1
|
Kefeli J, Tatonetti N. TCGA-Reports: A machine-readable pathology report resource for benchmarking text-based AI models. PATTERNS (NEW YORK, N.Y.) 2024; 5:100933. [PMID: 38487800 PMCID: PMC10935496 DOI: 10.1016/j.patter.2024.100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 01/25/2024] [Indexed: 03/17/2024]
Abstract
In cancer research, pathology report text is a largely untapped data source. Pathology reports are routinely generated, more nuanced than structured data, and contain added insight from pathologists. However, there are no publicly available datasets for benchmarking report-based models. Two recent advances suggest the urgent need for a benchmark dataset. First, improved optical character recognition (OCR) techniques will make it possible to access older pathology reports in an automated way, increasing the data available for analysis. Second, recent improvements in natural language processing (NLP) techniques using artificial intelligence (AI) allow more accurate prediction of clinical targets from text. We apply state-of-the-art OCR and customized post-processing to report PDFs from The Cancer Genome Atlas, generating a machine-readable corpus of 9,523 reports. Finally, we perform a proof-of-principle cancer-type classification across 32 tissues, achieving 0.992 average AU-ROC. This dataset will be useful to researchers across specialties, including research clinicians, clinical trial investigators, and clinical NLP researchers.
Collapse
Affiliation(s)
- Jenna Kefeli
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Nicholas Tatonetti
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
2
|
Choi Y, Ando Y, Lee D, Kim NY, Lee OEM, Cho J, Seo I, Chong GO, Park NJY. Profiling of Lymphovascular Space Invasion in Cervical Cancer Revealed PI3K/Akt Signaling Pathway Overactivation and Heterogenic Tumor-Immune Microenvironments. Life (Basel) 2023; 13:2342. [PMID: 38137942 PMCID: PMC10744523 DOI: 10.3390/life13122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Lymphovascular space invasion (LVSI) is the presence of tumor emboli in the endothelial-lined space at the tumor body's invasive edge. LVSI is one of three Sedlis criteria components-a prognostic tool for early cervical cancer (CC)-essential for indicating poor prognosis, such as lymph node metastasis, distant metastasis, or shorter survival rate. Despite its clinical significance, an in-depth comprehension of the molecular mechanisms or immune dynamics underlying LVSI in CC remains elusive. Therefore, this study investigated tumor-immune microenvironment (TIME) dynamics of the LVSI-positive group in CC. RNA sequencing included formalin-fixed paraffin-embedded (FFPE) slides from 21 CC patients, and differentially expressed genes (DEGs) were analyzed. Functional analysis and immune deconvolution revealed aberrantly enriched PI3K/Akt pathway activation and a heterogenic immune composition with a low abundance of regulatory T cells (Treg) between LVSI-positive and LVSI-absent groups. These findings improve the comprehension of LSVI TIME and immune mechanisms, benefiting targeted LVSI therapy for CC.
Collapse
Affiliation(s)
- Yeseul Choi
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (Y.A.); (D.L.); (N.Y.K.); (O.E.M.L.)
| | - Yu Ando
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (Y.A.); (D.L.); (N.Y.K.); (O.E.M.L.)
| | - Donghyeon Lee
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (Y.A.); (D.L.); (N.Y.K.); (O.E.M.L.)
| | - Na Young Kim
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (Y.A.); (D.L.); (N.Y.K.); (O.E.M.L.)
| | - Olive E. M. Lee
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (Y.A.); (D.L.); (N.Y.K.); (O.E.M.L.)
| | - Junghwan Cho
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea; (J.C.); (I.S.)
| | - Incheol Seo
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea; (J.C.); (I.S.)
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Gun Oh Chong
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea; (J.C.); (I.S.)
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Nora Jee-Young Park
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea; (J.C.); (I.S.)
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| |
Collapse
|
3
|
Takeshita T, Iwase H, Wu R, Ziazadeh D, Yan L, Takabe K. Development of a Machine Learning-Based Prognostic Model for Hormone Receptor-Positive Breast Cancer Using Nine-Gene Expression Signature. World J Oncol 2023; 14:406-422. [PMID: 37869243 PMCID: PMC10588506 DOI: 10.14740/wjon1700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/28/2023] [Indexed: 10/24/2023] Open
Abstract
Background Determining the prognosis of hormone receptor positive (HR+) breast cancer (BC), which accounts for 80% of all BCs, is critical in improving survival outcomes. Stratifying individuals at high risk of BC-related mortality and improving prognosis has been the focus of research for over a decade. However, these tools are not universal as they are limited to clinical factors. We hypothesized that a new framework for predicting prognosis in HR+ BC patients can develop using artificial intelligence. Methods A total of 2,338 HR+ human epidermal growth factor receptor 2 negative (HER2-) BC cases were analyzed from Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) cohorts. Groups were then divided into high- and low-risk categories utilizing a recurrence prediction model (RPM). An RPM was created by extracting nine prognosis-related genes from over 18,000 genes using a logistic progression model. Results Risk classification by RPM was significantly stratified in both the discovery cohort and validation cohort. In the time-dependent area under the curve analysis, there was some variation depending on the cohort, but accuracy was found to decline significantly after about 10 years. Cell cycle related gene sets, MYC, and PI3K-AKT-mTOR signaling were enriched in high-risk tumors by the Gene Set Enrichment Analysis. High-risk tumors were associated with high levels of immune cells from the lymphoid and myeloid lineage and immune cytolytic activity, as well as low levels of stem cells and stromal cells. High-risk tumors were also associated with poor therapeutic effects of chemotherapy and endocrine therapy. Conclusions This model was able to stratify prognosis in multiple cohorts. This is because the model reflects major BC therapeutic target pathways and tumor immune microenvironment and, further is supported by the therapeutic effect of chemotherapy and endocrine therapy.
Collapse
Affiliation(s)
- Takashi Takeshita
- Department of Breast and Endocrine Surgery, Kumamoto City Hospital, Kumamoto, Japan
| | - Hirotaka Iwase
- Department of Breast and Endocrine Surgery, Kumamoto City Hospital, Kumamoto, Japan
| | - Rongrong Wu
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Danya Ziazadeh
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
- Department of Surgery, Yokohama City University, Yokohama, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
4
|
Kefeli J, Tatonetti N. Benchmark Pathology Report Text Corpus with Cancer Type Classification. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.03.23293618. [PMID: 37609238 PMCID: PMC10441484 DOI: 10.1101/2023.08.03.23293618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In cancer research, pathology report text is a largely un-tapped data source. Pathology reports are routinely generated, more nuanced than structured data, and contain added insight from pathologists. However, there are no publicly-available datasets for benchmarking report-based models. Two recent advances suggest the urgent need for a benchmark dataset. First, improved optical character recognition (OCR) techniques will make it possible to access older pathology reports in an automated way, increasing data available for analysis. Second, recent improvements in natural language processing (NLP) techniques using AI allow more accurate prediction of clinical targets from text. We apply state-of-the-art OCR and customized post-processing to publicly available report PDFs from The Cancer Genome Atlas, generating a machine-readable corpus of 9,523 reports. We perform a proof-of-principle cancer-type classification across 32 tissues, achieving 0.992 average AU-ROC. This dataset will be useful to researchers across specialties, including research clinicians, clinical trial investigators, and clinical NLP researchers.
Collapse
Affiliation(s)
- Jenna Kefeli
- Department of Systems Biology, Columbia University, New York, New York, 10032, United States
| | - Nicholas Tatonetti
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, California, 90048, United States
| |
Collapse
|
5
|
Correlation Analysis of Pathological Features and Axillary Lymph Node Metastasis in Patients with Invasive Breast Cancer. J Immunol Res 2022; 2022:7150304. [PMID: 36249424 PMCID: PMC9553448 DOI: 10.1155/2022/7150304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/21/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To investigate the risk factors of axillary lymph node metastasis in patients with invasive breast cancer. Methods This study retrospectively included 122 cases of invasive breast cancer patients admitted to the First Medical Center of PLA General Hospital from January 2019 to September 2020. According to postoperative pathological results, axillary lymph node metastasis was divided into axillary lymph node metastasis (ALNM) group (n =40) and non-axillary lymph node metastasis (NALNM) group (n =82). General demographic information was collected and compared between the two groups. Collected pathological results included lymphovascular invasion (LVI) and the expression of estrogen receptor (ER), progestogen receptor (PR), human epidermal growth factor receptor 2 (HER-2), and Ki-67 detected by immunohistochemistry. Imaging parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) including apparent diffusion coefficient (ADC), early enhanced rate, and time-intensity curve (TIC) were also included into univariate analysis. The variables with differences between the two groups were compared by univariate analysis, and the related factors of axillary lymph node metastasis were analyzed by logistic regression model. Results There was no significant difference in general demographic information between the two groups. No significant differences were found in the positive rates of HER-2, ER, PR, Ki-67, pathological types, and clavicular lymph node metastasis and skin chest wall invasion between the two groups (P > 0.05). The proportion of LVI in ALNM group was significantly higher than that in NALNM group (37.50% vs. 6.10%, P < 0.001). The proportion of breast cancer on the left side in the ALNM group was higher than that in the NALNM group, and the difference was statistically significant (70.00% vs. 47.56%, P = 0.019). There were no significant differences in the imaging parameters obtained by DCE-MRI between the two groups. Binary logistics regression analysis showed that LVI (OR =12.258, 95% CI =3.681-40.812, P < 0.001) and left breast cancer (OR =3.598, 95% CI =1.404-9.219, P = 0.008) were risk factors for axillary lymph node metastasis in patients with invasive breast cancer. Conclusion The formation of vascular tumor thrombi in breast cancer tissue and left breast cancer are risk factors for axillary lymph node metastasis in invasive breast cancer and might be helpful for preoperative detailed assessment of the patient's condition.
