional Radiology, University of Leipzig Faculty of Medicine, Leipzig, Germany
| |
Collapse
|
16
|
Feng S, Yin J. Radiomics of dynamic contrast-enhanced magnetic resonance imaging parametric maps and apparent diffusion coefficient maps to predict Ki-67 status in breast cancer. Front Oncol 2022; 12:847880. [PMID: 36895526 PMCID: PMC9989944 DOI: 10.3389/fonc.2022.847880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/27/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose This study was aimed at evaluating whether a radiomics model based on the entire tumor region from breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parametric maps and apparent diffusion coefficient (ADC) maps could indicate the Ki-67 status of patients with breast cancer. Materials and methods This retrospective study enrolled 205 women with breast cancer who underwent clinicopathological examination. Among them, 93 (45%) had a low Ki-67 amplification index (Ki-67 positivity< 14%), and 112 (55%) had a high Ki-67 amplification index (Ki-67 positivity ≥ 14%). Radiomics features were extracted from three DCE-MRI parametric maps and ADC maps calculated from two different b values of diffusion-weighted imaging sequences. The patients were randomly divided into a training set (70% of patients) and a validation set (30% of patients). After feature selection, we trained six support vector machine classifiers by combining different parameter maps and used 10-fold cross-validation to predict the expression level of Ki-67. The performance of six classifiers was evaluated with receiver operating characteristic (ROC) analysis, sensitivity, and specificity in both cohorts. Results Among the six classifiers constructed, a radiomics feature set combining three DCE-MRI parametric maps and ADC maps yielded an area under the ROC curve (AUC) of 0.839 (95% confidence interval [CI], 0.768-0.895) within the training set and 0.795 (95% CI, 0.674-0.887) within the independent validation set. Additionally, the AUC value, compared with that for a single parameter map, was moderately increased by combining features from the three parametric maps. Conclusions Radiomics features derived from the DCE-MRI parametric maps and ADC maps have the potential to serve as imaging biomarkers to determine Ki-67 status in patients with breast cancer.
Collapse
Affiliation(s)
- Shuqian Feng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Jiandong Yin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
17
|
Legal and Regulatory Framework for AI Solutions in Healthcare in EU, US, China, and Russia: New Scenarios after a Pandemic. RADIATION 2021. [DOI: 10.3390/radiation1040022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 crisis has exposed some of the most pressing challenges affecting healthcare and highlighted the benefits that robust integration of digital and AI technologies in the healthcare setting may bring. Although medical solutions based on AI are growing rapidly, regulatory issues and policy initiatives including ownership and control of data, data sharing, privacy protection, telemedicine, and accountability need to be carefully and continually addressed as AI research requires robust and ethical guidelines, demanding an update of the legal and regulatory framework all over the world. Several recently proposed regulatory frameworks provide a solid foundation but do not address a number of issues that may prevent algorithms from being fully trusted. A global effort is needed for an open, mature conversation about the best possible way to guard against and mitigate possible harms to realize the potential of AI across health systems in a respectful and ethical way. This conversation must include national and international policymakers, physicians, digital health and machine learning leaders from industry and academia. If this is done properly and in a timely fashion, the potential of AI in healthcare will be realized.
