1
|
Beyene S, Tufaro V, Garg M, Gkargkoulas F, Calderon AT, Safi H, Waksman R, Windecker S, Torii R, Melaku GD, Bulant CA, Bourantas CV, Blanco PJ, Garcia-Garcia HM. Comparison of endothelial shear stress between ultrathin strut bioresorbable polymer drug-eluting stent vs durable-polymer drug-eluting stent post-stent implantation: An optical coherence tomography substudy from BIOFLOW II. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2024; 61:26-34. [PMID: 38042738 DOI: 10.1016/j.carrev.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Recent clinical data indicate a different performance of biodegradable polymer (BP)-drug eluting stent (DES) compared to durable polymer (DP)-DES. Whether this can be explained by a beneficial impact of BP-DES stent design on the local hemodynamic forces distribution remains unclear. OBJECTIVES To compare endothelial shear stress (ESS) distribution after implantation of ultrathin (us) BP-DES and DP-DES and examine the association between ESS and neointimal thickness (NIT) distribution in the two devices at 9 months follow up. METHODS AND RESULTS We retrospectively identified patients from the BIOFLOW II trial that had undergone OCT imaging. OCT data were utilized to reconstruct the surface of the stented segment at baseline and 9 months follow-up, simulate blood flow, and measure ESS and NIT in the stented segment. The patients were divided into 3 groups depending on whether DP-DES (N = 8, n = 56,160 sectors), BP-DES with a stent diameter of >3 mm (strut thickness of 80 μm, N = 6, n = 36,504 sectors), or BP-DES with a stent diameter of ≤3 mm (strut thickness of 60 μm, N = 8, n = 50,040 sectors) were used for treatment. The ESS, and NIT distribution and the association of these two variables were estimated and compared among the 3 groups. RESULTS In the DP-DES group mean NIT was 0.18 ± 0.17 mm and ESS 1.68 ± 1.66 Pa; for the BP-DES ≤3 mm group the NIT was 0.17 ± 0.11 mm and ESS 1.49 ± 1.24 Pa and for the BP-DES >3 mm group 0.20 ± 0.23 mm and 1.42 ± 1.24 Pa respectively (p < 0.001 for both NIT and ESS comparisons across groups). A negative correlation between NIT and baseline ESS was found, the correlation coefficient for all the stented segments was -0.33, p < 0.001. CONCLUSION In this OCT sub-study of the BIOFLOW II trial, the NIT was statistically different between groups of patients treated with BP-DES and DP-DES. In addition, regions of low ESS were associated with increased NIT in all studied devices.
Collapse
Affiliation(s)
- Solomon Beyene
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Vincenzo Tufaro
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Mohil Garg
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Fotis Gkargkoulas
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Andrea Teira Calderon
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Hannah Safi
- Department of Mechanical Engineering, University College London, London, UK
| | - Ron Waksman
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Stephan Windecker
- Cardiology Department, Inselspital, Bern University, Bern, CH, Switzerland
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Gebremedhin D Melaku
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Carlos A Bulant
- National Scientific and Technical Research Council (CONICET) and Pladema Institute, National University of the Center, Tandil, Bs. As., Argentina
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK; Institute of Cardiovascular Sciences, University College London, London, UK
| | - Pablo J Blanco
- National Laboratory for Scientific Computing and National Institute of Science and Technology in Medicine Assisted by Scientific Computing, Petrópolis, Brazil
| | - Hector M Garcia-Garcia
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA.
| |
Collapse
|
2
|
Poon EKW, Wu X, Dijkstra J, O'Leary N, Torii R, Reiber JHC, Bourantas CV, Barlis P, Onuma Y, Serruys PW. Angiography and optical coherence tomography derived shear stress: are they equivalent in my opinion? THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023; 39:1953-1961. [PMID: 37733283 DOI: 10.1007/s10554-023-02949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Advances in image reconstruction using either single or multimodality imaging data provide increasingly accurate three-dimensional (3D) patient's arterial models for shear stress evaluation using computational fluid dynamics (CFD). We aim to evaluate the impacts on endothelial shear stress (ESS) derived from a simple image reconstruction using 3D-quantitative coronary angiography (3D-QCA) versus a multimodality reconstruction method using optical coherence tomography (OCT) in patients' vessels treated with bioresorbable scaffolds. Seven vessels at baseline and five-year follow-up of seven patients from a previous CFD investigation were retrospectively selected for a head-to-head comparison of angiography-derived versus OCT-derived ESS. 3D-QCA significantly underestimated the minimum stent area [MSA] (-2.38mm2) and the stent length (-1.46 mm) compared to OCT-fusion method reconstructions. After carefully co-registering the region of interest for all cases with a sophisticated statistical method, the difference in MSA measurements as well as the inability of angiography to visualise the strut footprint in the lumen surface have translated to higher angiography-derived ESS than OCT-derived ESS (1.76 Pa or 1.52 times for the overlapping segment). The difference in ESS widened with a more restricted region of interest (1.97 Pa or 1.63 times within the scaffold segment). Angiography and OCT offer two distinctive methods of ESS calculation. Angiography-derived ESS tends to overestimate the ESS compared to OCT-derived ESS. Further investigations into ESS analysis resolution play a vital role in adopting OCT-derived ESS.