Collapse
|
6
|
Choi J, Choi E, Choi D. The ambivalent nature of the relationship between lymphatics and cancer. Front Cell Dev Biol 2022; 10:931335. [PMID: 36158182 PMCID: PMC9489845 DOI: 10.3389/fcell.2022.931335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Do lymphatic vessels support cancer cells? Or are they vessels that help suppress cancer development? It is known that the lymphatic system is a vehicle for tumor metastasis and that the lymphangiogenic regulator VEGF-C supports the tumor. One such role of VEGF-C is the suppression of the immune response to cancer. The lymphatic system has also been correlated with an increase in interstitial fluid pressure of the tumor microenvironment. On the other hand, lymphatic vessels facilitate immune surveillance to mount an immune response against tumors with the support of VEGF-C. Furthermore, the activation of lymphatic fluid drainage may prove to filter and decrease tumor interstitial fluid pressure. In this review, we provide an overview of the dynamic between lymphatics, cancer, and tumor fluid pressure to suggest that lymphatic vessels may be used as an antitumor therapy due to their capabilities of immune surveillance and fluid pressure drainage. The application of this potential may help to prevent tumor proliferation or increase the efficacy of drugs that target cancer.
Collapse
|
7
|
Mukhopadhyay S, Tokumaru Y, Oshi M, Endo I, Yoshida K, Takabe K. Low adipocyte hepatocellular carcinoma is associated with aggressive cancer biology and with worse survival. Am J Cancer Res 2022; 12:4028-4039. [PMID: 36119828 PMCID: PMC9442007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide, and non-alcoholic fatty liver disease is strongly associated with its development. To explore the role of adipocytes in HCC, we investigated intratumoral adipocytes, also known as cancer-associated adipocytes (CAA). Based on our prior breast cancer findings, we hypothesized that low intratumoral adipocytes would be associated with aggressive cancer biology, worse tumor microenvironment (TME), and clinical outcomes. The Cancer Genome Atlas (TCGA) was used and validated by the Gene Expression Omnibus (GEO) cohort. xCell algorithm was used to quantify intratumoral adipocytes and top 90% were defined as adipocyte high (AH) and bottom 10% as adipocyte low (AL). We found that AL-HCC was significantly associated with worse disease-free survival (DFS), disease-specific survival (DSS), and overall survival (OS). AL-HCC were higher-grade, had high MKI67 expression, enriched cell proliferation-related gene sets, and had increased altered fraction, aneuploidy, and homologous recombination defects. Also, anti-cancer immune cells, CD8, Th1, and M1 cells, as well as pro-cancer Th2 cells were increased in AL-HCC. Micro-RNAs miR-122 (associated with cholesterol metabolism) and miR-885 (associated with liver pathologies) were significantly increased in the AL TME. In conclusion, we found that AL-HCC has worse patient outcomes and is biologically more aggressive with enhanced cell proliferation. Our findings take initial steps to clarify the role of adipocytes in HCC.
Collapse
Affiliation(s)
- Swagoto Mukhopadhyay
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Surgical Oncology, Gifu University Graduate School of Medicine1-1 Yanagido, Gifu 501-1194, Japan
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University Graduate School of Medicine1-1 Yanagido, Gifu 501-1194, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New YorkBuffalo, New York 14263, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan
| |
Collapse
|
8
|
NR2F1, a Tumor Dormancy Marker, Is Expressed Predominantly in Cancer-Associated Fibroblasts and Is Associated with Suppressed Breast Cancer Cell Proliferation. Cancers (Basel) 2022; 14:cancers14122962. [PMID: 35740627 PMCID: PMC9220877 DOI: 10.3390/cancers14122962] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tumor dormancy is a crucial mechanism responsible for the late recurrence of breast cancer. Thus, we investigated the clinical relevance of the expression of NR2F1, a known dormancy biomarker. METHODS A total of 6758 transcriptomes of bulk tumors from multiple breast cancer patient cohorts and two single-cell sequence cohorts were analyzed. RESULTS Breast cancer (BC) with high NR2F1 expression enriched TGFβ signaling, multiple metastases, and stem cell-related pathways. Cell proliferation-related gene sets were suppressed, and MKi67 expression was lower in high NR2F1 BC. In tumors with high Nottingham grade, NR2F1 expression was found to be lower. There was no consistent relationship between NR2F1 expression and metastasis or survival. Cancer mutation rates, immune responses, and immune cell infiltrations were lower in high NR2F1 tumors, whereas the infiltration of stromal cells including cancer-associated fibroblasts (CAFs) was higher. NR2F1 was predominantly expressed in CAFs, particularly inflammatory CAFs, rather than in cancer cells, consistently in the two single-cell sequence cohorts. CONCLUSIONS NR2F1 expression in breast cancer is associated with tumor dormancy traits, and it is predominantly expressed in CAFs in the tumor microenvironment.
Collapse
|
9
|
Takeshita T, Tokumaru Y, Oshi M, Wu R, Patel A, Tian W, Hatanaka Y, Hatanaka KC, Yan L, Takabe K. Clinical Relevance of Estrogen Reactivity in the Breast Cancer Microenvironment. Front Oncol 2022; 12:865024. [PMID: 35677163 PMCID: PMC9169154 DOI: 10.3389/fonc.2022.865024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Estrogen signals play an important role in the phenotype of estrogen receptor-positive breast cancer. However, comprehensive analyses of the effect of responsiveness to estrogen signals on the tumor microenvironment and survival in large cohorts of primary breast cancer patients have been lacking. We aimed to test the hypothesis that estrogen reactivity affects gene expression and immune cell infiltration profiles in the tumor microenvironment and survival. Methods A total of 3,098 breast cancer cases were analyzed: 1,904 from the Molecular Taxonomy of Breast Cancer (METABRIC) cohort, 1,082 from The Cancer Genome Atlas (TCGA) cohort, and 112 from the Hokkaido University Hospital cohort. We divided the group into estrogen reactivity-high and estrogen reactivity-low groups utilizing the scores of ESTROGEN_RESPONSE_EARLY and ESTROGEN_RESPONSE_LATE in Gene Set Variation Analysis. Results Breast cancer with high estrogen reactivity was related to Myc targets, metabolism-related signaling, cell stress response, TGF-beta signaling, androgen response, and MTORC1 signaling gene sets in the tumor microenvironment. Low estrogen reactivity was related to immune-related proteins, IL2-STAT5 signaling, IL6-JAK-STAT3 signaling, KRAS signaling, cell cycle-related gene sets, and EMT. In addition, breast cancer with high levels of estrogen reactivity had low immune cytolytic activity and low levels of immunostimulatory cells. It also had low levels of stimulatory and inhibitory factors of the cancer immunity cycle. Patients with high estrogen reactivity were also associated with a better prognosis. Conclusion We demonstrated the relationship between estrogen reactivity and the profiles of immune cells and gene expression, as well as survival.
