1
|
Oknińska M, Mączewski M, Mackiewicz U. Ventricular arrhythmias in acute myocardial ischaemia-Focus on the ageing and sex. Ageing Res Rev 2022; 81:101722. [PMID: 36038114 DOI: 10.1016/j.arr.2022.101722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 01/31/2023]
Abstract
Annually, approximately 17 million people die from cardiovascular diseases worldwide, half of them suddenly. The most common direct cause of sudden cardiac death is ventricular arrhythmia triggered by an acute coronary syndrome (ACS). The study summarizes the knowledge of the mechanisms of arrhythmia onset during ACS in humans and in animal models and factors that may influence the susceptibility to life-threatening arrhythmias during ACS with particular focus on the age and sex. The real impact of age and sex on the arrhythmic susceptibility within the setting of acute ischaemia is masked by the fact that ACSs result from coronary artery disease appearing with age much earlier among men than among women. However, results of researches show that in ageing process changes with potential pro-arrhythmic significance, such as increased fibrosis, cardiomyocyte hypertrophy, decrease number of gap junction channels, disturbances of the intracellular Ca2+ signalling or changes in electrophysiological parameters, occur independently of the development of cardiovascular diseases and are more severe in male individuals. A review of the literature also indicates a marked paucity of research in this area in female and elderly individuals. Greater awareness of sex differences in the aging process could help in the development of personalized prevention methods targeting potential pro-arrhythmic factors in patients of both sexes to reduce mortality during the acute phase of myocardial infarction. This is especially important in an era of aging populations in which women will predominate due to their longer lifespan.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
2
|
Witkowski J, Polak S, Rogulski Z, Pawelec D. In Vitro/In Vivo Translation of Synergistic Combination of MDM2 and MEK Inhibitors in Melanoma Using PBPK/PD Modelling: Part II. Int J Mol Sci 2022; 23:11939. [PMID: 36233247 PMCID: PMC9570053 DOI: 10.3390/ijms231911939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
The development of in vitro/in vivo translational methods for synergistically acting drug combinations is needed to identify the most effective therapeutic strategies. We performed PBPK/PD modelling for siremadlin, trametinib, and their combination at various dose levels and dosing schedules in an A375 xenografted mouse model (melanoma cells). In this study, we built models based on in vitro ADME and in vivo PK/PD data determined from the literature or estimated by the Simcyp Animal simulator (V21). The developed PBPK/PD models allowed us to account for the interactions between siremadlin and trametinib at PK and PD levels. The interaction at the PK level was described by an interplay between absorption and tumour disposition levels, whereas the PD interaction was based on the in vitro results. This approach allowed us to reasonably estimate the most synergistic and efficacious dosing schedules and dose levels for combinations of siremadlin and trametinib in mice. PBPK/PD modelling is a powerful tool that allows researchers to properly estimate the in vivo efficacy of the anticancer drug combination based on the results of in vitro studies. Such an approach based on in vitro and in vivo extrapolation may help researchers determine the most efficacious dosing strategies and will allow for the extrapolation of animal PBPK/PD models into clinical settings.
Collapse
Affiliation(s)
- Jakub Witkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Adamed Pharma S.A., Adamkiewicza 6a, 05-152 Czosnów, Poland
| | - Sebastian Polak
- Faculty of Pharmacy, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Zbigniew Rogulski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | | |
Collapse
|
3
|
de Castro Nobre AC, Pimentel CF, do Rêgo GMS, Paludo GR, Pereira Neto GB, de Castro MB, Nitz N, Hecht M, Dallago B, Hagström L. Insights from the use of erythropoietin in experimental Chagas disease. Int J Parasitol Drugs Drug Resist 2022; 19:65-80. [PMID: 35772309 PMCID: PMC9253553 DOI: 10.1016/j.ijpddr.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
In addition to the long-established role in erythropoiesis, erythropoietin (Epo) has protective functions in a variety of tissues, including the heart. This is the most affected organ in chronic Chagas disease, caused by the protozoan Trypanosoma cruzi. Despite seven million people being infected with T. cruzi worldwide, there is no effective treatment preventing the disease progression to the chronic phase when the pathological involvement of the heart is often observed. Chronic chagasic cardiomyopathy has a wide variety of manifestations, like left ventricular systolic dysfunction, dilated cardiomyopathy, and heart failure. Since Epo may help maintain cardiac function by reducing myocardial necrosis, inflammation, and fibrosis, this study aimed to evaluate whether the Epo has positive effects on experimental Chagas disease. For that, we assessed the earlier (acute phase) and also the later (chronic phase) use of Epo in infected C57BL/6 mice. Blood cell count, biochemical parameters, parasitic load, and echocardiography data were evaluated. In addition, histopathological analysis was carried out. Our data showed that Epo had no trypanocide effect nor did it modify the production of anti-T. cruzi antibodies. Epo-treated groups exhibited parasitic burden much lower in the heart compared to blood. No pattern of hematological changes was observed combining infection with treatment with Epo. Chronic Epo administration reduced CK-MB serum activity from d0 to d180, irrespectively of T. cruzi infection. Likewise, echocardiography and histological results indicate that Epo treatment is more effective in the chronic phase of experimental Chagas disease. Since treatment is one of the greatest challenges of Chagas disease, alternative therapies should be investigated, including Epo combined with benznidazole.
Collapse
Affiliation(s)
| | - Carlos Fernando Pimentel
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - George Magno Sousa do Rêgo
- Laboratory of Veterinary Clinical Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Giane Regina Paludo
- Laboratory of Veterinary Clinical Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Glaucia Bueno Pereira Neto
- Veterinary Hospital, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Márcio Botelho de Castro
- Laboratory of Veterinary Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - Bruno Dallago
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil; Veterinary Hospital, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil; Faculty of Physical Education, University of Brasília, Brasília, Brazil.
| |
Collapse
|
4
|
Benigni A, Cassis P, Conti S, Perico L, Corna D, Cerullo D, Zentilin L, Zoja C, Perna A, Lionetti V, Giacca M, Trionfini P, Tomasoni S, Remuzzi G. Sirt3 Deficiency Shortens Life Span and Impairs Cardiac Mitochondrial Function Rescued by Opa1 Gene Transfer. Antioxid Redox Signal 2019; 31:1255-1271. [PMID: 31269804 DOI: 10.1089/ars.2018.7703] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aims: Sirtuins, a family of NAD+-dependent deacetylases, are recognized as nondispensable regulators of aging processes. Sirtuin 3 (SIRT3) is the main mitochondrial deacetylase that maintains mitochondrial bioenergetics, an essential prerequisite for healthy aging. In this study, using Sirt3 knockout (Sirt3-/-) mice, we sought to establish whether Sirt3 deficiency affected life span, an endpoint that has never been tested formally in mammals, and uncover the mechanisms involved in organ damage associated with aging. Results:Sirt3-/- mice experienced a shorter life span than wild-type mice and severe cardiac damage, characterized by hypertrophy and fibrosis, as they aged. No alterations were found in organs other than the heart. Sirt3 deficiency altered cardiac mitochondrial bioenergetics and caused hyperacetylation of optic atrophy 1 (OPA1), a SIRT3 target. These changes were associated with aberrant alignment of trans-mitochondrial cristae in cardiomyocytes, and cardiac dysfunction. Gene transfer of deacetylated Opa1 restored cristae alignment in Sirt3-/- mice, ameliorated cardiac reserve capacity, and protected the heart against hypertrophy and fibrosis. The translational relevance of these findings is in the data showing that SIRT3 silencing in human-induced pluripotent stem cell-derived cardiomyocytes led to mitochondrial dysfunction and altered contractile phenotype, both rescued by Opa1 gene transfer. Innovation: Our findings indicate that future approaches to heart failure could include SIRT3 as a plausible therapeutic target. Conclusion: SIRT3 has a major role in regulating mammalian life span. Sirt3 deficiency leads to cardiac abnormalities, due to defective trans-mitochondrial cristae alignment and impaired mitochondrial bioenergetics. Correcting cardiac OPA1 hyperacetylation through gene transfer diminished heart failure in Sirt3-/- mice during aging. Antioxid. Redox Signal. 31, 1255-1271.