Collapse
|
18
|
Sanderink WBG, Teuwen J, Appelman L, Moy L, Heacock L, Weiland E, Sechopoulos I, Mann RM. Diffusion weighted imaging for evaluation of breast lesions: Comparison between high b-value single-shot and routine readout-segmented sequences at 3 T. Magn Reson Imaging 2021; 84:35-40. [PMID: 34560230 DOI: 10.1016/j.mri.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE In this study, we compare readout-segmented echo-planar imaging (rs-EPI) Diffusion Weighted Imaging (DWI) to a work-in-progress single-shot EPI with modified Inversion Recovery Background Suppression (ss-EPI-mIRBS) sequence at 3 T using a b-value of 2000 s/mm2 on image quality, lesion visibility and evaluation time. METHOD From September 2017 to December 2018, 23 women (one case used for training) with known breast cancer were included in this study, after providing signed informed consent. Women were scanned with the conventional rs-EPI sequence and the work-in-progress ss-EPI-mIRBS during the same examination. Four breast radiologists (4-13 years of experience) independently scored both series for overall image quality (1: extremely poor to 9: excellent). All lesions (47 in total, 36 malignant, and 11 benign and high-risk) were evaluated for visibility (1: not visible, 2: visible if location is given, 3: visible) and probability of malignancy (BI-RADS 1 to 5). ADC values were determined by measuring signal intensity in the lesions using dynamic contrast-enhanced (DCE) images for reference. Evaluation times for all assessments were automatically recorded. Results were analyzed using the visual grading characteristics (VGC) and the resulting area under the curve (AUCVGC) method. Statistical analysis was performed in SPSS, with McNemar tests, and paired t-tests used for comparison. RESULTS No significant differences were detected between the two sequences in image quality (AUCVGC: 0.398, p = 0.087) and lesion visibility (AUCVGC: 0.534, p = 0.336) scores. Lesion characteristics (e.g benign and high-risk, versus malignant; small (≤10 mm) vs. larger (>10 mm)) did not result in different image quality or lesion visibility between sequences. Sensitivity (rs-EPI: 72.2% vs. ss-EPImIRBS: 78.5%, p = 0.108) and specificity (70.5% vs. 56.8%, p = 0.210, respectively) were comparable. In both sequences the mean ADC value was higher for benign and high-risk lesions than for malignant lesions (ss-EPI-mIRBS: p = 0.022 and rs-EPI: p = 0.055). On average, ss-EPI-mIRBS resulted in decreased overall reading time by 7.7 s/case (p = 0.067); a reduction of 17%. For malignant lesions, average reading time was significantly shorter using ss-EPI-mIRBS compared to rs-EPI (64.0 s/lesion vs. 75.9 s/lesion, respectively, p = 0.039). CONCLUSION Based on this study, the ss-EPI sequence using a b-value of 2000 s/mm2 enables for a mIRBS acquisition with quality and lesion conspicuity that is comparable to conventional rs-EPI, but with a decreased reading time.
Collapse
Affiliation(s)
- Wendelien B G Sanderink
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, the Netherlands.
| | - Jonas Teuwen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, the Netherlands; Department of Radiology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066, CX, Amsterdam, the Netherlands
| | - Linda Appelman
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, the Netherlands
| | - Linda Moy
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, 4(th) floor, New York, NY 10016, United States
| | - Laura Heacock
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, 4(th) floor, New York, NY 10016, United States
| | - Elisabeth Weiland
- MR Application Predevelopment, Siemens Healthcare, Allee am Roethelheimpark 2, 91052 Erlangen, Germany
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, the Netherlands
| | - Ritse M Mann
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, the Netherlands; Department of Radiology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066, CX, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Radiomics of MRI for the Prediction of the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer Patients: A Single Referral Centre Analysis. Cancers (Basel) 2021; 13:cancers13174271. [PMID: 34503081 PMCID: PMC8428336 DOI: 10.3390/cancers13174271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Nowadays, the only widely recognized method for evaluating the efficacy of neoadjuvant chemotherapy is the assessment of the pathological response through surgery. However, delivering chemotherapy to not-responders could expose them to unnecessary drug toxicity with delayed access to other potentially effective therapies. Radiomics could be useful in the early detection of resistance to chemotherapy, which is crucial for switching treatment strategy. We determined whether tumor radiomic features extracted from a highly homogeneous database of breast MRI can improve the prediction of response to chemotherapy in patients with breast cancer, in addiction to biological characteristics, potentially avoiding unnecessary treatment. Abstract Objectives: We aimed to determine whether radiomic features extracted from a highly homogeneous database of breast MRI could non-invasively predict pathological complete responses (pCR) to neoadjuvant chemotherapy (NACT) in patients with breast cancer. Methods: One hundred patients with breast cancer receiving NACT in a single center (01/2017–06/2019) and undergoing breast MRI were retrospectively evaluated. For each patient, radiomic features were extracted within the biopsy-proven tumor on T1-weighted (T1-w) contrast-enhanced MRI performed before NACT. The pCR to NACT was determined based on the final surgical specimen. The association of clinical/biological and radiomic features with response to NACT was evaluated by univariate and multivariable analysis by using random forest and logistic regression. The performances of all models were assessed using the areas under the receiver operating characteristic curves (AUC) with 95% confidence intervals (CI). Results: Eighty-three patients (mean (SD) age, 47.26 (8.6) years) were included. Patients with HER2+, basal-like molecular subtypes and Ki67 ≥ 20% presented a pCR to NACT more frequently; the clinical/biological model’s AUC (95% CI) was 0.81 (0.71–0.90). Using 136 representative radiomics features selected through cluster analysis from the 1037 extracted features, a radiomic score was calculated to predict the response to NACT, with AUC (95% CI): 0.64 (0.51–0.75). After combining the clinical/biological and radiomics models, the AUC (95% CI) was 0.83 (0.73–0.92). Conclusions: MRI-based radiomic features slightly improved the pre-treatment prediction of pCR to NACT, in addiction to biological characteristics. If confirmed on larger cohorts, it could be helpful to identify such patients, to avoid unnecessary treatment.