Collapse
Affiliation(s)
- Takashi Takeshita
- Department of Breast Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Rongrong Wu
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ankit Patel
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Wanqing Tian
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yutaka Hatanaka
- Research Division of Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Kanako C Hatanaka
- Research Division of Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Kazuaki Takabe
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, United States.,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan.,Department of Surgery, Yokohama City University, Yokohama, Japan.,Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Breast Surgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
10
|
Nishimura R, Osako T, Okumura Y, Nakano M, Ohtsuka H, Fujisue M, Arima N. An evaluation of lymphovascular invasion in relation to biology and prognosis according to subtypes in invasive breast cancer. Oncol Lett 2022; 24:245. [PMID: 35761943 PMCID: PMC9214702 DOI: 10.3892/ol.2022.13366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Lymphovascular invasion (LVI) is associated with a poor outcome in breast cancer. The purpose of the present study was to evaluate the clinical significance of LVI in primary breast cancer and to investigate disease-free survival as a prognostic marker according to the breast cancer subtypes. This study examined 4,652 consecutive cases of invasive breast cancer excluding the patients with non-invasive cancer, stage IV and those who underwent neo-adjuvant therapy from February 2002 to February 2021. The clinicopathological characteristics and prognosis of LVI-positive and -negative tumors were compared. LVI was evaluated in H&E staining specimens from surgically resected samples. The LVI expression rates were 29.2% (low, 19.7%; high, 9.5%) in all primary cases. The LVI-positive rate was significantly associated with specimens with the following characteristics: ER/PgR-negative, HER2-positive, p53 overexpression, higher Ki-67 index values, higher nuclear grade, positive nodes and larger tumors. Moreover, the subtypes were significantly associated with LVI positivity; 20% in Luminal A, 34.6% in Luminal B, 40.9% in Lumina/HER2, 38.1% in HER2-enriched and 29.8% in triple negative (TN). There were significant differences in disease-free survival between LVI status in Luminal A, Luminal B and TN subtypes, but there was no difference in the Luminal/HER2 and HER2-enriched subtypes. A multivariate analysis revealed that LVI was a significant factor in Luminal B and TN subtypes. Overall, LVI was significantly associated with the advanced and aggressive characteristics in breast cancer. Luminal A type had a lower LVI rate, and HER2 type had a higher LVI rate. Moreover, LVI was a significant prognostic factor in Luminal B and TN subtypes. These data suggested that the LVI status was useful in predicting the prognosis in HER2 negative breast cancer cases.
Collapse
Affiliation(s)
- Reiki Nishimura
- Department of Breast Oncology, Kumamoto Shinto General Hospital, Kumamoto, Kumamoto 862‑8655, Japan
| | - Tomofumi Osako
- Department of Breast Oncology, Kumamoto Shinto General Hospital, Kumamoto, Kumamoto 862‑8655, Japan
| | - Yasuhiro Okumura
- Department of Breast Oncology, Kumamoto Shinto General Hospital, Kumamoto, Kumamoto 862‑8655, Japan
| | - Masahiro Nakano
- Department of Breast Oncology, Kumamoto Shinto General Hospital, Kumamoto, Kumamoto 862‑8655, Japan
| | - Hiroko Ohtsuka
- Department of Breast Oncology, Kumamoto Shinto General Hospital, Kumamoto, Kumamoto 862‑8655, Japan
| | - Mamiko Fujisue
- Department of Breast Oncology, Kumamoto Shinto General Hospital, Kumamoto, Kumamoto 862‑8655, Japan
| | - Nobuyuki Arima
- Department of Pathology, Kumamoto Shinto General Hospital, Kumamoto, Kumamoto 862‑8655, Japan
| |
Collapse
|
11
|
Takahashi H, Oshi M, Yan L, Endo I, Takabe K. Gastric cancer with enhanced apical junction pathway has increased metastatic potential and worse clinical outcomes. Am J Cancer Res 2022; 12:2146-2159. [PMID: 35693068 PMCID: PMC9185607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023] Open
Abstract
Excessive intercellular connection at confluency may be limiting further cell growth or a sign of aggressive biology in the cell culture. As apical junction complex is a main component of cell-to-cell connection, we aimed to investigate gastric cancer biology using Apical Junction Pathway score that we generated using Gene set variant analysis (GSVA) of the "Hallmark Apical Junction" gene set. 1,239 gastric cancer patients from the Cancer Genome Atlas (TCGA) and two GSE cohorts were included in this study. The cohorts were dichotomized using the median of the score. Apical Junction Pathway score high gastric cancer was not consistently associated with increased cell proliferation or immune cell infiltration. On the other hand, Apical Junction Pathway score high gastric cancer was associated with significantly higher infiltration of stromal cells, such as endothelial cells; hence, increased neovascularization and angiogenesis in the tumor microenvironment (TME) were speculated. Gene set enrichment analysis (GSEA) confirmed increased expression of epithelial mesenchymal transition (EMT) and angiogenesis in the high Apical Junction Pathway score group (false discovery rate (FDR) <0.25). Lastly, the high Apical Junction Pathway score group was associated with more aggressive clinicopathological characteristics, such as significantly higher American Joint Committee on Cancer (AJCC) T-category and higher pathological stage, leading to worse disease-specific survival and overall survival (P<0.05, respectively). In conclusion, enhanced Apical Junction Pathway score gastric cancer was associated with aggressive clinical characteristics leading to shorter survival likely due to increased metastatic potential from EMT and angiogenesis.
Collapse
Affiliation(s)
- Hideo Takahashi
- Department of SurgeryMount Sinai South Nassau, NY, USA
- Department of Surgery, Section of Hepatobiliary Surgery, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterNY, USA
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterNY, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Japan
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer CenterNY, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterNY, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New YorkBuffalo, NY, USA
| |
Collapse
|
12
|
Takahashi H, Irri A, Fenig Y, Byale A, Thung S, Gunasekaran G. Systematic review of squamous cell carcinoma of the gallbladder. Am J Surg 2022; 224:863-868. [DOI: 10.1016/j.amjsurg.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/11/2022]
|
13
|
Liu C, Zhou J, Chang C, Zhi W. Feasibility of Shear Wave Elastography Imaging for Evaluating the Biological Behavior of Breast Cancer. Front Oncol 2022; 11:820102. [PMID: 35155209 PMCID: PMC8830494 DOI: 10.3389/fonc.2021.820102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 12/27/2022] Open
Abstract
Objective To explore the feasibility of shear wave elastography (SWE) parameters for assessing the biological behavior of breast cancer. Materials and Methods In this prospective study, 224 breast cancer lesions in 216 female patients were examined by B-mode ultrasound and shear wave elastography in sequence. The maximum size (Smax) of the lesion was measured by B-mode ultrasound, and then shear wave elastography was performed on this section to obtain relevant parameters, including maximum elasticity (Emax), mean elasticity (Emean), standard deviation of elasticity (SD), and the area ratio of shear wave elastography to B-mode ultrasound (AR). The relationship between SWE parameters and pathological type, histopathological classification, histological grade, lymphovascular invasion status (LVI), axillary lymph node status (ALN), and immunohistochemistry of breast cancer lesions was performed according to postoperative pathology. Results In the univariate analysis, the pathological type and histopathological classification of breast cancer were not significantly associated with SWE parameters; with an increase in the histological grade of invasive ductal carcinoma (IDC), SD (p = 0.016) and Smax (p = 0.000) values increased. In the ALN-positive group, Smax (p = 0.004) was significantly greater than in the ALN-negative group; Smax (p = 0.003), Emax (p = 0.034), and SD (p = 0.045) were significantly higher in the LVI-positive group than in the LVI-negative group; SD (p = 0.043, p = 0.047) and Smax (p = 0.000, p = 0.000) were significantly lower in the ER+ and PR+ groups than in the ER- and PR- groups, respectively; AR (p = 0.032) was significantly higher in the ER+ groups than in the ER- groups, and Smax (p = 0.002) of the HER2+ group showed higher values than that of the HER2- group; Smax (p = 0.000), SD (p = 0.006), and Emax (p = 0.004) of the Ki-67 high-expression group showed significantly higher values than those of the Ki-67 low-expression group. In the multivariate analysis, Ki-67 was an independent factor of Smax (p = 0.005), Emax (p = 0.004), and SD (p = 0.006); ER was an independent influencing factor of Smax (p = 0.000) and AR (p = 0.032). LVI independently influences Smax (p = 0.006). Conclusions The SWE parameters Emax, SD, and AR can be used to evaluate the biological behavior of breast cancer.
Collapse
Affiliation(s)
- Chaoxu Liu
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Zhou
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cai Chang
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenxiang Zhi
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Asaoka M, Patnaik SK, Ishikawa T, Takabe K. Different members of the APOBEC3 family of DNA mutators have opposing associations with the landscape of breast cancer. Am J Cancer Res 2021; 11:5111-5125. [PMID: 34765315 PMCID: PMC8569370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023] Open
Abstract
APOBEC enzymes are strong mutagenic factors. In breast cancer, expression of APOBEC3B is increased and associated with mutation load and poor outcome. Other APOBEC3s can also mutate DNA but their clinical significance in breast cancer and its underpinnings have not been comprehensively studied. In our examination of 1,091 breast carcinoma cases, high expression of APOBEC3A or APOBEC3B genes was associated with greater tumor burden of mutations and other genomic aberrations. Expression of none of the five APOBEC3C-H genes had any correlation with these features, including T[C-T/G]W mutations, but their high expression levels indicated a robust anti-cancer immune response within tumors, with elevated CD8+ T cell abundance, T cell receptor diversity, and immune cytolytic activity. Concordantly, survival analyses of this and two other cohorts with > 3,000 patients each showed favorable prognostic benefit of high APOBEC3C-H expression for both cancer progression and mortality. A detrimental prognostic value was observed for APOBEC3A and APOBEC3B. Single-cell data revealed cancer epithelial and stromal immune cells as major sources of APOBEC3B and APOBEC3C-H expression in tumors, respectively. These observations on opposing associations with breast cancer of different APOBEC3s highlight the contrasting roles of these enzymes, promoting cancer through mutagenesis while antagonizing it through immune response.