Collapse
Affiliation(s)
- Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Paola Cassis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Sara Conti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Daniela Corna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Domenico Cerullo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Annalisa Perna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,UOS Anesthesia and Intensive Care, Fondazione Toscana "G. Monasterio", Pisa, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Piera Trionfini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Susanna Tomasoni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,L. Sacco' Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Cassis P, Cerullo D, Zanchi C, Corna D, Lionetti V, Giordano F, Novelli R, Conti S, Casieri V, Matteucci M, Locatelli M, Taraboletti G, Villa S, Gastoldi S, Remuzzi G, Benigni A, Zoja C. ADAMTS13 Deficiency Shortens the Life Span of Mice With Experimental Diabetes. Diabetes 2018; 67:2069-2083. [PMID: 29976618 DOI: 10.2337/db17-1508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/18/2018] [Indexed: 11/13/2022]
Abstract
In patients with diabetes, impaired activity of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13), the plasma metalloprotease that cleaves highly thrombogenic von Willebrand factor multimers, is a major risk factor of cardiovascular events. Here, using Adamts13-/- mice made diabetic by streptozotocin, we investigated the impact of the lack of ADAMTS13 on the development of diabetes-associated end-organ complications. Adamts13-/- mice experienced a shorter life span than their diabetic wild-type littermates. It was surprising that animal death was not related to the occurrence of detectable thrombotic events. The lack of ADAMTS13 drastically increased the propensity for ventricular arrhythmias during dobutamine-induced stress in diabetic mice. Cardiomyocytes of diabetic Adamts13-/- mice exhibited an aberrant distribution of the ventricular gap junction connexin 43 and increased phosphorylation of Ca2+/calmodulin-dependent kinase II (CaMKII), and with the consequent CaMKII-induced disturbance in Ca2+ handling, which underlie propensity for arrhythmia. In vitro, thrombospondin 1 (TSP1) promoted, in a paracrine manner, CaMKII phosphorylation in murine HL-1 cardiomyocytes, and ADAMTS13 acted to inhibit TSP1-induced CaMKII activation. In conclusion, the deficiency of ADAMTS13 may underlie the onset of lethal arrhythmias in diabetes through increased CaMKII phosphorylation in cardiomyocytes. Our findings disclose a novel function for ADAMTS13 beyond its antithrombotic activity.
Collapse
Affiliation(s)
- Paola Cassis
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Domenico Cerullo
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Cristina Zanchi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Daniela Corna
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- UOS Anesthesia and Intensive Care, Fondazione Toscana "G. Monasterio," Pisa, Italy
| | - Fabrizio Giordano
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Rubina Novelli
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Sara Conti
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | | | - Marco Matteucci
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Monica Locatelli
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giulia Taraboletti
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Sebastian Villa
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Sara Gastoldi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale (ASST), Papa Giovanni XXIII, Bergamo, Italy
- "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Ariela Benigni
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Carlamaria Zoja
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
6
|
Toischer K, Zhu W, Hünlich M, Mohamed BA, Khadjeh S, Reuter SP, Schäfer K, Ramanujam D, Engelhardt S, Field LJ, Hasenfuss G. Cardiomyocyte proliferation prevents failure in pressure overload but not volume overload. J Clin Invest 2017; 127:4285-4296. [PMID: 29083322 DOI: 10.1172/jci81870] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/26/2017] [Indexed: 12/17/2022] Open
Abstract
Induction of the cell cycle is emerging as an intervention to treat heart failure. Here, we tested the hypothesis that enhanced cardiomyocyte renewal in transgenic mice expressing cyclin D2 would be beneficial during hemodynamic overload. We induced pressure overload by transthoracic aortic constriction (TAC) or volume overload by aortocaval shunt in cyclin D2-expressing and WT mice. Although cyclin D2 expression dramatically improved survival following TAC, it did not confer a survival advantage to mice following aortocaval shunt. Cardiac function decreased following TAC in WT mice, but was preserved in cyclin D2-expressing mice. On the other hand, cardiac structure and function were compromised in response to aortocaval shunt in both WT and cyclin D2-expressing mice. The preserved function and improved survival in cyclin D2-expressing mice after TAC was associated with an approximately 50% increase in cardiomyocyte number and exaggerated cardiac hypertrophy, as indicated by increased septum thickness. Aortocaval shunt did not further impact cardiomyocyte number in mice expressing cyclin D2. Following TAC, cyclin D2 expression attenuated cardiomyocyte hypertrophy, reduced cardiomyocyte apoptosis, fibrosis, calcium/calmodulin-dependent protein kinase IIδ phosphorylation, brain natriuretic peptide expression, and sustained capillarization. Thus, we show that cyclin D2-induced cardiomyocyte renewal reduced myocardial remodeling and dysfunction after pressure overload but not after volume overload.
Collapse
Affiliation(s)
- Karl Toischer
- Department of Cardiology and Pneumology, Heart Center, Georg-August-University, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Goettingen, Goettingen, Germany
| | - Wuqiang Zhu
- Krannert Institute of Cardiology and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark Hünlich
- Department of Cardiology and Pneumology, Heart Center, Georg-August-University, Goettingen, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, Heart Center, Georg-August-University, Goettingen, Germany.,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sara Khadjeh
- Department of Cardiology and Pneumology, Heart Center, Georg-August-University, Goettingen, Germany
| | - Sean P Reuter
- Krannert Institute of Cardiology and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Katrin Schäfer
- Department of Cardiology and Pneumology, Heart Center, Georg-August-University, Goettingen, Germany.,Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Loren J Field
- Krannert Institute of Cardiology and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, Heart Center, Georg-August-University, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Goettingen, Goettingen, Germany
| |
Collapse
|
7
|
Casieri V, Matteucci M, Cavallini C, Torti M, Torelli M, Lionetti V. Long-term Intake of Pasta Containing Barley (1-3)Beta-D-Glucan Increases Neovascularization-mediated Cardioprotection through Endothelial Upregulation of Vascular Endothelial Growth Factor and Parkin. Sci Rep 2017; 7:13424. [PMID: 29044182 PMCID: PMC5647408 DOI: 10.1038/s41598-017-13949-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/03/2017] [Indexed: 01/17/2023] Open
Abstract
Barley (1-3)β-D-Glucan (BBG) enhances angiogenesis. Since pasta is very effective in providing a BBG-enriched diet, we hypothesized that the intake of pasta containing 3% BBG (P-BBG) induces neovascularization-mediated cardioprotection. Healthy adult male C57BL/6 mice fed P-BBG (n = 15) or wheat pasta (Control, n = 15) for five-weeks showed normal glucose tolerance and cardiac function. With a food intake similar to the Control, P-BBG mice showed a 109% survival rate (P < 0.01 vs. Control) after cardiac ischemia (30 min)/reperfusion (60 min) injury. Left ventricular (LV) anion superoxide production and infarct size in P-BBG mice were reduced by 62 and 35% (P < 0.0001 vs. Control), respectively. The capillary and arteriolar density of P-BBG hearts were respectively increased by 12 and 18% (P < 0.05 vs. Control). Compared to the Control group, the VEGF expression in P-BBG hearts was increased by 87.7% (P < 0.05); while, the p53 and Parkin expression was significantly increased by 125% and cleaved caspase-3 levels were reduced by 33% in P-BBG mice. In vitro, BBG was required to induce VEGF, p53 and Parkin expression in human umbelical vascular endothelial cells. Moreover, the BBG-induced Parkin expression was not affected by pifithrin-α (10 uM/7days), a p53 inhibitor. In conclusion, long-term dietary supplementation with P-BBG confers post-ischemic cardioprotection through endothelial upregulation of VEGF and Parkin.