Collapse
|
20
|
Radiomics Nomogram Based on Radiomics Score from Multiregional Diffusion-Weighted MRI and Clinical Factors for Evaluating HER-2 2+ Status of Breast Cancer. Diagnostics (Basel) 2021; 11:diagnostics11081491. [PMID: 34441425 PMCID: PMC8395031 DOI: 10.3390/diagnostics11081491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
This study aimed to establish and validate a radiomics nomogram using the radiomics score (rad-score) based on multiregional diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) features combined with clinical factors for evaluating HER-2 2+ status of breast cancer. A total of 223 patients were retrospectively included. Radiomic features were extracted from multiregional DWI and ADC images. Based on the intratumoral, peritumoral, and combined regions, three rad-scores were calculated using the logistic regression model. Independent parameters were selected among clinical factors and combined rad-score (com-rad-score) using multivariate logistic analysis and used to construct a radiomics nomogram. The performance of the nomogram was evaluated using calibration, discrimination, and clinical usefulness. The areas under the receiver operator characteristic curve (AUCs) of intratumoral and peritumoral rad-scores were 0.824/0.763 and 0.794/0.731 in the training and validation cohorts, respectively. Com-rad-score achieved the highest AUC (0.860/0.790) among three rad-scores. ER status and com-rad-score were selected to establish the nomogram, which yielded good discrimination (AUC: 0.883/0.848) and calibration. Decision curve analysis demonstrated the clinical value of the nomogram in the validation cohort. In conclusion, radiomics nomogram, including clinical factors and com-rad-score, showed favorable performance for evaluating HER-2 2+ status in breast cancer.
Collapse
|
21
|
Recent Radiomics Advancements in Breast Cancer: Lessons and Pitfalls for the Next Future. ACTA ACUST UNITED AC 2021; 28:2351-2372. [PMID: 34202321 PMCID: PMC8293249 DOI: 10.3390/curroncol28040217] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Radiomics is an emerging translational field of medicine based on the extraction of high-dimensional data from radiological images, with the purpose to reach reliable models to be applied into clinical practice for the purposes of diagnosis, prognosis and evaluation of disease response to treatment. We aim to provide the basic information on radiomics to radiologists and clinicians who are focused on breast cancer care, encouraging cooperation with scientists to mine data for a better application in clinical practice. We investigate the workflow and clinical application of radiomics in breast cancer care, as well as the outlook and challenges based on recent studies. Currently, radiomics has the potential ability to distinguish between benign and malignant breast lesions, to predict breast cancer’s molecular subtypes, the response to neoadjuvant chemotherapy and the lymph node metastases. Even though radiomics has been used in tumor diagnosis and prognosis, it is still in the research phase and some challenges need to be faced to obtain a clinical translation. In this review, we discuss the current limitations and promises of radiomics for improvement in further research.