Collapse
Affiliation(s)
- Mariko Asaoka
- Department of Breast Surgery, Roswell Park Comprehensive Cancer CenterBuffalo, New York, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Santosh K Patnaik
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer CenterBuffalo, New York, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York, USA
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Kazuaki Takabe
- Department of Breast Surgery, Roswell Park Comprehensive Cancer CenterBuffalo, New York, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York, USA
- Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
- Department of Surgery, Yokohama City UniversityYokohama, Japan
| |
Collapse
|
15
|
Satyananda V, Oshi M, Tokumaru Y, Maiti A, Hait N, Matsuyama R, Endo I, Takabe K. Sphingosine 1-phosphate (S1P) produced by sphingosine kinase 1 (SphK1) and exported via ABCC1 is related to hepatocellular carcinoma (HCC) progression. Am J Cancer Res 2021; 11:4394-4407. [PMID: 34659894 PMCID: PMC8493375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023] Open
Abstract
Sphingosine-1-Phosphate (S1P) is produced by Sphingosine Kinase 1 (SphK1) in the cell and is transported out of the cells by ABCC1 transporter. S1P induces inflammation, angiogenesis and modulates tumor immune microenvironment (TIME) in autocrine and paracrine manner. We hypothesized that high S1P export is associated with hepatocellular carcinoma (HCC) progression and worse survival. Transcriptome linked with clinical data were obtained from a total of 533 patients from TCGA (The Cancer Genome Atlas)-HCC (n = 350), GSE6764 (n = 75), and GSE89377 (n = 108) cohorts. Both SphK1 and ABCC1 were expressed higher in aggressive HCC than normal liver or cirrhosis and correlated with MKi67 expression. High S1P export by high expression of both SphK1 and ABCC1 enriched gene sets related with cell proliferation (E2F targets, G2M checkpoint, MYC targets), inflammation (Inflammatory response, TNFα, IL6), angiogenesis, metastasis (TGF-β, epithelial-mesenchymal transition), and immune response (allograft rejection, complement, interferon-gamma) in gene set enrichment analysis. High S1P export was associated with elevation of HGF, HSP90AA1, TRAF2, and AKR1B10. It was also associated with high intratumor heterogeneity, leucocyte fraction, macrophage regulation and lymphocyte infiltration, as well as T helper type2 cells, macrophages, dendritic cells, CD4+ T memory activated cells, B-cells and cytolytic activity score in TIME. High S1P export was associated with significantly worse disease specific survival (P = 0.034) and overall survival (P = 0.004) compared to low S1P export group. In conclusion, simultaneous high expression of SphK1 and ABCC1 that reflect S1P export is associated with enhancement of both HCC progression and immune response. Given that S1P export was also associated with worse survival, we cannot help but speculate that pro-cancer pathways activated by S1P may overwhelm the anti-cancer immune response mediated by S1P.
Collapse
Affiliation(s)
- Vikas Satyananda
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Gastroenterological SurgeryYokohama, Kanagawa 236-004, Japan
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University School of Medicine1-1 Yanagido, Gifu 501-1194, Japan
| | - Aparna Maiti
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Nitai Hait
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Ryusei Matsuyama
- Department of Gastroenterological SurgeryYokohama, Kanagawa 236-004, Japan
| | - Itaru Endo
- Department of Gastroenterological SurgeryYokohama, Kanagawa 236-004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Gastroenterological SurgeryYokohama, Kanagawa 236-004, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New YorkBuffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, 160-8402 Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8510, Japan
- Department of Breast Surgery, Fukushima Medical UniversityFukushima, Japan
| |
Collapse
|
16
|
Liu X, Guo X, Zhang Z. Preoperative Serum Hypersensitive-c-Reactive-Protein (Hs-CRP) to Albumin Ratio Predicts Survival in Patients with Luminal B Subtype Breast Cancer. Onco Targets Ther 2021; 14:4137-4148. [PMID: 34276217 PMCID: PMC8277447 DOI: 10.2147/ott.s320111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Objective To evaluate the clinical prognostic significance of preoperative serum hypersensitive-c-reactive-protein (Hs-CRP) to albumin ratio (CAR) in patients with luminal B subtype breast cancer. Methods A total of 199 patients with luminal B subtype breast cancer enrolled in this study were analyzed retrospectively. The optimal cutoff value of CAR was performed by the receiver operating characteristic curve (ROC). The associations between luminal B subtype breast cancer and clinicopathological variables by CAR were performed by chi-square test. Kaplan–Meier and log rank method were used for survival analysis. The independent prognostic factors were determined by univariate and multivariate Cox’s proportional hazards regression model. Results The patients were divided into low CAR group (CAR<0.044) and high CAR group (CAR≥0.044) by ROC. CAR was the independent factor by univariate and multivariate analysis, and the mean DFS and OS in the low CAR group survived longer than those in the high CAR group (p<0.05). According to the endocrine therapy with aromatase inhibitors, the mean survival time of DFS and OS in the low CAR group was significantly higher than that in the high CAR group (p<0.05). Moreover, patients with pathological I+II stage survived longer than those with pathological III stage, and the mean survival time of DFS and OS in the low CAR group was significantly higher than that in the high CAR group (p<0.05). Patients without lymph vessel invasion survived longer than those with lymph vessel invasion (p<0.05), and the mean survival time of DFS and OS in low the CAR group was significantly higher than that in the high CAR group (p<0.05). Conclusion Preoperative CAR was significantly associated with survival and prognosis of breast cancer, and it can be used as a routine prognostic indicator to predict the prognosis of luminal B subtype breast cancer.
Collapse
Affiliation(s)
- Xiujun Liu
- Department of Thyroid and Breast Surgery, Bayan Nur Hospital, Bayannaoer, 015000, Neimenggu, People's Republic of China
| | - Xiuchun Guo
- Deparment of Internal Medicine-Oncology, Bayan Nur Hospital, Bayannaoer, 015000, Neimenggu, People's Republic of China
| | - Zhiqiang Zhang
- Department of Thyroid and Breast Surgery, Bayan Nur Hospital, Bayannaoer, 015000, Neimenggu, People's Republic of China
| |
Collapse
|
17
|
Okano M, Oshi M, Mukhopadhyay S, Qi Q, Yan L, Endo I, Ohtake T, Takabe K. Octogenarians' Breast Cancer Is Associated with an Unfavorable Tumor Immune Microenvironment and Worse Disease-Free Survival. Cancers (Basel) 2021; 13:2933. [PMID: 34208219 PMCID: PMC8230790 DOI: 10.3390/cancers13122933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/26/2023] Open
Abstract
Elderly patients are known to have a worse prognosis for breast cancer. This is commonly blamed on their medical comorbidities and access to care. However, in addition to these social issues, we hypothesized that the extreme elderly (octogenarians-patients over 80 years old) have biologically worse cancer with unfavorable tumor immune microenvironment. The Cancer Genomic Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) breast cancer cohorts were analyzed. The control (aged 40-65) and octogenarians numbered 668 and 53 in TCGA and 979 and 118 in METABRIC, respectively. Octogenarians had significantly worse breast cancer-specific survival in both cohorts (p < 0.01). Octogenarians had a higher ER-positive subtype rate than controls in both cohorts. Regarding PAM50 classification, luminal-A and -B subtypes were significantly higher in octogenarians, whereas basal and claudin-low subtypes were significantly lower (p < 0.05) in octogenarians. There was no difference in tumor mutation load, intratumor heterogeneity, or cytolytic activity by age. However, the octogenarian cohort was significantly associated with high infiltration of pro-cancer immune cells, M2 macrophage, and regulatory T cells in both cohorts (p < 0.05). Our results demonstrate that octogenarians' breast cancer is associated with worse survival and with an unfavorable tumor immune microenvironment.
Collapse
Affiliation(s)
- Maiko Okano
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.O.); (S.M.)
- Department of Breast Surgery, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan;
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.O.); (S.M.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan;
| | - Swagoto Mukhopadhyay
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.O.); (S.M.)
| | - Qianya Qi
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Q.Q.); (L.Y.)
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Q.Q.); (L.Y.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan;
| | - Toru Ohtake
- Department of Breast Surgery, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan;
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.O.); (S.M.)