Collapse
Affiliation(s)
| | - Marco Matteucci
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claudia Cavallini
- ATTRE (Advanced Therapies and Tissue Regeneration) Laboratory, Innovation Accelerator CNR, Bologna, Italy
| | - Milena Torti
- Research and Development Unit, Pastificio Attilio Matromauro Granoro s.r.l, Corato, Italy
| | - Michele Torelli
- Research and Development Unit, Pastificio Attilio Matromauro Granoro s.r.l, Corato, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy. .,UOS Anesthesia and Intensive Care, Fondazione Toscana "G. Monasterio", Pisa, Italy.
| |
Collapse
|
8
|
Jones S, Mann A, Worley MC, Fulford L, Hall D, Karani R, Jiang M, Robbins N, Rubinstein J, Koch SE. The role of transient receptor potential vanilloid 2 channel in cardiac aging. Aging Clin Exp Res 2017; 29:863-873. [PMID: 27804106 DOI: 10.1007/s40520-016-0663-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aging heart is characterized by cellular and molecular changes leading to a decline in physiologic function and cardiac remodeling, specifically the development of myocyte hypertrophy and fibrosis. Transient receptor potential vanilloid 2 (TRPV2), a stretch-mediated channel and regulator of calcium homeostasis, plays a key role in the function and structure of the heart. TRPV2 also plays an important role in the adaptive and maladaptive compensatory mechanisms of the heart in response to pathologic and exercise-induced stress. Our current study seeks to elucidate the potential role of TRPV2 channels in the regulation of cardiac function in aging. METHODS Wild-type (WT) and TRPV2 functional knockout (FKO) mice were aged out to various time points, and their cardiac function was measured using advanced echocardiography. Furthermore, we histologically analyzed the heart morphology to determine myocyte hypertrophy, the development of fibrosis and the relative expression of TRPV2. RESULTS Our results demonstrate that even though TRPV2-FKO mice have impaired function at baseline, their cardiac function as measured via standard and advanced echocardiographic parameters (ejection fraction, cardiac output and circumferential strain) decreased less with aging in comparison with the WT group. Furthermore, there was less fibrosis and hypertrophy in the TRPV2-FKO group with aging in comparison with the WT. The expression of TRPV2 in the WT group did not significantly change with aging. CONCLUSIONS TRPV2 functional deletion is compatible with aging and associated with a decreased development of myocyte hypertrophy and fibrosis. It may be an important target for prevention of age-induced cardiac remodeling.
Collapse
Affiliation(s)
- Shannon Jones
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA
| | - Adrien Mann
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA
| | - Mariah C Worley
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA
| | - Logan Fulford
- Department of Pathobiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - David Hall
- Department of Nutritional Sciences College of Allied Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Rajiv Karani
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA
| | - Min Jiang
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA
| | - Nathan Robbins
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA
| | - Sheryl E Koch
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA.
| |
Collapse
|
9
|
Sex differences in SR Ca(2+) release in murine ventricular myocytes are regulated by the cAMP/PKA pathway. J Mol Cell Cardiol 2014; 75:162-73. [PMID: 25066697 DOI: 10.1016/j.yjmcc.2014.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/26/2014] [Accepted: 07/15/2014] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that ventricular myocytes from female rats have smaller contractions and Ca(2+) transients than males. As cardiac contraction is regulated by the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway, we hypothesized that sex differences in cAMP contribute to differences in Ca(2+) handling. Ca(2+) transients (fura-2) and ionic currents were measured simultaneously (37°C, 2Hz) in ventricular myocytes from adult male and female C57BL/6 mice. Under basal conditions, diastolic Ca(2+), sarcoplasmic reticulum (SR) Ca(2+) stores, and L-type Ca(2+) current did not differ between the sexes. However, female myocytes had smaller Ca(2+) transients (26% smaller), Ca(2+) sparks (6% smaller), and excitation-contraction coupling gain in comparison to males (23% smaller). Interestingly, basal levels of intracellular cAMP were lower in female myocytes (0.7±0.1 vs. 1.7±0.2fmol/μg protein; p<0.001). Importantly, PKA inhibition (2μM H-89) eliminated male-female differences in Ca(2+) transients and gain, as well as Ca(2+) spark amplitude. Western blots showed that PKA inhibition also reduced the ratio of phospho:total RyR2 in male hearts, but not in female hearts. Stimulation of cAMP production with 10μM forskolin abolished sex differences in cAMP levels, as well as differences in Ca(2+) transients, sparks, and gain. To determine if the breakdown of cAMP differed between the sexes, phosphodiesterase (PDE) mRNA levels were measured. PDE3 expression was similar in males and females, but PDE4B expression was higher in female ventricles. The inhibition of cAMP breakdown by PDE4 (10μM rolipram) abolished differences in Ca(2+) transients and gain. These findings suggest that female myocytes have lower levels of basal cAMP due, in part, to higher expression of PDE4B. Lower cAMP levels in females may attenuate PKA phosphorylation of Ca(2+) handling proteins in females, and may limit positive inotropic responses to stimulation of the cAMP/PKA pathway in female hearts.
Collapse
|
10
|
Domínguez E, Ruberte J, Ríos J, Novellas R, Del Alamo MMR, Navarro M, Espada Y. Non-invasive in vivo measurement of cardiac output in C57BL/6 mice using high frequency transthoracic ultrasound: evaluation of gender and body weight effects. Int J Cardiovasc Imaging 2014; 30:1237-44. [PMID: 24852337 DOI: 10.1007/s10554-014-0454-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/16/2014] [Indexed: 01/13/2023]
Abstract
Even though mice are being increasingly used as models for human cardiovascular diseases, non-invasive monitoring of cardiovascular parameters such as cardiac output (CO) in this species is challenging. In most cases, the effects of gender and body weight (BW) on these parameters have not been studied. The objective of this study was to provide normal reference values for CO in C57BL/6 mice, and to describe possible gender and/or BW associated differences between them. We used 30-MHz transthoracic Doppler ultrasound to measure hemodynamic parameters in the ascending aorta [heart rate (HR), stroke volume (SV), stroke index (SI), CO, and cardiac index (CI)] in ten anesthetized mice of either sex. No differences were found for HR, SV, and CO. Both SI and CI were statistically lower in males. However, after normalization for BW, these differences disappeared. These results suggest that if comparisons of cardiovascular parameters are to be made between male and female mice, values should be standardized for BW.