Collapse
|
22
|
Samreen N, Mercado C, Heacock L, Chacko C, Partridge SC, Chhor C. Screening Breast MRI Primer: Indications, Current Protocols, and Emerging Techniques. JOURNAL OF BREAST IMAGING 2021; 3:387-398. [PMID: 38424773 DOI: 10.1093/jbi/wbaa116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 03/02/2024]
Abstract
Breast dynamic contrast-enhanced MRI (DCE-MRI) is the most sensitive imaging modality for the detection of breast cancer. Screening MRI is currently performed predominantly in patients at high risk for breast cancer, but it could be of benefit in patients at intermediate risk for breast cancer and patients with dense breasts. Decreasing scan time and image interpretation time could increase cost-effectiveness, making screening MRI accessible to a larger group of patients. Abbreviated breast MRI (Ab-MRI) reduces scan time by decreasing the number of sequences obtained, but as multiple delayed contrast enhanced sequences are not obtained, no kinetic information is available. Ultrafast techniques rapidly acquire multiple sequences during the first minute of gadolinium contrast injection and provide information about both lesion morphology and vascular kinetics. Diffusion-weighted imaging is a noncontrast MRI technique with the potential to detect mammographically occult cancers. This review article aims to discuss the current indications of breast MRI as a screening tool, examine the standard breast DCE-MRI technique, and explore alternate screening MRI protocols, including Ab-MRI, ultrafast MRI, and noncontrast diffusion-weighted MRI, which can decrease scan time and interpretation time.
Collapse
Affiliation(s)
- Naziya Samreen
- New York University, Department of Radiology, Garden City, NY, USA
| | - Cecilia Mercado
- NYU School of Medicine, Department of Radiology, New York, NY, USA
| | - Laura Heacock
- NYU School of Medicine, Department of Radiology, New York, NY, USA
| | - Celin Chacko
- New York University, Department of Radiology, Garden City, NY, USA
| | | | - Chloe Chhor
- NYU School of Medicine, Department of Radiology, New York, NY, USA
| |
Collapse
|
23
|
Pesapane F, Rotili A, Penco S, Montesano M, Agazzi GM, Dominelli V, Trentin C, Pizzamiglio M, Cassano E. Inter-Reader Agreement of Diffusion-Weighted Magnetic Resonance Imaging for Breast Cancer Detection: A Multi-Reader Retrospective Study. Cancers (Basel) 2021; 13:cancers13081978. [PMID: 33924033 PMCID: PMC8073591 DOI: 10.3390/cancers13081978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
PURPOSE In order to evaluate the use of un-enhanced magnetic resonance imaging (MRI) for detecting breast cancer, we evaluated the accuracy and the agreement of diffusion-weighted imaging (DWI) through the inter-reader reproducibility between expert and non-expert readers. MATERIAL AND METHODS Consecutive breast MRI performed in a single centre were retrospectively evaluated by four radiologists with different levels of experience. The per-breast standard of reference was the histological diagnosis from needle biopsy or surgical excision, or at least one-year negative follow-up on imaging. The agreement across readers (by inter-reader reproducibility) was examined for each breast examined using Cohen's and Fleiss' kappa (κ) statistics. The Wald test was used to test the difference in inter-reader agreement between expert and non-expert readers. RESULTS Of 1131 examinations, according to our inclusion and exclusion criteria, 382 women were included (49.5 ± 12 years old), 40 of them with unilateral mastectomy, totaling 724 breasts. Overall inter-reader reproducibility was substantial (κ = 0.74) for expert readers and poor (κ = 0.37) for non- expert readers. Pairwise agreement between expert readers and non-expert readers was moderate (κ = 0.60) and showed a statistically superior agreement of the expert readers over the non-expert readers (p = 0.003). CONCLUSIONS DWI showed substantial inter-reader reproducibility among expert-level readers. Pairwise comparison showed superior agreement of the expert readers over the non-expert readers, with the expert readers having higher inter-reader reproducibility than the non-expert readers. These findings open new perspectives for prospective studies investigating the actual role of DWI as a stand-alone method for un-enhanced breast MRI.
Collapse
Affiliation(s)
- Filippo Pesapane
- Radiology Department, Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.R.); (S.P.); (M.M.); (V.D.); (C.T.); (M.P.); (E.C.)
- Correspondence:
| | - Anna Rotili
- Radiology Department, Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.R.); (S.P.); (M.M.); (V.D.); (C.T.); (M.P.); (E.C.)
| | - Silvia Penco
- Radiology Department, Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.R.); (S.P.); (M.M.); (V.D.); (C.T.); (M.P.); (E.C.)
| | - Marta Montesano
- Radiology Department, Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.R.); (S.P.); (M.M.); (V.D.); (C.T.); (M.P.); (E.C.)
| | | | - Valeria Dominelli
- Radiology Department, Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.R.); (S.P.); (M.M.); (V.D.); (C.T.); (M.P.); (E.C.)