- Department of Breast Surgery, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan;
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan;
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14263, USA
| |
Collapse
|
18
|
Gandhi S, Oshi M, Murthy V, Repasky EA, Takabe K. Enhanced Thermogenesis in Triple-Negative Breast Cancer Is Associated with Pro-Tumor Immune Microenvironment. Cancers (Basel) 2021; 13:2559. [PMID: 34071012 PMCID: PMC8197168 DOI: 10.3390/cancers13112559] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Mild cold stress induced by housing mice with a 4T1 triple-negative breast cancer (TNBC) cell implantation model at 22 °C increases tumor growth rate with a pro-tumorigenic immune microenvironment (lower CD8 +T cells, higher myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs)). Since cold stress also activates thermogenesis, we hypothesized that enhanced thermogenesis is associated with more aggressive cancer biology and unfavorable tumor microenvironment (TME) in TNBC patients. A total of 6479 breast cancer patients from METABRIC, TCGA, GSE96058, GSE20194, and GSE25066 cohorts were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) thermogenesis score. High-thermogenesis TNBC was associated with a trend towards worse survival and with angiogenesis, adipogenesis, and fatty acid metabolism pathways. On the other hand, low-thermogenesis TNBC enriched most of the hallmark cell-proliferation-related gene sets (i.e., mitotic spindle, E2F targets, G2M checkpoint, MYC targets), as well as immune-related gene sets (i.e., IFN-α and IFN-γ response). Favorable cytotoxic T-cell-attracting chemokines CCL5, CXCL9, CXCL10, and CXCL11 were lower; while the MDSC- and Treg-attracting chemokine CXCL12 was higher. There were higher M2 but lower M1 macrophages and Tregs. In conclusion, high-thermogenesis TNBC is associated with pro-tumor immune microenvironment and may serve as biomarker for testing strategies to overcome this immunosuppression.
Collapse
Affiliation(s)
- Shipra Gandhi
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (V.M.); (K.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Vijayashree Murthy
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (V.M.); (K.T.)
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (V.M.); (K.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
| |
Collapse
|
19
|
Oshi M, Kim TH, Tokumaru Y, Yan L, Matsuyama R, Endo I, Cherkassky L, Takabe K. Enhanced DNA Repair Pathway is Associated with Cell Proliferation and Worse Survival in Hepatocellular Carcinoma (HCC). Cancers (Basel) 2021; 13:cancers13020323. [PMID: 33477315 PMCID: PMC7830462 DOI: 10.3390/cancers13020323] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary We studied the relationship between enhancement of DNA repair and cancer aggressiveness, tumor immune microenvironment, and patient survival in 749 hepatocellular carcinoma (HCC) patients from 5 cohorts using a DNA repair pathway score. We show that the DNA repair pathway was enhanced by the stepwise carcinogenic process of HCC, notably in grade 3 compared to grade 1 or 2 HCC. DNA repair high HCC was associated with worse survival, elevated intratumor heterogeneity, and mutation load, but not with the fraction of immune cell infiltration nor cytolytic activity. The expression of proliferation- and other cancer aggressiveness-related gene sets was also increased. Interestingly, these features were more pronounced in low-grade compared to high-grade HCC. In conclusion, the DNA repair score may be used to understand the role of DNA repair pathways in patient prognosis and treatment sensitivity and be used to improve patient outcome. To our knowledge, this is the first study using DNA repair pathway-related gene set expression data to examine and validate the clinical relevance of DNA repair pathway activity in HCC. Abstract Hepatocellular carcinoma (HCC) is one of the most common malignancies and a leading cause of cancer-related deaths worldwide. In this study, a total of 749 HCC patients from 5 cohorts were studied to examine the relationships between enhancement of DNA repair and cancer aggressiveness, tumor immune microenvironment, and patient survival in HCC, utilizing a DNA repair pathway score. Our findings suggest that the DNA repair pathway was not only enhanced by the stepwise carcinogenic process of HCC, but also significantly enhanced in grade 3 HCC compared with grade 1 and 2 tumors. DNA repair high HCC was associated with worse survival, elevated intratumor heterogeneity, and mutation load, but not with the fraction of immune cell infiltration nor immune response. HCC tumors with a DNA repair high score enriched the cell proliferation- and other cancer aggressiveness-related gene sets. Interestingly, these features were more pronounced in grade 1 and 2 HCC compared to grade 3 HCC. To our knowledge, this is the first study to use DNA repair pathway-related gene set expression data to examine and validate the clinical relevance of DNA repair pathway activity in HCC. The DNA repair score may be used to better understand and predict prognosis in HCC.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (T.H.K.); (Y.T.); (L.C.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Tae Hee Kim
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (T.H.K.); (Y.T.); (L.C.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (T.H.K.); (Y.T.); (L.C.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Leonid Cherkassky
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (T.H.K.); (Y.T.); (L.C.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (T.H.K.); (Y.T.); (L.C.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Correspondence: ; Tel.: +1-716-8455540; Fax: +1-716-8451668
| |
Collapse
|
20
|
Le L, Tokumaru Y, Oshi M, Asaoka M, Yan L, Endo I, Ishikawa T, Futamura M, Yoshida K, Takabe K. Th2 cell infiltrations predict neoadjuvant chemotherapy response of estrogen receptor-positive breast cancer. Gland Surg 2021; 10:154-165. [PMID: 33633972 DOI: 10.21037/gs-20-571] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background High infiltration of Th2 is linked to breast cancer progression and metastasis through the induction of cytokine release and T-cell anergy. The estrogen receptor (ER)-positive subtype, which accounts for 70% of breast cancer, is known to respond less to neoadjuvant chemotherapy (NAC) due to its low potential for proliferation. We hypothesized that Th2 high tumors are highly proliferative, and thus more likely to respond to NAC in ER-positive breast cancer. Methods We obtained clinicopathological data and overall survival information on 1,069 breast cancer patients from The Cancer Genome Atlas (TCGA). Computational algorithms and CIBERSORT were used to estimate immune cell infiltration. Additionally, xCell was used for validation. Results Th2 high tumors did not consistently associate with an unfavorable immune cell composition and tumor immune microenvironment but were found to be significantly elevated in the cancer stage. Th2 high tumors also correlated with high Nottingham pathological grade, as well as with Ki-67 and proliferation score in ER-positive subtypes. High Th2 tumors achieved a pathological complete response (pCR) significantly higher in ER-positive breast cancer. Conclusions In conclusion, high levels of Th2 are associated with aggressive features of breast cancer. Th2 levels may be a biomarker in patient selection for NAC in ER-positive breast cancer.
Collapse
Affiliation(s)
- Lan Le
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Japan
| | - Mariko Asaoka
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA.,Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Japan.,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan.,Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
21
|
The Impact of Immunofunctional Phenotyping on the Malfunction of the Cancer Immunity Cycle in Breast Cancer. Cancers (Basel) 2020; 13:cancers13010110. [PMID: 33396390 PMCID: PMC7795596 DOI: 10.3390/cancers13010110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The cancer-immunity cycle (CIC) is a series of self-sustaining stepwise events to fight cancer growth by the immune system. We hypothesized that immunofunctional phenotyping that represent the malfunction of the CIC is clinically relevant in breast cancer (BC) utilizing total of 2979 BC cases; 1075 from TCGA cohort, 1904 from METABRIC cohort were analyzed. The immunofunctional phenotype was classified as follows: hot T-cell infiltrated, high immune cytolytic activity (CYT), cold T-cell infiltrated, high frequency of CD8+ T cells and low CYT, and non-inflamed, low frequency of CD8+ T cells and low CYT. We demonstrated that immunofunctional phenotyping not only indicated the degree of anti-cancer immune dysfunction, but also served as a prognostic biomarker and HTI was inversely related to estrogen response. Abstract The cancer-immunity cycle (CIC) is a series of self-sustaining stepwise events to fight cancer growth by the immune system. We hypothesized that immunofunctional phenotyping that represent the malfunction of the CIC is clinically relevant in breast cancer (BC). Total of 2979 BC cases; 1075 from TCGA cohort, 1904 from METABRIC cohort were analyzed. The immunofunctional phenotype was classified as follows: hot T-cell infiltrated (HTI), high immune cytolytic activity (CYT), Cold T-cell infiltrated (CTI), high frequency of CD8+ T cells and low CYT, and non-inflamed, low frequency of CD8+ T cells and low CYT. The analysis of tumor immune microenvironment in the immunofunctional phenotype revealed that not only immunostimulatory factors, but also immunosuppressive factors were significantly elevated and immunosuppressive cells were significantly decreased in HTI. Patients in HTI were significantly associated with better survival in whole cohort and patients in CTI were significantly associated with worse survival in triple negative. Furthers, HTI was inversely related to estrogen responsive signaling. We demonstrated that immunofunctional phenotype not only indicated the degree of anti-cancer immune dysfunction, but also served as a prognostic biomarker and HTI was inversely related to estrogen response.