Collapse
Affiliation(s)
- Elisabet Domínguez
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Edifici V, Campus, 08193, Barcelona, Spain,
| | | | | | | | | | | | | |
Collapse
|
11
|
Boulaksil M, Winckels SK, Engelen MA, Stein M, van Veen TA, Jansen JA, Linnenbank AC, Bierhuizen MF, Groenewegen WA, van Oosterhout MF, Kirkels JH, de Jonge N, Varró A, Vos MA, de Bakker JM, van Rijen HV. Heterogeneous Connexin43 distribution in heart failure is associated with dispersed conduction and enhanced susceptibility to ventricular arrhythmias. Eur J Heart Fail 2014; 12:913-21. [DOI: 10.1093/eurjhf/hfq092] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Mohamed Boulaksil
- Interuniversity Cardiology Institute of The Netherlands; Utrecht The Netherlands
- Division of Heart and Lungs, Department of Medical Physiology; University Medical Center Utrecht; Yalelaan 50 3584 CM Utrecht The Netherlands
| | - Stephan K.G. Winckels
- Division of Heart and Lungs, Department of Medical Physiology; University Medical Center Utrecht; Yalelaan 50 3584 CM Utrecht The Netherlands
- Division Laboratory, Department of Pathology; University Medical Center Utrecht; Utrecht The Netherlands
| | - Markus A. Engelen
- Division of Heart and Lungs, Department of Medical Physiology; University Medical Center Utrecht; Yalelaan 50 3584 CM Utrecht The Netherlands
- Department of Cardiology and Angiology; Hospital of the University of Muenster; Muenster Germany
| | - Mèra Stein
- Division of Heart and Lungs, Department of Medical Physiology; University Medical Center Utrecht; Yalelaan 50 3584 CM Utrecht The Netherlands
- Division of Heart and Lungs, Department of Cardiology; University Medical Center Utrecht; Utrecht The Netherlands
| | - Toon A.B. van Veen
- Division of Heart and Lungs, Department of Medical Physiology; University Medical Center Utrecht; Yalelaan 50 3584 CM Utrecht The Netherlands
| | - John A. Jansen
- Division of Heart and Lungs, Department of Medical Physiology; University Medical Center Utrecht; Yalelaan 50 3584 CM Utrecht The Netherlands
| | - André C. Linnenbank
- Interuniversity Cardiology Institute of The Netherlands; Utrecht The Netherlands
- Heart Failure Research Center; Academic Medical Center; Amsterdam The Netherlands
| | - Marti F.A. Bierhuizen
- Division of Heart and Lungs, Department of Medical Physiology; University Medical Center Utrecht; Yalelaan 50 3584 CM Utrecht The Netherlands
| | - W. Antoinette Groenewegen
- Division of Heart and Lungs, Department of Medical Physiology; University Medical Center Utrecht; Yalelaan 50 3584 CM Utrecht The Netherlands
| | | | - Johannes H. Kirkels
- Division of Heart and Lungs, Department of Cardiology; University Medical Center Utrecht; Utrecht The Netherlands
| | - Nicolaas de Jonge
- Division of Heart and Lungs, Department of Cardiology; University Medical Center Utrecht; Utrecht The Netherlands
| | - András Varró
- Department of Pharmacology and Pharmacotherapy; University of Szeged; Szeged Hungary
- Division for Cardiovascular Pharmacology; Hungarian Academy of Sciences; Szeged Hungary
| | - Marc A. Vos
- Division of Heart and Lungs, Department of Medical Physiology; University Medical Center Utrecht; Yalelaan 50 3584 CM Utrecht The Netherlands
| | - Jacques M.T. de Bakker
- Interuniversity Cardiology Institute of The Netherlands; Utrecht The Netherlands
- Division of Heart and Lungs, Department of Medical Physiology; University Medical Center Utrecht; Yalelaan 50 3584 CM Utrecht The Netherlands
- Heart Failure Research Center; Academic Medical Center; Amsterdam The Netherlands
| | - Harold V.M. van Rijen
- Division of Heart and Lungs, Department of Medical Physiology; University Medical Center Utrecht; Yalelaan 50 3584 CM Utrecht The Netherlands
| |
Collapse
|
12
|
Koch SE, Haworth KJ, Robbins N, Smith MA, Lather N, Anjak A, Jiang M, Varma P, Jones WK, Rubinstein J. Age- and gender-related changes in ventricular performance in wild-type FVB/N mice as evaluated by conventional and vector velocity echocardiography imaging: a retrospective study. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:2034-2043. [PMID: 23791351 PMCID: PMC4857602 DOI: 10.1016/j.ultrasmedbio.2013.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 03/28/2013] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
Detailed studies in animal models to assess the importance of aging animals in cardiovascular research are rather scarce. The increase in mouse models used to study cardiovascular disease makes the establishment of physiologic aging parameters in myocardial function in both male and female mice critical. Forty-four FVB/N mice were studied at multiple time points between the ages of 3 and 16 mo using high-frequency echocardiography. Our study found that there is an age-dependent decrease in several systolic and diastolic function parameters in male mice, but not in female mice. This study establishes the physiologic age- and gender-related changes in myocardial function that occur in mice and can be measured with echocardiography. We report baseline values for traditional echocardiography and advanced echocardiographic techniques to measure discrete changes in cardiac function in the commonly employed FVB/N strain.
Collapse
Affiliation(s)
- Sheryl E. Koch
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin J. Haworth
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
- Biomedical Engineering Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nathan Robbins
- Emergency Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Margaret A. Smith
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Navneet Lather
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ahmad Anjak
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Min Jiang
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Priyanka Varma
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - W. Keith Jones
- Department of Pharmacology & Cell Biophysics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jack Rubinstein
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Nelson OL, Rourke BC. Increase in cardiac myosin heavy-chain (MyHC) alpha protein isoform in hibernating ground squirrels, with echocardiographic visualization of ventricular wall hypertrophy and prolonged contraction. ACTA ACUST UNITED AC 2013; 216:4678-90. [PMID: 24072796 DOI: 10.1242/jeb.088773] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deep hibernators such as golden-mantled ground squirrels (Callospermophilus lateralis) have multiple challenges to cardiac function during low temperature torpor and subsequent arousals. As heart rates fall from over 300 beats min(-1) to less than 10, chamber dilation and reduced cardiac output could lead to congestive myopathy. We performed echocardiography on a cohort of individuals prior to and after several months of hibernation. The left ventricular chamber exhibited eccentric and concentric hypertrophy during hibernation and thus calculated ventricular mass was ~30% greater. Ventricular ejection fraction was mildly reduced during hibernation but stroke volumes were greater due to the eccentric hypertrophy and dramatically increased diastolic filling volumes. Globally, the systolic phase in hibernation was ~9.5 times longer, and the diastolic phase was 28× longer. Left atrial ejection generally was not observed during hibernation. Atrial ejection returned weakly during early arousal. Strain echocardiography assessed the velocity and total movement distance of contraction and relaxation for regional ventricular segments in active and early arousal states. Myocardial systolic strain during early arousal was significantly greater than the active state, indicating greater total contractile movement. This mirrored the increased ventricular ejection fraction noted with early arousal. However, strain rates were slower during early arousal than during the active period, particularly systolic strain, which was 33% of active, compared with the rate of diastolic strain, which was 67% of active. As heart rate rose during the arousal period, myocardial velocities and strain rates also increased; this was matched closely by cardiac output. Curiously, though heart rates were only 26% of active heart rates during early arousal, the cardiac output was nearly 40% of the active state, suggesting an efficient pumping system. We further analyzed proportions of cardiac myosin heavy-chain (MyHC) isoforms in a separate cohort of squirrels over 5 months, including time points before hibernation, during hibernation and just prior to emergence. Hibernating individuals were maintained in both a 4°C cold room and a 20°C warm room. Measured by SDS-PAGE, relative percentages of cardiac MyHC alpha were increased during hibernation, at both hibernacula temperatures. A potential increase in contractile speed, and power, from more abundant MyHC alpha may aid force generation at low temperature and at low heart rates. Unlike many models of cardiomyopathies where the alpha isoform is replaced by the beta isoform in order to reduce oxygen consumption, ground squirrels demonstrate a potential cardioprotective mechanism to maintain cardiac output during torpor.
Collapse
Affiliation(s)
- O Lynne Nelson
- College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | | |
Collapse
|
14
|
Lairez O, Lonjaret L, Ruiz S, Marchal P, Franchitto N, Calise D, Fourcade O, Mialet-Perez J, Parini A, Minville V. Anesthetic regimen for cardiac function evaluation by echocardiography in mice: comparison between ketamine, etomidate and isoflurane versus conscious state. Lab Anim 2013; 47:284-90. [PMID: 23864007 DOI: 10.1177/0023677213496236] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mice with genetic alterations are used in heart research for the extrapolation of human diseases. Echocardiography is an essential tool for evaluating cardiac and hemodynamic functions in small animals. The purpose of this study was to compare the effect of different anesthetic regimens and the conscious state on the evaluation of cardiac function by echocardiography. Mice were examined in the conscious state after three days of training, and then for a 7 min period after a single intraperitoneal injection of ketamine at 100 mg/kg, etomidate at 10, 20 or 30 mg/kg, or after inhalation of isoflurane at 1.5% with or without a short period of induction with isoflurane 3%. Intra- and inter-observer variabilities were assessed. The operator's comfort was also assessed. Heart rate, left ventricular end diastolic diameter, fraction shortening and cardiac output were measured using echocardiography. Ketamine at 5 and 7 min after induction and isoflurane at 3, 5 and 7 min after induction provided good anesthetic conditions and a quick awakening time, and did not influence cardiac performance, whereas the conscious state was associated with a non-physiological sympathetic activation and other anesthetic drugs induced a significant decrease in heart rate. Etomidate 10 mg/kg and 20 mg/kg were not enough to provide adequate anesthesia. Etomidate 30 mg/kg induced a good anesthetic condition but influenced cardiac performance and had a long awakening time. Our results indicate that ketamine and isoflurane with a short induction period are better anesthetic drugs than isoflurane without induction or etomidate for evaluating cardiac function in healthy mice.