| | - Chiara Trentin
- Radiology Department, Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.R.); (S.P.); (M.M.); (V.D.); (C.T.); (M.P.); (E.C.)
| | - Maria Pizzamiglio
- Radiology Department, Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.R.); (S.P.); (M.M.); (V.D.); (C.T.); (M.P.); (E.C.)
| | - Enrico Cassano
- Radiology Department, Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.R.); (S.P.); (M.M.); (V.D.); (C.T.); (M.P.); (E.C.)
| |
Collapse
|
24
|
Radiomic analysis of HTR-DCE MR sequences improves diagnostic performance compared to BI-RADS analysis of breast MR lesions. Eur Radiol 2021; 31:4848-4859. [PMID: 33404696 DOI: 10.1007/s00330-020-07519-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/27/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE To assess the diagnostic performance of radiomic analysis using high temporal resolution (HTR)-dynamic contrast enhancement (DCE) MR sequences compared to BI-RADS analysis to distinguish benign from malignant breast lesions. MATERIALS AND METHODS We retrospectively analyzed data from consecutive women who underwent breast MRI including HTR-DCE MR sequencing for abnormal enhancing lesions and who had subsequent pathological analysis at our tertiary center. Semi-quantitative enhancement parameters and textural features were extracted. Temporal change across each phase of textural features in HTR-DCE MR sequences was calculated and called "kinetic textural parameters." Statistical analysis by LASSO logistic regression and cross validation was performed to build a model. The diagnostic performance of the radiomic model was compared to the results of BI-RADS MR score analysis. RESULTS We included 117 women with a mean age of 54 years (28-88). Of the 174 lesions analyzed, 75 were benign and 99 malignant. Seven semi-quantitative enhancement parameters and 57 textural features were extracted. Regression analysis selected 15 significant variables in a radiomic model (called "malignant probability score") which displayed an AUC = 0.876 (sensitivity = 0.98, specificity = 0.52, accuracy = 0.78). The performance of the malignant probability score to distinguish benign from malignant breast lesions (AUC = 0.876, 95%CI 0.825-0.925) was significantly better than that of BI-RADS analysis (AUC = 0.831, 95%CI 0.769-0.892). The radiomic model significantly reduced false positives (42%) with the same number of missed cancers (n = 2). CONCLUSION A radiomic model including kinetic textural features extracted from an HTR-DCE MR sequence improves diagnostic performance over BI-RADS analysis. KEY POINTS • Radiomic analysis using HTR-DCE is of better diagnostic performance (AUC = 0.876) than conventional breast MRI reading with BI-RADS (AUC = 0.831) (p < 0.001). • A radiomic malignant probability score under 19.5% gives a negative predictive value of 100% while a malignant probability score over 81% gives a positive predictive value of 100%. • Kinetic textural features extracted from HTR-DCE-MRI have a major role to play in distinguishing benign from malignant breast lesions.
Collapse
|
25
|
Shin HJ, Lee SH, Park VY, Yoon JH, Kang BJ, Yun BL, Kim TH, Ko ES, Han BK, Chu AJ, Park SY, Kim HH, Moon WK. Diffusion-Weighted Magnetic Resonance Imaging for Breast Cancer Screening in High-Risk Women: Design and Imaging Protocol of a Prospective Multicenter Study in Korea. J Breast Cancer 2021; 24:218-228. [PMID: 33913277 PMCID: PMC8090809 DOI: 10.4048/jbc.2021.24.e19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Interest in unenhanced magnetic resonance imaging (MRI) screening for breast cancer is growing due to concerns about gadolinium deposition in the brain and the high cost of contrast-enhanced MRI. The purpose of this report is to describe the protocol of the Diffusion-Weighted Magnetic Resonance Imaging Screening Trial (DWIST), which is a prospective, multicenter, intraindividual comparative cohort study designed to compare the performance of mammography, ultrasonography, dynamic contrast-enhanced (DCE) MRI, and diffusion-weighted (DW) MRI screening in women at high risk of developing breast cancer. Methods A total of 890 women with BRCA mutation or family history of breast cancer and lifetime risk ≥ 20% are enrolled. The participants undergo 2 annual breast screenings with digital mammography, ultrasonography, DCE MRI, and DW MRI at 3.0 T. Images are independently interpreted by trained radiologists. The reference standard is a combination of pathology and 12-month follow-up. Each image modality and their combination will be compared in terms of sensitivity, specificity, accuracy, positive