Collapse
|
22
|
Oshi M, Angarita FA, Tokumaru Y, Yan L, Matsuyama R, Endo I, Takabe K. High Expression of NRF2 Is Associated with Increased Tumor-Infiltrating Lymphocytes and Cancer Immunity in ER-Positive/HER2-Negative Breast Cancer. Cancers (Basel) 2020; 12:E3856. [PMID: 33371179 PMCID: PMC7766649 DOI: 10.3390/cancers12123856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a key modifier in breast cancer. It is unclear whether NRF2 suppresses or promotes breast cancer progression. We studied the clinical relevance of NRF2 expression by conducting in silico analyses in 5443 breast cancer patients from several large patient cohorts (METABRIC, GSE96058, GSE25066, GSE20194, and GSE75688). NRF2 expression was significantly associated with better survival, low Nottingham pathological grade, and ER-positive/HER2-negative and triple negative breast cancer (TNBC). High NRF2 ER-positive/HER2-negative breast cancer enriched inflammation- and immune-related gene sets by GSEA. NRF2 expression was elevated in immune, stromal, and cancer cells. High NRF2 tumors were associated with high infiltration of immune cells (CD8+, CD4+, and dendritic cells (DC)) and stromal cells (adipocyte, fibroblasts, and keratinocytes), and with low fraction of Th1 cells. NRF2 expression significantly correlated with area under the curve (AUC) of several drug response in multiple ER-positive breast cancer cell lines, however, there was no significant association between NRF2 and pathologic complete response (pCR) rate after neoadjuvant chemotherapy in human samples. Finally, high NRF2 breast cancer was associated with high expression of immune checkpoint molecules. In conclusion, NRF2 expression was associated with enhanced tumor-infiltrating lymphocytes in ER-positive/HER2-negative breast cancer.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (F.A.A.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Fernando A. Angarita
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (F.A.A.); (Y.T.)
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (F.A.A.); (Y.T.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (F.A.A.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
23
|
Oshi M, Newman S, Tokumaru Y, Yan L, Matsuyama R, Endo I, Takabe K. Inflammation Is Associated with Worse Outcome in the Whole Cohort but with Better Outcome in Triple-Negative Subtype of Breast Cancer Patients. J Immunol Res 2020; 2020:5618786. [PMID: 33457427 PMCID: PMC7787871 DOI: 10.1155/2020/5618786] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammation has been linked with cancer, but whether it is part of the problem or part of the solution remains to be a matter of debate in breast cancer. Our group and others have demonstrated that inflammation aggravates cancer progression; however, some claim that inflammation may support immune cell infiltration and suppress cancer. We defined the gene set variation analysis of the Molecular Signatures Database Hallmark inflammatory response gene set as the inflammatory pathway score and analyzed 3632 tumors in total from 4 breast cancer cohorts (METABRIC, TCGA, GSE25066, and GSE21094). In the whole breast cancer cohort, high-score tumors were associated with aggressive clinical characteristics, such as worse disease specific survival, higher Nottingham histological grade, and younger age. Inflammatory score was significantly higher in triple-negative (TNBC) as well as basal and normal subtypes compared with the other subtypes, which suggest that the detrimental effect of high level of inflammation may be because it includes a more aggressive subtype. On the contrary, high score within TNBC was significantly associated with better survival. TNBC with high score enriched not only IFN-α, IFN-γ response, IL-2/STAT5 signaling, Allograft rejection, Complement, p53 pathway, Reactive Oxygen, and Apoptosis but also TNF-α signaling, IL6-JAK-STAT signaling, TGF-β signaling, Coagulation, Angiogenesis, EMT, KRAS signaling, and PI3K-AKT-MTOR signaling gene sets. High score was associated with mainly favorable anticancerous immune cell infiltration as well as Leukocyte fraction, TIL regional fraction, Lymphocyte infiltration, IFN-γ response, TGF-β response, and cytolytic activity scores. Although the inflammatory pathway score was not associated with neoadjuvant treatment response, it associated with expressions of immune checkpoint molecules. In conclusion, inflammation was associated with worse outcome in the whole breast cancer cohort, but with better outcome in TNBC, which was associated with favorable anticancerous immune response and immune cell infiltrations.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Stephanie Newman
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14263, USA
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14263, USA
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
24
|
Oshi M, Newman S, Tokumaru Y, Yan L, Matsuyama R, Kalinski P, Endo I, Takabe K. Plasmacytoid Dendritic Cell (pDC) Infiltration Correlate with Tumor Infiltrating Lymphocytes, Cancer Immunity, and Better Survival in Triple Negative Breast Cancer (TNBC) More Strongly than Conventional Dendritic Cell (cDC). Cancers (Basel) 2020; 12:E3342. [PMID: 33198125 PMCID: PMC7697894 DOI: 10.3390/cancers12113342] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DC) represent a major antigen-presenting cell type in the tumor immune microenvironment (TIME) and play an essential role in cancer immunity. Conventional DC (cDC) and plasmacytoid DC (pDC) were defined by the xCell algorithm and a total of 2968 breast cancer patients (TCGA and METABRIC) were analyzed. We found that triple-negative breast cancer (TNBC) had a high fraction of cDC and pDC compared to the other subtypes. In contrast to cDC, high pDC in TNBC was significantly associated with better disease-specific and disease-free survival consistently in both cohorts. High cDC TNBC tumors enriched not only inflammation and immune-related, but also metastasis-related gene sets in Gene Set Enrichment Analysis, whereas high pDC TNBC enriched inflammation and immune -related gene sets including IFN-γ signaling more strongly than cDC. pDC TNBC correlated with CD8+, CD4+ memory, IFN-γ score, and cytolytic activity stronger than cDC TNBC. High pDC TNBC were associated with a high fraction of anti-cancer immune cells and high expression of all the immune check point molecules examined. In conclusion, pDC levels correlated with the infiltration of immune cells and patient survival in TNBC more strongly than cDC; this is the first study suggesting the clinical relevance of pDC infiltration in TNBC.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (S.N.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Stephanie Newman
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (S.N.); (Y.T.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (S.N.); (Y.T.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Pawel Kalinski
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (S.N.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
25
|
Oshi M, Asaoka M, Tokumaru Y, Angarita FA, Yan L, Matsuyama R, Zsiros E, Ishikawa T, Endo I, Takabe K. Abundance of Regulatory T Cell (Treg) as a Predictive Biomarker for Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:E3038. [PMID: 33086518 PMCID: PMC7603157 DOI: 10.3390/cancers12103038] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory CD4+ T cell (Treg), a subset of tumor-infiltrating lymphocytes (TILs), are known to suppress anticancer immunity but its clinical relevance in human breast cancer remains unclear. In this study, we estimated the relative abundance of Tregs in breast cancer of multiple patient cohorts by using the xCell algorithm on bulk tumor gene expression data. In total, 5177 breast cancer patients from five independent cohorts (TCGA-BRCA, GSE96058, GSE25066, GSE20194, and GSE110590) were analyzed. Treg abundance was not associated with cancer aggressiveness, patient survival, or immune activity markers, but it was lower in metastatic tumors when compared to matched primary tumors. Treg was associated with a high mutation rate of TP53 genes and copy number mutations as well as with increased tumor infiltration of M2 macrophages and decreased infiltration of T helper type 1 (Th1) cells. Pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) was significantly associated with low Treg abundance in triple negative breast cancer (TNBC) but not in ER-positive/Her2-negative subtype. High Treg abundance was significantly associated with high tumor expression of multiple immune checkpoint inhibitor genes. In conclusion, Treg abundance may have potential as a predictive biomarker of pCR after NAC in TNBC.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.A.); (Y.T.); (F.A.A.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Mariko Asaoka
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.A.); (Y.T.); (F.A.A.)
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan;
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.A.); (Y.T.); (F.A.A.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Fernando A. Angarita
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.A.); (Y.T.); (F.A.A.)
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Emese Zsiros
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan;
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.A.); (Y.T.); (F.A.A.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan;
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
26
|
Oshi M, Tokumaru Y, Asaoka M, Yan L, Satyananda V, Matsuyama R, Matsuhashi N, Futamura M, Ishikawa T, Yoshida K, Endo I, Takabe K. M1 Macrophage and M1/M2 ratio defined by transcriptomic signatures resemble only part of their conventional clinical characteristics in breast cancer. Sci Rep 2020; 10:16554. [PMID: 33024179 PMCID: PMC7538579 DOI: 10.1038/s41598-020-73624-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor associated macrophages (TAMs) play a critical role in biology of various cancers, including breast cancer. In the current study, we defined "M1" macrophage and "M1"/"M2" ratio by transcriptomic signatures using xCell. We investigated the association between high level of "M1" macrophage or "M1"/"M2" ratio and the tumor immune microenvironment by analyzing the transcriptome of publicly available cohorts, TCGA and METABRIC. We found that "M1" high tumors were not associated with prolonged survival compared with "M1" low tumors, or with the response to neoadjuvant chemotherapy. "M1" high tumors were associated with clinically aggressive features and "M1" high tumors enriched the cell proliferation and cell cycle related gene sets in GSEA. At the same time, "M1" high tumors were associated with high immune activity and favorable tumor immune microenvironment, as well as high expression of immune check point molecules. Strikingly, all these results were mirrored in "M1"/"M2" ratio high tumors. In conclusion, transcriptomically defined "M1" or "M1"/"M2" high tumors were associated with aggressive cancer biology and favorable tumor immune microenvironment but not with survival benefit, which resembled only part of their conventional clinical characteristics.