Collapse
Affiliation(s)
- Olivier Lairez
- Department of Cardiology, Toulouse University Hospital, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Transthoracic echocardiography reference values in juvenile and adult 129/Sv mice. Cardiovasc Ultrasound 2013; 11:12. [PMID: 23634975 PMCID: PMC3651272 DOI: 10.1186/1476-7120-11-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/26/2013] [Indexed: 11/29/2022] Open
Abstract
Background In the recent years, the use of Doppler-echocardiography has become a standard non-invasive technique in the analysis of cardiac malformations in genetically modified mice. Therefore, normal values have to be established for the most commonly used inbred strains in whose genetic background those mutations are generated. Here we provide reference values for transthoracic echocardiography measurements in juvenile (3 weeks) and adult (8 weeks) 129/Sv mice. Methods Echocardiographic measurements were performed using B-mode, M-mode and Doppler-mode in 15 juvenile (3 weeks) and 15 adult (8 weeks) mice, during isoflurane anesthesia. M-mode measurements variability of left ventricle (LV) was determined. Results Several echocardiographic measurements significantly differ between juvenile and adult mice. Most of these measurements are related with cardiac dimensions. All B-mode measurements were different between juveniles and adults (higher in the adults), except for fractional area change (FAC). Ejection fraction (EF) and fractional shortening (FS), calculated from M-mode parameters, do not differ between juvenile and adult mice. Stroke volume (SV) and cardiac output (CO) were significantly different between juvenile and adult mice. SV was 31.93 ± 8.67 μl in juveniles vs 70.61 ± 24.66 μl in adults, ρ < 0.001. CO was 12.06 ± 4.05 ml/min in juveniles vs 29.71 ± 10.13 ml/min in adults, ρ < 0.001. No difference was found in mitral valve (MV) and tricuspid valve (TV) related parameters between juvenile and adult mice. It was demonstrated that variability of M-mode measurements of LV is minimal. Conclusions This study suggests that differences in cardiac dimensions, as wells as in pulmonary and aorta outflow parameters, were found between juvenile and adult mice. However, mitral and tricuspid inflow parameters seem to be similar between 3 weeks and 8 weeks mice. The reference values established in this study would contribute as a basis to future studies in post-natal cardiovascular development and diagnosing cardiovascular disorders in genetically modified mouse mutant lines.
Collapse
|
16
|
Meissner M, Wolters H, de Boer RA, Havinga R, Boverhof R, Bloks VW, Kuipers F, Groen AK. Bile acid sequestration normalizes plasma cholesterol and reduces atherosclerosis in hypercholesterolemic mice. No additional effect of physical activity. Atherosclerosis 2013; 228:117-23. [PMID: 23497783 DOI: 10.1016/j.atherosclerosis.2013.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 01/14/2013] [Accepted: 02/11/2013] [Indexed: 01/06/2023]
Abstract
AIMS Bile acid sequestrants (BAS) and physical activity (RUN) decrease incidence of cardiovascular events. Both treatments are often prescribed, yet it is not known whether their beneficial effects are additive. We assessed the effects of BAS treatment alone and in combination with RUN on cholesterol metabolism, heart function and atherosclerotic lesion size in hypercholesterolemic mice. METHODS Male Ldlr-deficient mice remained either sedentary (CONTROL), were treated with Colesevelam HCl (BAS), had access to a running wheel (RUN), or were exposed to BAS and RUN (BAS RUN). All groups were fed a high cholesterol diet for 12 weeks. Then, feces, bile and plasma were collected. Atherosclerotic lesion size was determined in the aortic arch and heart function by echocardiography. RESULTS BAS RUN ran more than RUN (6.4 ± 1.4 vs. 3.5 ± 1.0 km/day, p < 0.05). BAS and BAS RUN displayed ~3-fold reductions in plasma cholesterol levels (p < 0.001), ~2.5-fold increases in fecal neutral sterol (p < 0.001) and bile acid (p = 0.01) outputs, decreases in biliary secretions of cholesterol (~6-fold, p < 0.0001) and bile acids (~2-fold, p < 0.001) vs. CONTROL while no significant effects were observed in RUN. Compared to CONTROL, lesion size decreased by 78% in both BAS and BAS RUN, (p < 0.0001). CONCLUSION BAS reduce atherosclerosis in Ldlr-deficient mice, coinciding with a switch from body cholesterol accumulation to cholesterol loss. RUN slightly modulated atherosclerotic lesion formation but the combination of BAS and RUN had no clear additive effects in this respect.
Collapse
Affiliation(s)
- Maxi Meissner
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sex differences in mechanisms of cardiac excitation-contraction coupling. Pflugers Arch 2013; 465:747-63. [PMID: 23417603 PMCID: PMC3651827 DOI: 10.1007/s00424-013-1233-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 11/25/2022]
Abstract
The incidence and expression of cardiovascular diseases differs between the sexes. This is not surprising, as cardiac physiology differs between men and women. Clinical and basic science investigations have shown important sex differences in cardiac structure and function. The pervasiveness of sex differences suggests that such differences must be fundamental, likely operating at a cellular level. Indeed, studies have shown that isolated ventricular myocytes from female animals have smaller and slower contractions and underlying calcium transients compared to males. Recent evidence suggests that this arises from sex differences in components of the cardiac excitation–contraction coupling pathway, the sequence of events linking myocyte depolarization to calcium release from the sarcoplasmic reticulum and subsequent contraction. The concept that sex hormones may regulate intracellular calcium at the level of the cardiomyocyte is important, as levels of these hormones decline in both men and women as the incidence of cardiovascular disease rises. This review focuses on the impact of sex on cardiac contraction, in particular at the cellular level, and highlights specific components of the excitation–contraction coupling pathway that differ between the sexes. Understanding sex hormone regulation of calcium homeostasis in the heart may reveal new avenues for therapeutic strategies to treat cardiac dysfunction and cardiovascular diseases.