Collapse
Affiliation(s)
- Eric K W Poon
- Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | - Xinlei Wu
- Department of Cardiology, University of Galway, Galway, Ireland
- Department of Cardiology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jouke Dijkstra
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Neil O'Leary
- Department of Cardiology, University of Galway, Galway, Ireland
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Johan H C Reiber
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christos V Bourantas
- Device and Innovation Centre, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Cardiology, Barts Heart Centre, London, UK
| | - Peter Barlis
- Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, Galway, Ireland
| | - Patrick W Serruys
- Department of Cardiology, University of Galway, Galway, Ireland.
- Emeritus Professor of Medicine, Erasmus University, Rotterdam, The Netherlands.
- CÚRAM, SFI Research Centre for Medical Devices, Galway, Ireland.
- School of Engineering, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
3
|
Poon EKW, Ono M, Wu X, Dijkstra J, Sato Y, Kutyna M, Torii R, Reiber JHC, Bourantas CV, Barlis P, El-Kurdi MS, Cox M, Virmani R, Onuma Y, Serruys PW. An optical coherence tomography and endothelial shear stress study of a novel bioresorbable bypass graft. Sci Rep 2023; 13:2941. [PMID: 36805474 PMCID: PMC9941467 DOI: 10.1038/s41598-023-29573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Endothelial shear stress (ESS) plays a key role in the clinical outcomes in native and stented segments; however, their implications in bypass grafts and especially in a synthetic biorestorative coronary artery bypass graft are yet unclear. This report aims to examine the interplay between ESS and the morphological alterations of a biorestorative coronary bypass graft in an animal model. Computational fluid dynamics (CFD) simulation derived from the fusion of angiography and optical coherence tomography (OCT) imaging was used to reconstruct data on the luminal anatomy of a bioresorbable coronary bypass graft with an endoluminal "flap" identified during OCT acquisition. The "flap" compromised the smooth lumen surface and considerably disturbed the local flow, leading to abnormally low ESS and high oscillatory shear stress (OSI) in the vicinity of the "flap". In the presence of the catheter, the flow is more stable (median OSI 0.02384 versus 0.02635, p < 0.0001; maximum OSI 0.4612 versus 0.4837). Conversely, OSI increased as the catheter was withdrawn which can potentially cause back-and-forth motions of the "flap", triggering tissue fatigue failure. CFD analysis in this report provided sophisticated physiological information that complements the anatomic assessment from imaging enabling a complete understanding of biorestorative graft pathophysiology.