Collapse
Affiliation(s)
- Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Mariko Asaoka
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Breast Oncology and Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo, 160-8402, Japan
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Vikas Satyananda
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takashi Ishikawa
- Department of Breast Oncology and Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo, 160-8402, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA.
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
- Department of Breast Oncology and Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo, 160-8402, Japan.
- Department of Surgery, University At Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, 14263, USA.
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|
27
|
Oshi M, Newman S, Tokumaru Y, Yan L, Matsuyama R, Endo I, Katz MHG, Takabe K. High G2M Pathway Score Pancreatic Cancer is Associated with Worse Survival, Particularly after Margin-Positive (R1 or R2) Resection. Cancers (Basel) 2020; 12:E2871. [PMID: 33036243 PMCID: PMC7599494 DOI: 10.3390/cancers12102871] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer is highly mortal due to uncontrolled cell proliferation. The G2M checkpoint pathway is an essential part of the cell cycle. We hypothesized that a high G2M pathway score is associated with cell proliferation and worse survival in pancreatic cancer patients. Gene set variation analysis using the Hallmark G2M checkpoint gene set was used as a score to analyze a total of 390 human pancreatic cancer patients from 3 cohorts (TCGA, GSE62452, GSE57495). High G2M score tumors enriched other cell proliferation genes sets as well as MKI67 expression, pathological grade, and proliferation score. Independent of other prognostic factors, G2M score was predictive of disease-specific survival in pancreatic cancer. High G2M tumor was associated with high mutation rate of KRAS and TP53 and significantly enriched these pathway gene sets, as well as high infiltration of Th2 cells. High G2M score consistently associated with worse overall survival in 3 cohorts, particularly in R1/2 resection, but not in R0. High G2M tumor in R1/2 highly enriched metabolic and cellular components' gene sets compared to R0. To our knowledge, this is the first study to use gene set variation analysis as a score to examine the clinical relevancy of the G2M pathway in pancreatic cancer.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (M.O.); (R.M.); (I.E.)
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.N.); (Y.T.)
| | - Stephanie Newman
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.N.); (Y.T.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.N.); (Y.T.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (M.O.); (R.M.); (I.E.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (M.O.); (R.M.); (I.E.)
| | - Matthew H. G. Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kazuaki Takabe
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (M.O.); (R.M.); (I.E.)
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.N.); (Y.T.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
28
|
Takahashi H, Oshi M, Asaoka M, Ishikawa T, Endo I, Takabe K. ASO Author Reflections: Transitioning From Morphology to Transcriptomics in Capturing Tumor Biology. Ann Surg Oncol 2020; 27:4486-4487. [PMID: 32472409 PMCID: PMC7501179 DOI: 10.1245/s10434-020-08680-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Hideo Takahashi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Mariko Asaoka
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Itaru Endo
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Department of Surgery, Yokohama City University, Yokohama, Japan.
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan.
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
- Department of Surgery, University at Buffalo Jacobs, The State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| |
Collapse
|
29
|
Oshi M, Newman S, Murthy V, Tokumaru Y, Yan L, Matsuyama R, Endo I, Takabe K. ITPKC as a Prognostic and Predictive Biomarker of Neoadjuvant Chemotherapy for Triple Negative Breast Cancer. Cancers (Basel) 2020; 12:E2758. [PMID: 32992708 PMCID: PMC7601042 DOI: 10.3390/cancers12102758] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with higher mortality than the others. Pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) is considered as a surrogate to predict survival. Inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) is a negative regulator of T cell activation, and reduction in ITPKC function is known to promote Kawasaki disease. Given the role of tumor infiltrating lymphocytes in NAC and since TNBC has the most abundant immune cell infiltration in breast cancer, we hypothesized that the ITPKC expression level is associated with NAC response and prognosis in TNBC. The ITPKC gene was expressed in the mammary gland, but its expression was highest in breast cancer cells among other stromal cells in a bulk tumor. ITPKC expression was highest in TNBC, associated with its survival, and was its independent prognostic factor. Although high ITPKC was not associated with immune function nor with any immune cell fraction, low ITPKC significantly enriched cell proliferation-related gene sets in TNBC. TNBC with low ITPKC achieved a significantly higher pCR rate after NAC. To the best of our knowledge, this is the first report to demonstrate that ITPKC gene expression may be useful as a prognostic and predictive biomarker in TNBC.
Collapse
Affiliation(s)
- Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (S.N.); (V.M.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Stephanie Newman
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (S.N.); (V.M.); (Y.T.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, NY 14263, USA
| | - Vijayashree Murthy
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (S.N.); (V.M.); (Y.T.)
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (S.N.); (V.M.); (Y.T.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (S.N.); (V.M.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, NY 14263, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, New York, NY 14263, USA
| |
Collapse
|
30
|
Oshi M, Asaoka M, Tokumaru Y, Yan L, Matsuyama R, Ishikawa T, Endo I, Takabe K. CD8 T Cell Score as a Prognostic Biomarker for Triple Negative Breast Cancer. Int J Mol Sci 2020; 21:E6968. [PMID: 32971948 PMCID: PMC7555570 DOI: 10.3390/ijms21186968] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
CD8 T cell is an essential component of tumor-infiltrating lymphocytes (TIL) and tumor immune microenvironment (TIME). Using the xCell CD8 T cell score of whole tumor gene expression data, we estimated these cells in total of 3837 breast cancer patients from TCGA, METABRIC and various GEO cohorts. The CD8 score correlated strongly with expression of CD8 genes. The score was highest for triple-negative breast cancer (TNBC), and a high score was associated with high tumor immune cytolytic activity and better survival in TNBC but not other breast cancer subtypes. In TNBC, tumors with a high CD8 score had enriched expression of interferon (IFN)-α and IFN-γ response and allograft rejection gene sets, and greater infiltration of anti-cancerous immune cells. The score strongly correlated with CD4 memory T cells in TNBC, and tumors with both a high CD8 score and high CD4 memory T cell abundance had significantly better survival. Finally, a high CD8 score was significantly associated with high expression of multiple immune checkpoint molecules. In conclusion, a high CD8 T cell score is associated with better survival in TNBC, particularly when tumor CD4 memory T cells were elevated. Our findings also suggest a possible use of the score as a predictive biomarker for response to immune checkpoint therapy.
Collapse
Affiliation(s)
- Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.A.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Mariko Asaoka
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.A.); (Y.T.)
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan;
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.A.); (Y.T.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan;
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (M.A.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan;
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
| |
Collapse
|
31
|
Tokumaru Y, Oshi M, Katsuta E, Yan L, Huang JL, Nagahashi M, Matsuhashi N, Futamura M, Yoshida K, Takabe K. Intratumoral Adipocyte-High Breast Cancer Enrich for Metastatic and Inflammation-Related Pathways but Associated with Less Cancer Cell Proliferation. Int J Mol Sci 2020; 21:E5744. [PMID: 32796516 PMCID: PMC7461211 DOI: 10.3390/ijms21165744] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated adipocytes are known to cause inflammation, leading to cancer progression and metastasis. The clinicopathological and transcriptomic data from 2256 patients with breast cancer were obtained based on three cohorts: The Cancer Genome Atlas (TCGA), GSE25066, and a study by Yau et al. For the current study, we defined the adipocyte, which is calculated by utilizing a computational algorithm, xCell, as "intratumoral adipocyte". These intratumoral adipocytes appropriately reflected mature adipocytes in a bulk tumor. The amount of intratumoral adipocytes demonstrated no relationship with survival. Intratumoral adipocyte-high tumors significantly enriched for metastasis and inflammation-related gene sets and are associated with a favorable tumor immune microenvironment, especially in the ER+/HER2- subtype. On the other hand, intratumoral adipocyte-low tumors significantly enriched for cell cycle and cell proliferation-related gene sets. Correspondingly, intratumoral adipocyte-low tumors are associated with advanced pathological grades and inversely correlated with MKI67 expression. In conclusion, a high amount of intratumoral adipocytes in breast cancer was associated with inflammation, metastatic pathways, cancer stemness, and favorable tumor immune microenvironment. However, a low amount of adipocytes was associated with a highly proliferative tumor in ER-positive breast cancer. This cancer biology may explain the reason why patient survival did not differ by the amount of adipocytes.