Collapse
|
18
|
Zhu H, Zhang J, Shih J, Lopez-Bertoni F, Hagaman JR, Maeda N, Friedman MH. Differences in aortic arch geometry, hemodynamics, and plaque patterns between C57BL/6 and 129/SvEv mice. J Biomech Eng 2010; 131:121005. [PMID: 20524728 DOI: 10.1115/1.4000168] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atherosclerotic plaques are distributed differently in the aortic arches of C57BL/6 (B6) and 129/SvEv (129) apolipoprotein E (apoE)-deficient mice. It is now recognized that hemodynamic wall shear stress (WSS) plays an important role in the localization of atherosclerotic development. Since the blood flow field in the vessel is modulated by the vascular geometry, we quantitatively examined the difference in the aortic arch geometry and hemodynamic WSS between the two corresponding wild-type mouse strains. The three-dimensional (3D) geometry of 14 murine aortic arches, seven from each strain, was characterized using casts and stereo microscopic imaging. Based on the geometry of each cast, an average 3D geometry of the aortic arch for each mouse strain was obtained, and computational fluid dynamic calculations were performed in the two average aortic arches. Many geometric features, including aortic arch shape, vessel diameter, and branch locations, were significantly different at p<0.05 between the two mouse strains. Lower shear stress was found at the inner curvature of the aortic arch in the 129 strain, corresponding to greater involvement in the corresponding apoE-deficient mice relative to the B6 strain. These results support the notion that heritable features of arterial geometry can contribute to individual differences in local susceptibility to arterial disease.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0281
| | | | | | | | | | | | | |
Collapse
|
19
|
Feasibility of functional cardiac MR imaging in mice using a clinical 3 Tesla whole body scanner. Invest Radiol 2010; 44:749-56. [PMID: 19838122 DOI: 10.1097/rli.0b013e3181b2c135] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To test the feasibility of cardiac MR imaging in mice using a clinical 3 Tesla whole body MR system for structural and functional analysis. Standard protocols for bright blood cine imaging were adapted for murine dimensions. To validate measurements of functional parameters the MR data were compared with high-resolution echocardiographic measurements. MATERIALS AND METHODS Cardiac imaging was carried out in CD 1 wild-type mice (n = 8). MR imaging studies were performed using a clinical 3 Tesla MR system (Achieva, Philips). All mice received 2 MR scans and 1 echocardiographic evaluation. For optimal MR signal detection a dedicated solenoid receive-only coil was used. Electrocardiogram signal was recorded using a dedicated small animal electrocardiogram monitoring unit. For imaging we used a retrospectively triggered TFE sequence with a repetition time of 12 ms and an echo time of 4 ms. A dedicated software patch allowed for triggering of cardiac frequency of up to 600 BPM. Doppler-echocardiography was performed using a VisualSonics Vevo 770 high-resolution imaging system with a 30 MHz scanhead. Axial/lateral resolution was 40 of 100 microm and temporal resolution was 150 to 300 frames/s (B-mode) and 1000 frames/s (M-mode) depending on the setting. RESULTS MR imaging was successfully carried out in all mice with a sufficient temporal resolution and good signal-to-noise ratio and contrast-to-noise ratio levels allowing for identification of all relevant structures. Accordingly, there was a good scan-rescan reproducibility of MR measurements: Interassay coefficients of variance ranged from 4% for ejection fraction to 12% for endsystolic volume (ESV). Magnetic resonance imaging and echocardiography gave comparable results when using the same geometric model (Teichholz method): EDV: 60.2 +/- 6.1 microL/59.1 +/- 12.3 microL, ESV: 20.0 +/- 2.6 microL/20.7 +/- 7.7 microL, EF: 66.7% +/- 4.0%/65.2% +/- 9.9%, CO 19.5 +/- 3.6 mL/17.9 +/- 2.9 mL. Bland-Altman analysis gave acceptable limits of agreement between both methods: EDV (+28.2/-26.1), ESV (+16.3/-17.7), EF (+19.0/-16.1), CO (10.7/-7.5). When applying the Simpson's method MR volume estimates were significantly higher compared with echocardiography resulting in a lower estimate for the ejection fraction (60% +/- 3.9% vs. 66.7% +/- 4.0%). CONCLUSIONS Cardiac MR imaging of mice using a clinical 3 Tesla MR system for functional analysis is feasible with sufficient spatial and temporal resolution, good repeatability and reliable results when compared with high-resolution echocardiography.
Collapse
|
20
|
Stein M, Boulaksil M, Jansen JA, Herold E, Noorman M, Joles JA, van Veen TAB, Houtman MJC, Engelen MA, Hauer RNW, de Bakker JMT, van Rijen HVM. Reduction of fibrosis-related arrhythmias by chronic renin-angiotensin-aldosterone system inhibitors in an aged mouse model. Am J Physiol Heart Circ Physiol 2010; 299:H310-21. [PMID: 20435847 DOI: 10.1152/ajpheart.01137.2009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Myocardial fibrosis increases arrhythmia vulnerability of the diseased heart. The renin-angiotensin-aldosterone system (RAAS) governs myocardial collagen synthesis. We hypothesized that reducing cardiac fibrosis by chronic RAAS inhibition would result in reduced arrhythmia vulnerability of the senescent mouse heart. Wild-type mice (52 wk old) were treated for 36 wk: 1) untreated control (C); 2) eplerenone (E); 3) losartan (L); and 4) cotreatment with eplerenone and losartan (EL). Ventricular epicardial activation mapping was performed on Langendorff-perfused hearts. Arrhythmia inducibility was tested by one to three premature stimuli and burst pacing. Longitudinal and transverse conduction velocity and dispersion of conduction were determined during pacing at a basic cycle length of 150 ms. Sirius red staining (collagen) was performed. As a result, in the RV of mice in the E, L, and EL groups, transverse conduction velocity was significantly increased and anisotropic ratio was significantly decreased compared with those values of mice in the C group. Anisotropic reentrant arrhythmias were induced in 52% of untreated mice and significantly reduced to 22%, 26%, and 16% in the E, L, and EL groups, respectively. Interstitial fibrosis was significantly decreased in both the RV and LV of all treated groups. Scattered patches of replacement fibrosis were found in 90% of untreated hearts, which were significantly reduced in the E, L, and EL groups. A strong correlation between the abundance of patchy fibrosis and arrhythmia inducibility was found. In conclusion, chronic RAAS inhibition limited aging-related interstitial fibrosis. The lower arrhythmogeneity of treated mice was directly correlated to the reduced amount of patchy fibrosis.
Collapse
Affiliation(s)
- Mera Stein
- Div. of Heart & Lungs, Dept. of Medical, Physiology, Univ. Medical Ctr. Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kuhn M, Völker K, Schwarz K, Carbajo-Lozoya J, Flögel U, Jacoby C, Stypmann J, van Eickels M, Gambaryan S, Hartmann M, Werner M, Wieland T, Schrader J, Baba HA. The natriuretic peptide/guanylyl cyclase--a system functions as a stress-responsive regulator of angiogenesis in mice. J Clin Invest 2009; 119:2019-30. [PMID: 19487812 DOI: 10.1172/jci37430] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 04/08/2009] [Indexed: 12/22/2022] Open
Abstract
Cardiac atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) modulate blood pressure and volume by activation of the receptor guanylyl cyclase-A (GC-A) and subsequent intracellular cGMP formation. Here we report what we believe to be a novel function of these peptides as paracrine regulators of vascular regeneration. In mice with systemic deletion of the GC-A gene, vascular regeneration in response to critical hind limb ischemia was severely impaired. Similar attenuation of ischemic angiogenesis was observed in mice with conditional, endothelial cell-restricted GC-A deletion (here termed EC GC-A KO mice). In contrast, smooth muscle cell-restricted GC-A ablation did not affect ischemic neovascularization. Immunohistochemistry and RT-PCR revealed BNP expression in activated satellite cells within the ischemic muscle, suggesting that local BNP elicits protective endothelial effects. Since within the heart, BNP is mainly induced in cardiomyocytes by mechanical load, we investigated whether the natriuretic peptide/GC-A system also regulates angiogenesis accompanying load-induced cardiac hypertrophy. EC GC-A KO hearts showed diminished angiogenesis, mild fibrosis, and diastolic dysfunction. In vitro BNP/GC-A stimulated proliferation and migration of cultured microvascular endothelia by activating cGMP-dependent protein kinase I and phosphorylating vasodilator-stimulated phosphoprotein and p38 MAPK. We therefore conclude that BNP, produced by activated satellite cells within ischemic skeletal muscle or by cardiomyocytes in response to pressure load, regulates the regeneration of neighboring endothelia via GC-A. This paracrine communication might be critically involved in coordinating muscle regeneration/hypertrophy and angiogenesis.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Stypmann J, Engelen MA, Troatz C, Rothenburger M, Eckardt L, Tiemann K. Echocardiographic assessment of global left ventricular function in mice. Lab Anim 2009; 43:127-37. [DOI: 10.1258/la.2007.06001e] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Doppler-echocardiographic assessment of cardiovascular structure and function in murine models has developed into one of the most commonly used non-invasive techniques during the last decades. Recent technical improvements even expanded the possibilities. In this review, we summarize the current options to assess global left ventricular (LV) function in mice using echocardiographic techniques. In detail, standard techniques as structural and functional assessment of the cardiovascular phenotype using one-dimensional M-mode echocardiography, two-dimensional B-mode echocardiography and spectral Doppler signals from mitral inflow respective aortal outflow are presented. Further pros and contras of recently implemented techniques as three-dimensional echocardiography and strain and strain rate measurements are discussed. Deduced measures of LV function as the myocardial performance index according to Tei, estimation of the mean velocity of circumferential fibre shortening, LV wall stress and different algorithms to estimate the LV mass are described in detail. Last but not least, specific features and limitations of murine echocardiography are presented. Future perspectives in respect to new examination techniques like targeted molecular imaging with advanced ultrasound contrast bubbles or improvement of equipment like new generation matrix transducers for murine echocardiography are discussed.