predictive value, rate of invasive cancer detection, abnormal interpretation rate, and characteristics of detected cancers. The first participant was enrolled in April 2019. At the time of manuscript submission, 5 academic medical centers in South Korea are actively enrolling eligible women and a total of 235 women have undergone the first round of screening. Completion of enrollment is expected in 2022 and the results of the study are expected to be published in 2026. Discussion DWIST is the first prospective multicenter study to compare the performance of DW MRI and conventional imaging modalities for breast cancer screening in high-risk women. DWIST is currently in the patient enrollment phase. Trial Registration ClinicalTrials.gov Identifier: NCT03835897
Collapse
Affiliation(s)
- Hee Jung Shin
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul, Korea
| | - Su Hyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Vivian Youngjean Park
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Seoul, Korea
| | - Jung Hyun Yoon
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Seoul, Korea
| | - Bong Joo Kang
- Department of Radiology, Seoul St. Mary's Hospital, Seoul, Korea
| | - Bo La Yun
- Department of Radiology, Seoul National University Bundang Hospital, Seoul, Korea
| | - Tae Hee Kim
- Department of Radiology, Ajou University Medical Center, Suwon, Korea
| | - Eun Sook Ko
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul, Korea
| | - Boo Kyung Han
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul, Korea
| | - A Jung Chu
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Seo Young Park
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul, Korea
| | - Hak Hee Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul, Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
26
|
Shin HJ, Lee SH, Moon WK. Diffusion-Weighted Imaging as a Stand-Alone Breast Imaging Modality. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2021; 82:29-48. [PMID: 36237448 PMCID: PMC9432391 DOI: 10.3348/jksr.2020.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/03/2022]
Abstract
확산강조영상은 유방암의 진단과 스크리닝에 있어 독립적 검사 방법으로서의 기대되는 결과를 보여주는 빠른 비조영증강 검사 방법이다. 현재까지의 연구 결과 유방암 진단에 있어 독립적 검사 방법으로서 확산강조영상의 민감도는 역동적 조영증강 검사보다는 낮으나 유방촬영술보다는 높으며, 이로써 유방암 스크리닝에 대한 유용한 대안이 될 수 있을 것으로 보인다. 확산강조영상의 표준화된 영상 획득과 판독을 통해 영상 화질이 개선될 수 있고, 판독 결과의 다양성도 감소할 것으로 기대된다. 또한, 최신 기법과 후처리 기법을 사용한 고해상도 확산강조영상을 시행함으로써 1 cm 미만의 작은 암의 발견율을 증가시킬 수 있고, 가음성 및 가양성 결과를 감소시킬 것으로 보인다. 현재 한국에서 진행 중인 고위험군 여성에서의 확산강조영상 스크리닝에 대한 다기관 연구 결과가 나온다면 독립적 검사로서의 확산강조영상의 사용을 촉진시킬 수 있을 것으로 기대된다.
Collapse
Affiliation(s)
- Hee Jung Shin
- Department of Radiology, Asan Medical Center, University of Ulsan, Seoul, Korea
| | - Su Hyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
27
|
Cozzi A, Schiaffino S, Giorgi Rossi P, Sardanelli F. Breast cancer screening: in the era of personalized medicine, age is just a number. Quant Imaging Med Surg 2020; 10:2401-2407. [PMID: 33269240 DOI: 10.21037/qims-2020-26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrea Cozzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Simone Schiaffino
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Paolo Giorgi Rossi
- Epidemiology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy.,Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
28
|
Partridge SC. Emerging Techniques Bring Diffusion-weighted Imaging of the Breast into Focus. Radiology 2020; 297:313-315. [PMID: 32845215 PMCID: PMC7605360 DOI: 10.1148/radiol.2020203044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Savannah C. Partridge
- From the Department of Radiology, University of Washington, Seattle Cancer Care Alliance, 1144 Eastlake Ave E, LG-210, Seattle, WA 98109
| |
Collapse
|
29
|
Pesapane F, Downey K, Rotili A, Cassano E, Koh DM. Imaging diagnosis of metastatic breast cancer. Insights Imaging 2020; 11:79. [PMID: 32548731 PMCID: PMC7297923 DOI: 10.1186/s13244-020-00885-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous imaging modalities may be used for the staging of women with advanced breast cancer. Although bone scintigraphy and multiplanar-CT are the most frequently used tests, others including PET, MRI and hybrid scans are also utilised, with no specific recommendations of which test should be preferentially used. We review the evidence behind the imaging modalities that characterise metastases in breast cancer and to update the evidence on comparative imaging accuracy.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO - European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milano, MI, Italy.