Collapse
Affiliation(s)
- Eric K. W. Poon
- grid.1008.90000 0001 2179 088XDepartment of Medicine, St Vincent’s & Northern Hospitals, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | - Masafumi Ono
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland ,grid.7177.60000000084992262Department of Clinical and Experimental Cardiology, Amsterdam UMC, Heart Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Xinlei Wu
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland ,grid.417384.d0000 0004 1764 2632Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jouke Dijkstra
- grid.10419.3d0000000089452978Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yu Sato
- grid.417701.40000 0004 0465 0326CVPath Institute, Inc, Gaithersburg, MD USA
| | - Matthew Kutyna
- grid.417701.40000 0004 0465 0326CVPath Institute, Inc, Gaithersburg, MD USA
| | - Ryo Torii
- grid.83440.3b0000000121901201Department of Mechanical Engineering, University College London, London, UK
| | - Johan H. C. Reiber
- grid.10419.3d0000000089452978Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christos V. Bourantas
- grid.83440.3b0000000121901201Institute of Cardiovascular Science, University College London, London, UK ,grid.416353.60000 0000 9244 0345Department of Cardiology, Barts Heart Centre, London, UK
| | - Peter Barlis
- grid.1008.90000 0001 2179 088XDepartment of Medicine, St Vincent’s & Northern Hospitals, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | | | - Martijn Cox
- Xeltis BV, De Lismortel 31, 5612AR Eindhoven, The Netherlands
| | - Renu Virmani
- grid.417701.40000 0004 0465 0326CVPath Institute, Inc, Gaithersburg, MD USA
| | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland
| | - Patrick W. Serruys
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland ,grid.6906.90000000092621349Emeritus Professor of Medicine, Erasmus University, Rotterdam, The Netherlands ,CÚRAM, SFI Research Centre for Medical Devices, Galway, H91 TK33 Ireland
| |
Collapse
|
4
|
Torii R, Tenekecioglu E, Katagiri Y, Chichareon P, Sotomi Y, Dijkstra J, Asano T, Modolo R, Takahashi K, Jonker H, van Geuns R, Onuma Y, Pekkan K, Bourantas CV, Serruys PW. The impact of plaque type on strut embedment/protrusion and shear stress distribution in bioresorbable scaffold. Eur Heart J Cardiovasc Imaging 2021; 21:454-462. [PMID: 31215995 DOI: 10.1093/ehjci/jez155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/17/2019] [Accepted: 05/22/2019] [Indexed: 11/13/2022] Open
Abstract
AIMS Scaffold design and plaque characteristics influence implantation outcomes and local flow dynamics in treated coronary segments. Our aim is to assess the impact of strut embedment/protrusion of bioresorbable scaffold on local shear stress distribution in different atherosclerotic plaque types. METHODS AND RESULTS Fifteen Absorb everolimus-eluting Bioresorbable Vascular Scaffolds were implanted in human epicardial coronary arteries. Optical coherence tomography (OCT) was performed post-scaffold implantation and strut embedment/protrusion were analysed using a dedicated software. OCT data were fused with angiography to reconstruct 3D coronary anatomy. Blood flow simulation was performed and wall shear stress (WSS) was estimated in each scaffolded surface and the relationship between strut embedment/protrusion and WSS was evaluated. There were 9083 struts analysed. Ninety-seven percent of the struts (n = 8840) were well-apposed and 243 (3%) were malapposed. At cross-section level (n = 1289), strut embedment was significantly increased in fibroatheromatous plaques (76 ± 48 µm) and decreased in fibrocalcific plaques (35 ± 52 µm). Compatible with strut embedment, WSS was significantly higher in lipid-rich fibroatheromatous plaques (1.50 ± 0.81 Pa), whereas significantly decreased in fibrocalcified plaques (1.05 ± 0.91 Pa). After categorization of WSS as low (<1.0 Pa) and normal/high WSS (≥1.0 Pa), the percent of low WSS in the plaque subgroups were 30.1%, 31.1%, 25.4%, and 36.2% for non-diseased vessel wall, fibrous plaque, fibroatheromatous plaque, and fibrocalcific plaque, respectively (P-overall < 0.001). CONCLUSION The composition of the underlying plaque influences strut embedment which seems to have effect on WSS. The struts deeply embedded in lipid-rich fibroatheromas plaques resulted in higher WSS compared with the other plaque types.
Collapse
Affiliation(s)
- Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Erhan Tenekecioglu
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Yuki Katagiri
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ply Chichareon
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yohei Sotomi
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jouke Dijkstra
- LKEB-Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Taku Asano
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rodrigo Modolo
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kuniaki Takahashi
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Robert van Geuns
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Yoshinobu Onuma
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Christos V Bourantas
- Institute of Cardiovascular Science, University College London, London, UK.,Department of Cardiology, Barts Heart Centre, London, UK
| | - Patrick W Serruys
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands.,Imperial College, London, UK
| |
Collapse
|
5
|
Urschel K, Tauchi M, Achenbach S, Dietel B. Investigation of Wall Shear Stress in Cardiovascular Research and in Clinical Practice-From Bench to Bedside. Int J Mol Sci 2021; 22:5635. [PMID: 34073212 PMCID: PMC8198948 DOI: 10.3390/ijms22115635] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/16/2022] Open
Abstract
In the 1900s, researchers established animal models experimentally to induce atherosclerosis by feeding them with a cholesterol-rich diet. It is now accepted that high circulating cholesterol is one of the main causes of atherosclerosis; however, plaque localization cannot be explained solely by hyperlipidemia. A tremendous amount of studies has demonstrated that hemodynamic forces modify endothelial athero-susceptibility phenotypes. Endothelial cells possess mechanosensors on the apical surface to detect a blood stream-induced force on the vessel wall, known as "wall shear stress (WSS)", and induce cellular and molecular responses. Investigations to elucidate the mechanisms of this process are on-going: on the one hand, hemodynamics in complex vessel systems have been described in detail, owing to the recent progress in imaging and computational techniques. On the other hand, investigations using unique in vitro chamber systems with various flow applications have enhanced the understanding of WSS-induced changes in endothelial cell function and the involvement of the glycocalyx, the apical surface layer of endothelial cells, in this process. In the clinical setting, attempts have been made to measure WSS and/or glycocalyx degradation non-invasively, for the purpose of their diagnostic utilization. An increasing body of evidence shows that WSS, as well as serum glycocalyx components, can serve as a predicting factor for atherosclerosis development and, most importantly, for the rupture of plaques in patients with high risk of coronary heart disease.