Collapse
Affiliation(s)
- Jörg Stypmann
- Department of Cardiology and Angiology, Hospital of the University of Münster, Albert-Schweitzer-Str. 33, D-48149 Münster, Germany
- Interdisciplinary Centre for Clinical Research, Central Project Group (ZPG 4a), Westfälische Wilhelms Universität, Münster, Germany
- Collaborative Research Centre (SFB) 656, Project C3, Münster, Germany
| | - Markus A Engelen
- Department of Cardiology and Angiology, Hospital of the University of Münster, Albert-Schweitzer-Str. 33, D-48149 Münster, Germany
- University Medical Center Utrecht, Department of Medical Physiology, Utrecht, The Netherlands
| | - Clemens Troatz
- Collaborative Research Centre (SFB) 656, Project C3, Münster, Germany
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, University of Bonn, Bonn, Germany
| | - Markus Rothenburger
- Department of Thoracic and Cardiovascular Surgery, University Hospital, Münster, Münster, Germany
| | - Lars Eckardt
- Department of Cardiology and Angiology, Hospital of the University of Münster, Albert-Schweitzer-Str. 33, D-48149 Münster, Germany
| | - Klaus Tiemann
- Collaborative Research Centre (SFB) 656, Project C3, Münster, Germany
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
23
|
Kucic T, Copland IB, Cuerquis J, Coutu DL, Chalifour LE, Gagnon RF, Galipeau J. Mesenchymal stromal cells genetically engineered to overexpress IGF-I enhance cell-based gene therapy of renal failure-induced anemia. Am J Physiol Renal Physiol 2008; 295:F488-96. [DOI: 10.1152/ajprenal.00044.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously demonstrated that erythropoietin (EPO)-secreting mesenchymal stromal cells (MSC) can be used for the long-term correction of renal failure-induced anemia. The present study provides evidence that coimplantation of insulin-like growth factor I (IGF-I)-overexpressing MSC (MSC-IGF) improves MSC-based gene therapy of anemia by providing paracrine support to EPO-secreting MSC (MSC-EPO) within a subcutaneous implant. IGF-I receptor RNA expression in murine MSC was demonstrated by RT-PCR. Functional protein expression was confirmed by immunoblots and MSC responsiveness to IGF-I stimulation in vitro. IGF-I was also shown to improve MSC survival following staurosporin-induced apoptosis in vitro. A cohort of C57Bl/6 mice was rendered anemic by right kidney electrocoagulation and left nephrectomy. MSC-EPO were subsequently admixed in a bovine collagen matrix and implanted, in combination with MSC-IGF or MSC null, by subcutaneous injection in renal failure mice. In mice receiving MSC-EPO coimplanted with MSC-IGF, hematocrit elevation was greater and enhanced compared with control mice; heart function was also improved. MSC-IGF coimplantation, therefore, represents a promising new strategy for enhancing MSC survival within implanted matrices and for improving cell-based gene therapy of renal anemia.
Collapse
|
24
|
Baumann PQ, Sobel BE, Tarikuz Zaman A, Schneider DJ. Gender-Dependent Differences in Echocardiographic Characteristics of Murine Hearts. Echocardiography 2008; 25:739-48. [DOI: 10.1111/j.1540-8175.2008.00680.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Hinton RB, Alfieri CM, Witt SA, Glascock BJ, Khoury PR, Benson DW, Yutzey KE. Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult. Am J Physiol Heart Circ Physiol 2008; 294:H2480-8. [PMID: 18390820 DOI: 10.1152/ajpheart.91431.2007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study is to provide standard echocardiographic and morphometric data for normal mouse valve structure and function from late fetal to aged adult stages. Cross-sectional, two-dimensional and Doppler transthoracic echocardiography was performed in C57BL6 mice anesthetized with 1% to 2% isoflurane at embryonic day 18.5 (late fetal), 10 days (neonate), 1 mo (juvenile), 2 mo (young adult), 9 mo (old adult), and 16 mo (aged adult). Normal annulus dimensions indexed to age or weight, and selected flow velocities, were established by echocardiography. After echocardiographic imaging, hearts were harvested and histological and morphometric analyses were performed. Morphometric analysis demonstrated a progressive valve thinning and elongation during the fetal and juvenile stages that plateaued during adult stages (ANOVA, P < 0.01); however, there was increased thickening of the hinge of the aortic valve with advanced age, reminiscent of human aortic valve sclerosis. There was no age-related calcification. The results of this study provide comprehensive echocardiographic and morphometric data for normal mouse valve structure and function from late fetal to aged adult stages and should prove useful as a reference standard for future studies using mouse models of progressive valve disease.
Collapse
Affiliation(s)
- Robert B Hinton
- Division of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Stein M, Noorman M, van Veen TAB, Herold E, Engelen MA, Boulaksil M, Antoons G, Jansen JA, van Oosterhout MFM, Hauer RNW, de Bakker JMT, van Rijen HVM. Dominant arrhythmia vulnerability of the right ventricle in senescent mice. Heart Rhythm 2007; 5:438-48. [PMID: 18313604 DOI: 10.1016/j.hrthm.2007.10.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Several cardiac disorders affect the right ventricle (RV) and left ventricle (LV) equally, but nevertheless, RV vulnerability to conduction slowing and arrhythmias exceeds that of the LV. OBJECTIVE This study sought to assess the mechanism of dominant RV arrhythmia vulnerability in senescent mice as a model of general reduced myocardial integrity. METHODS Epicardial ventricular activation mapping was performed on senescent (22 months) and adult (3 months) Langendorff perfused mouse hearts. Arrhythmia inducibility was tested by programmed stimulation. Conduction velocity longitudinal and transversal (CVT) to fiber orientation, conduction heterogeneity, and effective refractory period were determined. Subsequently, hearts were processed for immunohistochemistry, Western blotting, and Sirius red staining. RESULTS In senescent RV, but not LV, CVT was reduced and wavelength decreased, whereas anisotropic ratio and conduction heterogeneity increased. Arrhythmias, based on anisotropic reentry, were induced in 55% of senescent hearts only and predominantly in RV. In senescent mice, Connexin 43 (Cx43) and Cardiac Sodium Channel (Nav1.5) were decreased and interstitial fibrosis increased comparably in RV and LV. However, in senescent mice, heterogeneously distributed patches of replacement fibrosis were present throughout the entire RV myocardium, but only in midendocardium and subendocardium of LV. Cx43 expression in these areas was disrupted. CONCLUSION Widespread presence of replacement fibrosis in senescent RV compared with LV, combined with Cx43 and Nav1.5 disruption, potentiate shorter wavelength, conduction slowing, and conduction heterogeneity in RV, resulting in greater vulnerability of senescent RV to arrhythmias.