| | - Kate Downey
- Department of Breast Radiology, Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, UK
| | - Anna Rotili
- Breast Imaging Division, IEO - European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milano, MI, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO - European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milano, MI, Italy
| | - Dow-Mu Koh
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK.,Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, UK
| |
Collapse
|
30
|
Suter MB, Pesapane F, Agazzi GM, Gagliardi T, Nigro O, Bozzini A, Priolo F, Penco S, Cassano E, Chini C, Squizzato A. Diagnostic accuracy of contrast-enhanced spectral mammography for breast lesions: A systematic review and meta-analysis. Breast 2020; 53:8-17. [PMID: 32540554 PMCID: PMC7375655 DOI: 10.1016/j.breast.2020.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Breast cancer diagnosis and staging is based on mammography, ultrasound, and magnetic resonance imaging (MRI). Contrast enhanced spectral mammography (CESM) has gained momentum as an innovative and clinically useful method for breast assessment. CESM is based on abnormal enhancement of neoplastic tissue compared to surrounding breast tissue. We performed a systematic review of prospective trial to evaluate its diagnostic performance, following standard PRISMA-DTA. We used a bivariate random-effects regression approach to obtain summary estimates of both sensitivity and specificity of CESM. 8 studies published between 2003 and 2019 were included in the meta-analysis for a total of 945 lesions. The summary area under the curve obtained from all the study was 89% [95% CI 86%-91%], with a sensitivity of 85% [95% CI 73%-93%], and a specificity of 77% [95% CI 60%-88%]. With a pre-test probability of malignancy of 57% a positive finding at CESM gives a post-test probability of 83% while a negative finding a post-test probability of 20%. CESM shows a suboptimal sensitivity and specificity in the diagnosis of breast cancer in a selected population, and at present time, it could be considered only as a possible alternative test for breast lesions assessment when mammography and ultrasound are not conclusive or MRI is contraindicated or not available.
Collapse
Affiliation(s)
| | - Filippo Pesapane
- IEO - European Institute of Oncology IRCCS, Breast Imaging Division, Via Giuseppe Ripamonti 435, Milan, Italy.
| | - Giorgio Maria Agazzi
- University of Brescia, Department of Radiology, P.le Spedali Civili 1, 25123, Brescia, Italy.
| | - Tania Gagliardi
- Department of Radiology, Royal Marsden Hospital, London, UK.
| | - Olga Nigro
- Medical Oncology, ASST Sette Laghi, Viale Borri 57, Varese, Italy.
| | - Anna Bozzini
- IEO - European Institute of Oncology IRCCS, Breast Imaging Division, Via Giuseppe Ripamonti 435, Milan, Italy.
| | - Francesca Priolo
- IEO - European Institute of Oncology IRCCS, Breast Imaging Division, Via Giuseppe Ripamonti 435, Milan, Italy.
| | - Silvia Penco
- IEO - European Institute of Oncology IRCCS, Breast Imaging Division, Via Giuseppe Ripamonti 435, Milan, Italy.
| | - Enrico Cassano
- IEO - European Institute of Oncology IRCCS, Breast Imaging Division, Via Giuseppe Ripamonti 435, Milan, Italy.
| | - Claudio Chini
- Medical Oncology, ASST Sette Laghi, Viale Borri 57, Varese, Italy.