Collapse
Affiliation(s)
| | | | | | - Barbara Dietel
- Department of Medicine 2—Cardiology and Angiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum, 91054 Erlangen, Germany; (K.U.); (M.T.); (S.A.)
| |
Collapse
|
6
|
Blood Flow Quantification in Peripheral Arterial Disease: Emerging Diagnostic Techniques in Vascular Surgery. Surg Technol Int 2021. [PMID: 33970476 DOI: 10.52198/21.sti.38.cv1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The assessment of local blood flow patterns in patients with peripheral arterial disease is clinically relevant, since these patterns are related to atherosclerotic disease progression and loss of patency in stents placed in peripheral arteries, through mechanisms such as recirculating flow and low wall shear stress (WSS). However, imaging of vascular flow in these patients is technically challenging due to the often complex flow patterns that occur near atherosclerotic lesions. While several flow quantification techniques have been developed that could improve the outcomes of vascular interventions, accurate 2D or 3D blood flow quantification is not yet used in clinical practice. This article provides an overview of several important topics that concern the quantification of blood flow in patients with peripheral arterial disease. The hemodynamic mechanisms involved in the development of atherosclerosis and the current clinical practice in the diagnosis of this disease are discussed, showing the unmet need for improved and validated flow quantification techniques in daily clinical practice. This discussion is followed by a showcase of state-of-the-art blood flow quantification techniques and how these could be used before, during and after treatment of stenotic lesions to improve clinical outcomes. These techniques include novel ultrasound-based methods, Phase-Contrast Magnetic Resonance Imaging (PC-MRI) and Computational Fluid Dynamics (CFD). The last section discusses future perspectives, with advanced (hybrid) imaging techniques and artificial intelligence, including the implementation of these techniques in clinical practice.
Collapse
|
7
|
Engelhard S, van de Velde L, Jebbink E, Jain K, Westenberg J, Zeebregts C, Versluis M, Reijnen M. Blood Flow Quantification in Peripheral Arterial Disease: Emerging Diagnostic Techniques in Vascular Surgery. Surg Technol Int 2021. [DOI: https:/doi.org/10.52198/21.sti.38.cv1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The assessment of local blood flow patterns in patients with peripheral arterial disease is clinically relevant, since these patterns are related to atherosclerotic disease progression and loss of patency in stents placed in peripheral arteries, through mechanisms such as recirculating flow and low wall shear stress (WSS). However, imaging of vascular flow in these patients is technically challenging due to the often complex flow patterns that occur near atherosclerotic lesions. While several flow quantification techniques have been developed that could improve the outcomes of vascular interventions, accurate 2D or 3D blood flow quantification is not yet used in clinical practice. This article provides an overview of several important topics that concern the quantification of blood flow in patients with peripheral arterial disease. The hemodynamic mechanisms involved in the development of atherosclerosis and the current clinical practice in the diagnosis of this disease are discussed, showing the unmet need for improved and validated flow quantification techniques in daily clinical practice. This discussion is followed by a showcase of state-of-the-art blood flow quantification techniques and how these could be used before, during and after treatment of stenotic lesions to improve clinical outcomes. These techniques include novel ultrasound-based methods, Phase-Contrast Magnetic Resonance Imaging (PC-MRI) and Computational Fluid Dynamics (CFD). The last section discusses future perspectives, with advanced (hybrid) imaging techniques and artificial intelligence, including the implementation of these techniques in clinical practice.