Collapse
Affiliation(s)
- Mera Stein
- Division Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Spira D, Stypmann J, Tobin DJ, Petermann I, Mayer C, Hagemann S, Vasiljeva O, Günther T, Schüle R, Peters C, Reinheckel T. Cell type-specific functions of the lysosomal protease cathepsin L in the heart. J Biol Chem 2007; 282:37045-52. [PMID: 17942402 DOI: 10.1074/jbc.m703447200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficiency of the lysosomal cysteine protease cathepsin L (Ctsl) in mice results in a phenotype affecting multiple tissues, including thymus, epidermis, and hair follicles, and in the heart develops as a progressive dilated cardiomyopathy (DCM). To understand the role of Ctsl in the maintenance of regular heart morphology and function, it is critical to determine whether the DCM in Ctsl-/- mice is primarily because of the lack of Ctsl expression and activity in the cardiomyocytes or is caused by the additional extracardiac pathologies. Cardiomyocyte-specific expression of Ctsl in Ctsl-/- mice, using an alpha-myosin heavy chain promoter-Ctsl transgene, results in improved cardiac contraction, normal mRNA expression of atrionatriuretic peptide, normal heart weight, and regular ultrastructure of cardiomyocytes. Epithelial expression of cathepsin L2 (CTSL2) by a K14 promoter-CTSL2-transgene resulted in rescue of the Ctsl-/- hair loss phenotype. In these mice, cardiac atrionatriuretic peptide expression and end systolic heart dimensions were also significantly attenuated. However, cardiac contraction was not improved, and increased heart weight as well as the typical changes in lysosomal ultrastructure of Ctsl-/- hearts persisted. Myocardial fibrosis was detected in all Ctsl-/- mice irrespective of transgene-mediated cardiac Ctsl expression or extracardiac CTSL2 expression. Expression of collagen 1 was not enhanced in Ctsl-/- hearts, but a reduced collagenolytic activity suggests a role for Ctsl in collagen turnover by cardiac fibroblasts. We conclude that the DCM of Ctsl-/- mice is primarily caused by absence of the protease in cardiomyocytes, whereas the complex gross phenotype of Ctsl-deficient mice, i.e. the fur defect, results in additional stress to the heart.
Collapse
Affiliation(s)
- Daniel Spira
- Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Stypmann J, Engelen MA, Orwat S, Bilbilis K, Rothenburger M, Eckardt L, Haverkamp W, Horst J, Dworniczak B, Pennekamp P. Cardiovascular characterization of Pkd2+/LacZ mice, an animal model for the autosomal dominant polycystic kidney disease type 2 (ADPKD2). Int J Cardiol 2007; 120:158-66. [PMID: 17182135 DOI: 10.1016/j.ijcard.2006.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 08/27/2006] [Accepted: 09/20/2006] [Indexed: 01/15/2023]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2. Patients with ADPKD have an increased incidence of cardiac valve abnormalities and left ventricular hypertrophy. Systematic analyses of cardiovascular involvement have so far been performed only on genetically unclassified patients or on ADPKD1 patients, but not on genetically defined ADPKD2 patients. Even existing Pkd1 or Pkd2 mouse models were not thoroughly analyzed in this respect. Therefore, the aim of this project was the noninvasive functional cardiovascular characterization of a mouse model for ADPKD2. METHODS Pkd2(+/LacZ) mice and wildtype controls were classified into 8 groups with respect to gender, age and genotype. In addition, two subgroups of female mice were analyzed for cardiac function before and during advanced pregnancy. Doppler-echocardiographic as well as histological studies were performed. RESULTS Doppler-echocardiography did not reveal significant cardiovascular changes. Heart rate and left ventricular (LV) length, LV mass, LV enddiastolic and LV endsystolic diameters did not differ significantly among the various groups when comparing wildtype and knockout mice. There were no significant differences except for a tendency towards higher maximal early and late flow velocities over the mitral valve in old wildtype mice. CONCLUSIONS Non-invasive phenotyping using ultrasound did not reveal significant cardiovascular difference between adult Pkd2(+/LacZ) and WT mice. Due to the lack of an obvious renal phenotype in heterozygous mice, it is likely that in conventional ADPKD knock out mouse models severe cardiac problems appear too late to be identified during the reduced lifespan of the animals.
Collapse
Affiliation(s)
- Jörg Stypmann
- Department of Cardiology and Angiology, Hospital of the University of Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Afilalo J, Sebag IA, Chalifour LE, Rivas D, Akter R, Sharma K, Duque G. Age-related changes in lamin A/C expression in cardiomyocytes. Am J Physiol Heart Circ Physiol 2007; 293:H1451-6. [PMID: 17513488 DOI: 10.1152/ajpheart.01194.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lamin A and C (A/C) are type V intermediate filaments that form the nuclear lamina. Lamin A/C mutations lead to reduced expression of lamin A/C and diverse phenotypes such as familial cardiomyopathies and accelerated aging syndromes. Normal aging is associated with reduced expression of lamin A/C in osteoblasts and dermal fibroblasts but has never been assessed in cardiomyocytes. Our objective was to compare the expression of lamin A/C in cardiomyocytes of old (24 mo) versus young (4 mo) C57Bl/6J mice using a well-validated mouse model of aging. Lamin B1 was used as a control. Immunohistochemical and immunofluorescence analyses showed reduced expression of lamin A/C in cardiomyocyte nuclei of old mice (proportion of nuclei expressing lamin A/C, 9% vs. 62%, P < 0.001). Lamin A/C distribution was scattered peripherally and perinuclear in old mice, whereas it was homogeneous throughout the nuclei in young mice. Western blot analyses confirmed reduced expression of lamin A/C in nuclear extracts of old mice (ratio of lamin A/C to B1, 0.6 vs. 1.2, P < 0.01). Echocardiographic studies showed increased left ventricular wall thickness with preserved cavity size (concentric remodeling), increased left ventricular mass, and a slight reduction in fractional shortening in old mice. This is the first study to show that normal aging is associated with reduced expression and altered distribution of lamin A/C in nuclei of cardiomyocytes.
Collapse
Affiliation(s)
- Jonathan Afilalo
- Division of Internal Medicine, Department of Medicine, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Stypmann J, Janssen PML, Prestle J, Engelen MA, Kögler H, Lüllmann-Rauch R, Eckardt L, von Figura K, Landgrebe J, Mleczko A, Saftig P. LAMP-2 deficient mice show depressed cardiac contractile function without significant changes in calcium handling. Basic Res Cardiol 2006; 101:281-91. [PMID: 16604439 DOI: 10.1007/s00395-006-0591-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Mutations in the highly glycosylated lysosome associated membrane protein-2 (LAMP-2) cause, as recently shown, familial Danon disease with mental retardation, mild myopathy and fatal cardiomyopathy. Extent and basis of the contractile dysfunction is not completely understood. METHODS In LAMP-2 deficient mice, we investigated cardiac function in vivo using Doppler-echocardiography and contractile function in vitro in isolated myocardial trabeculae. RESULTS LAMP-2 deficient mice displayed reduced ejection fraction (EF) (58.9+/-3.4 vs. 80.7+/-5.1%, P<0.05) and reduced cardiac output (8.3+/-3.1 vs. 14.7+/-3.6 ml/min, P<0.05) as compared to wild-type controls. Isolated multicellular muscle preparations from LAMP-2 deficient mice confirmed depressed force development (3.2+/-0.6 vs. 8.4+/-0.9 mN/mm2, P<0.01). All groups showed similar force-frequency behaviour when normalised to baseline force. Post-rest potentiation was significantly depressed at intervals>15 s in LAMP-2 deficient mice (P<0.05). Although attenuated in absolute force development, the normalised inotropic response to increased calcium and beta-adrenoreceptor stimulation was unaltered. Electron microscopic analysis revealed autophagic vacuoles in LAMP-2 deficient cardiomyocytes. Protein analysis showed unaltered levels of SERCA2a, calsequestrin and phospholamban. CONCLUSIONS Cardiac contractile function in LAMP-2 deficient mice as a model for Danon disease is significantly attenuated. The occurrence of autophagic vacuoles in LAMP-2 deficient myocytes is likely to be causal for the depressed contractile function resulting in an attenuated cardiac pump reserve.
Collapse
Affiliation(s)
- Jörg Stypmann
- Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|