| | | |
Collapse
|
31
|
Rahbar H, Partridge SC, Ha R. Editorial for “Stromal Collagen Content in Breast Tumors Correlates With in vivo Diffusion‐Weighted Imaging: A Comparison of Multi b‐Value DWI With Histologic Specimen From Benign and Malignant Breast Lesions”. J Magn Reson Imaging 2020; 51:1879-1880. [DOI: 10.1002/jmri.27085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Habib Rahbar
- Department of Radiology, Clinical Director of Breast Imaging, Seattle Cancer Care AllianceUniversity of Washington School of Medicine Seattle Washington USA
| | - Savannah C. Partridge
- Department of Radiology, Seattle Cancer Care AllianceUniversity of Washington School of Medicine Seattle Washington USA
| | - Richard Ha
- Department of RadiologyNew York Presbyterian Hospital, Columbia University Medical Center New York New York USA
| |
Collapse
|
32
|
MRI-guided vacuum-assisted breast biopsy: experience of a single tertiary referral cancer centre and prospects for the future. Med Oncol 2020; 37:36. [PMID: 32221708 DOI: 10.1007/s12032-020-01358-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/02/2020] [Indexed: 01/11/2023]
Abstract
MRI-guided vacuum-assisted breast biopsy (VABB) is used for suspicious breast cancer (BC) lesions which are detectable only with MRI: because the high sensitivity but limited specificity of breast MRI it is a fundamental tool in breast imaging divisions. We analyse our experience of MRI-guided VABB and critically discuss the potentialities of diffusion-weighted imaging (DWI) and artificial intelligence (AI) in this matter. We retrospectively analysed a population of consecutive women underwent VABB at our tertiary referral BC centre from 01/2011 to 01/2019. Reference standard was histological diagnosis or at least 1-year negative follow-up. McNemar, Mann-Whitney and χ2 tests at 95% level of significance were used as statistical exams. 217 women (mean age = 52, 18-72 years) underwent MRI-guided VABB; 11 were excluded and 208 MRI-guided VABB lesions were performed: 34/208 invasive carcinomas, 32/208 DCIS, 8/208 LCIS, 3/208 high-risk lesions and 131/208 benign lesions were reported. Accuracy of MRI-guided VABB was 97%. The predictive features for malignancy were mass with irregular shape (OR 8.4; 95% CI 0.59-31.6), size of the lesion (OR 4.4; 95% CI 1.69-9.7) and mass with irregular/spiculated margins (OR 5.4; 95% CI 6.8-31.1). Six-month follow-up showed 4 false-negative cases (1.9%). Invasive BC showed a statistically significant higher hyperintense signal at DWI compared to benign lesions (p = 0.03). No major complications occurred. MR-guided VABB showed high accuracy. Benign-concordant lesions should be followed up with breast MRI in 6-12 months due to the risk of false-negative results. DWI and AI applications showed potential benefit as support tools for radiologists.
Collapse
|
33
|
Pesapane F, Suter MB, Rotili A, Penco S, Nigro O, Cremonesi M, Bellomi M, Jereczek-Fossa BA, Pinotti G, Cassano E. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation? Med Oncol 2020; 37:29. [PMID: 32180032 DOI: 10.1007/s12032-020-01353-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
The diagnosis of breast cancer currently relies on radiological and clinical evaluation, confirmed by histopathological examination. However, such approach has some limitations as the suboptimal sensitivity, the long turnaround time for recall tests, the invasiveness of the procedure and the risk that some features of target lesions may remain undetected, making re-biopsy a necessity. Recent technological advances in the field of artificial intelligence hold promise in addressing such medical challenges not only in cancer diagnosis, but also in treatment assessment, and monitoring of disease progression. In the perspective of a truly personalised medicine, based on the early diagnosis and individually tailored treatments, two new technologies, namely radiomics and liquid biopsy, are rising as means to obtain information from diagnosis to molecular profiling and response assessment, without the need of a biopsied tissue sample. Radiomics works through the extraction of quantitative peculiar features of cancer from radiological data, while liquid biopsy gets the whole of the malignancy's biology from something as easy as a blood sample. Both techniques hopefully will identify diagnostic and prognostic information of breast cancer potentially reducing the need for invasive (and often difficult to perform) biopsies and favouring an approach that is as personalised as possible for each patient. Nevertheless, such techniques will not substitute tissue biopsy in the near future, and even in further times they will require the aid of other parameters to be correctly interpreted and acted upon.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy.
| | | | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Olga Nigro
- Medical Oncology, ASST Sette Laghi, Viale Borri 57, 21100, Varese, VA, Italy
| | - Marta Cremonesi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Massimo Bellomi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Radiology, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Graziella Pinotti
- Medical Oncology, ASST Sette Laghi, Viale Borri 57, 21100, Varese, VA, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| |
Collapse
|