Collapse
Affiliation(s)
- Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.O.); (E.K.); (J.L.H.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.O.); (E.K.); (J.L.H.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Eriko Katsuta
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.O.); (E.K.); (J.L.H.)
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Jing Li Huang
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.O.); (E.K.); (J.L.H.)
| | - Masayuki Nagahashi
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan;
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.O.); (E.K.); (J.L.H.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan;
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14263, USA
- Department of Breast Oncology and Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo 160-8402, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
32
|
Takahashi H, Katsuta E, Yan L, Tokumaru Y, Katz MH, Takabe K. Transcriptomic Profile of Lymphovascular Invasion, a Known Risk Factor of Pancreatic Ductal Adenocarcinoma Metastasis. Cancers (Basel) 2020; 12:E2033. [PMID: 32722116 PMCID: PMC7465682 DOI: 10.3390/cancers12082033] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
Lymphovascular invasion (LVI) is an aggressive pathologic feature and considered a risk factor for distant metastasis. We hypothesized that pancreatic ductal adenocarcinomas (PDACs) with LVI are associated with shorter survival, as well as aggressive cancer biology and lymphangiogenesis in transcriptomic analysis. Utilizing the cancer genome atlas (TCGA)-PDAC cohort, we found that positive LVI was significantly associated with positive perineural invasion (PNI) (p = 0.023), and higher American Joint Committee on Cancer (AJCC) T (p = 0.017) and N (p < 0.001) categories. Furthermore, positive LVI was associated with shorter overall survival (OS) (p = 0.014) and was an independent risk factor of poor OS. Although there was no association between LVI status and lymphangiogenesis, epithelial-mesenchymal transition (EMT), or metastasis-related genes, Gene Set Enrichment Analysis revealed a strong association with cell-proliferation-related gene sets such as mitotic spindles (Normalized enrichment score (NES) = 1.76, p = 0.016) and G2/M checkpoints (NES = 1.75, p = 0.036), as well as with transforming growth factor beta (TGF-beta) signaling (NES = 1.61, p = 0.043), which is a known mechanism of metastasis in PDACs. In conclusion, positive LVI was an independent risk factor of poor OS in PDACs. We found that PDACs with LVI were possibly associated with accelerated cell proliferation and enhanced TGF-beta signaling independent of lymphangiogenesis. Transcriptomic profiling elucidates more precise tumor biology of LVI-positive PDACs.
Collapse
Affiliation(s)
- Hideo Takahashi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (H.T.); (E.K.); (Y.T.)
| | - Eriko Katsuta
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (H.T.); (E.K.); (Y.T.)
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (H.T.); (E.K.); (Y.T.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Matthew H.G. Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (H.T.); (E.K.); (Y.T.)
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY 14260, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| |
Collapse
|
33
|
Oshi M, Takahashi H, Tokumaru Y, Yan L, Rashid OM, Nagahashi M, Matsuyama R, Endo I, Takabe K. The E2F Pathway Score as a Predictive Biomarker of Response to Neoadjuvant Therapy in ER+/HER2- Breast Cancer. Cells 2020; 9:E1643. [PMID: 32650578 PMCID: PMC7407968 DOI: 10.3390/cells9071643] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
E2F transcription factors play critical roles in the cell cycle. Therefore, their activity is expected to reflect tumor aggressiveness and responsiveness to therapy. We scored 3905 tumors of nine breast cancer cohorts for this activity based on their gene expression for the Hallmark E2F targets gene set. As expected, tumors with a high score had an increased expression of cell proliferation-related genes. A high score was significantly associated with shorter patient survival, greater MKI67 expression, histological grade, stage, and genomic aberrations. Furthermore, metastatic tumors had higher E2F scores than the primary tumors from which they arose. Although tumors with a high score had greater infiltration by both pro- and anti-cancerous immune cells, they had an increased expression of immune checkpoint genes. Estrogen receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative cancer with a high E2F score achieved a significantly higher pathological complete response (pCR) rate to neoadjuvant chemotherapy. The E2F score was significantly associated with the expression of cyclin-dependent kinase (CDK)-related genes and strongly correlated with sensitivity to CDK inhibition in cell lines. In conclusion, the E2F score is a marker of breast cancer aggressiveness and predicts the responsiveness of ER-positive/HER2-negative patients to neoadjuvant chemotherapy and possibly to CDK and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (H.T.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama 2360004, Japan; (R.M.); (I.E.)
| | - Hideo Takahashi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (H.T.); (Y.T.)
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (H.T.); (Y.T.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Omar M. Rashid
- Department of Surgery, Holy Cross Hospital, Michael and Dianne Bienes Comprehensive Cancer Center, Fort Lauderdale, FL 33308, USA;
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 9518520, Japan;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama 2360004, Japan; (R.M.); (I.E.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama 2360004, Japan; (R.M.); (I.E.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (H.T.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama 2360004, Japan; (R.M.); (I.E.)
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 9601295, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 9518510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 1608402, Japan
| |
Collapse
|
34
|
Gandhi S, Elkhanany A, Oshi M, Dai T, Opyrchal M, Mohammadpour H, Repasky EA, Takabe K. Contribution of Immune Cells to Glucocorticoid Receptor Expression in Breast Cancer. Int J Mol Sci 2020; 21:E4635. [PMID: 32629782 PMCID: PMC7370149 DOI: 10.3390/ijms21134635] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) patients experience increased stress with elevated cortisol levels, increasing risk of cancer recurrence. Cortisol binds to a cytoplasmic receptor, glucocorticoid receptor (GR) encoded by GR gene (NR3C1). We hypothesized that not only cancer cells, but even immune cells in the tumor microenvironment (TME) may contribute to GR expression in bulk tumor and influence prognosis. To test this, mRNA expression data was accessed from METABRIC and TCGA. "High" and "low" expression was based on highest and lowest quartiles of NR3C1 gene expression, respectively. Single-cell sequencing data were obtained from GSE75688 and GSE114725 cohorts. Computer algorithms CIBERSORT, Gene Set Enrichment Analysis and TIMER were used. GR-high BC has better median disease-free and disease-specific survival. Single cell sequencing data showed higher GR expression on immune cells compared to cancer and stromal cells. Positive correlation between GR-high BC and CD8+ T-cells was noted. In GR-high tumors, higher cytolytic activity (CYT) with decreased T-regulatory and T-follicular helper cells was observed. High GR expression was associated with lower proliferation index Ki67, enriched in IL-2_STAT5, apoptosis, KRAS, TGF-β signaling, and epithelial-to-mesenchymal transition. Immune cells significantly contribute to GR expression of bulk BC. GR-high BC has a favorable TME with higher CYT with favorable outcomes.
Collapse
Affiliation(s)
- Shipra Gandhi
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Ahmed Elkhanany
- Department of Medical Oncology, University of Alabama, Birmingham, AL 35294, USA;
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (K.T.)
- Departments of Surgery, Yokohama City University, Yokohama 236-0004, Japan
| | - Tao Dai
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.D.); (H.M.); (E.A.R.)
| | - Mateusz Opyrchal
- Division of Medical Oncology, Washington University, St. Louis, MO 63130, USA;
| | - Hemn Mohammadpour
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.D.); (H.M.); (E.A.R.)
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.D.); (H.M.); (E.A.R.)
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (K.T.)
- Departments of Surgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
35
|
|
36
|
Fibroblasts as a Biological Marker for Curative Resection in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21113890. [PMID: 32485981 PMCID: PMC7312973 DOI: 10.3390/ijms21113890] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Achievement of microscopic tumor clearance (R0) after pancreatic ductal adenocarcinoma (PDAC) surgery is determined by cancer biology rather than operative technique. Fibroblasts are known to play pro-cancer roles; however, a small subset was recently found to play anti-cancer roles. Therefore, we hypothesized that intratumor fibroblasts contribute to curative resection and a better survival of PDAC. Utilizing a large, publicly available PDAC cohort, we found that fibroblast composition was associated with R0 curative resection. A high amount of fibroblasts in PDACs was significantly associated with a higher amount of mature vessels, but not with blood angiogenesis. A high amount of fibroblasts was also associated with a higher infiltration of anti-cancer immune cells, such as CD8+ T-cells and dendritic cells, together with higher inflammatory signaling, including IL2/STAT5 and IL6/JAK/STAT3 signaling. Further, the fibroblast composition was inversely associated with cancer cell composition in the bulk tumor, along with an inverse association with proliferative characteristics, such as MYC signaling and glycolysis. The patients with high-fibroblast PDACs showed an improved prognosis. In conclusion, we found that PDACs with high fibroblasts were associated with a higher R0 resection rate, resulting in a better prognosis. These findings may be due to less aggressive biology with a higher vascularity and anti-cancer immunity, and a low cancer cell component.
Collapse
|