Collapse
Affiliation(s)
- Stefan Engelhard
- Department of Vascular Surgery, Rijnstate, Arnhem, The Netherlands
| | | | - Erik Jebbink
- Department of Vascular Surgery, Rijnstate, Arnhem, The Netherlands
| | - Kartik Jain
- Department of Thermal and Fluid Engineering, University of Twente, Enschede, The Netherlands
| | - Jos Westenberg
- Department of Radiology, Cardiovascular Imaging Group, Leiden University Medical Center, Leiden, The Netherlands
| | - Clark Zeebregts
- Department of Surgery (Division of Vascular Surgery), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
| | - Michel Reijnen
- Department of Vascular Surgery, Rijnstate, Arnhem, The Netherlands
| |
Collapse
|
8
|
Ozaki Y, Kuku KO, Sakellarios A, Haude M, Hideo-Kajita A, Desale S, Siogkas P, Sioros S, Ince H, Abizaid A, Tölg R, Lemos PA, von Birgelen C, Christiansen EH, Wijns W, Escaned J, Michalis L, Fotiadis DI, Djikstra J, Waksman R, Garcia-Garcia HM. Impact of Endothelial Shear Stress on Absorption Process of Resorbable Magnesium Scaffold: A BIOSOLVE-II Substudy. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2021; 29:9-15. [PMID: 33863661 DOI: 10.1016/j.carrev.2021.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND/PURPOSE Local hemodynamic forces such as endothelial shear stress (ESS) may have an influence on appropriate neointimal healing, vessel remodeling, and struts' absorption process following second-generation drug-eluting resorbable magnesium scaffold (RMS, Magmaris, Biotronik AG, Buelach, Switzerland) placement. The aim of this study was to investigate the impact of ESS assessed by optical coherence tomography (OCT)-based computational fluid dynamic (CFD) simulations on absorption process and coronary lumen dimension after Magmaris implantation. METHODS AND RESULTS A total of 22 patients who were enrolled in the BIOSOLVE-II trial and underwent serial OCT assessment immediately after Magmaris implantation and at 6- and 12-month follow-up were included. We evaluated qualitative OCT findings frame by frame, and CFD simulations were performed to calculate the ESS at 3-dimensional (3D) reconstructed arteries. For quantitative calculation, the average ESS within each 1-mm section was classified into three groups: low (<1.0 Pa), intermediate (1.0-2.5 Pa), or high (>2.5 Pa). A significant difference of percentage remnants of scaffold was observed among the 3 groups at 12-month follow-up (P = 0.001) but not at 6-month follow-up. Low-ESS segment at baseline resulted in a greater lumen change of -1.857 ± 1.902 mm2 at 1 year compared to -1.277 ± 1.562 mm2 in the intermediate-ESS segment (P = 0.017) and - 0.709 ± 1.213 mm2 in the high-ESS segment (P = 0.001). CONCLUSION After Magmaris implantation, the presence of higher ESS might be associated with slower strut absorption process but less luminal loss.
Collapse
Affiliation(s)
- Yuichi Ozaki
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington DC, USA
| | - Kayode O Kuku
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington DC, USA
| | - Antonis Sakellarios
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece.
| | - Michael Haude
- Medical Clinic I, Städtische Kliniken Neuss, Lukaskrankenhaus GmbH, Neuss, Germany
| | - Alexandre Hideo-Kajita
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington DC, USA
| | - Sameer Desale
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington DC, USA
| | - Panagiotis Siogkas
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Spyros Sioros
- Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Hüseyin Ince
- Department of Cardiology, Vivantes Klinikum im Friedrichschain and Am Urban, Berlin, Germany
| | | | - Ralph Tölg
- Herzzentrum Segeberger Kliniken GmbH, Bad Segeberg, Germany
| | - Pedro Alves Lemos
- Instituto do Coração - HCFMUSP, University of Sao Paulo, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Clemens von Birgelen
- Department of Cardiology, Thoraxcentrum Twente, Medisch Spectrum Twente, Enschede, Netherlands
| | | | - William Wijns
- Cardiology Department, Cardiovascular Research Center Aalst, OLV Hospital, Aalst, Belgium
| | - Javier Escaned
- Hospital Clinico San Carlos IDISSC, Complutense University of Madrid, Madrid, Spain
| | - Lampros Michalis
- Medical Clinic I, Städtische Kliniken Neuss, Lukaskrankenhaus GmbH, Neuss, Germany
| | - Dimitrios I Fotiadis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | | | - Ron Waksman
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington DC, USA
| | - Hector M Garcia-Garcia
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington DC, USA.
| |
Collapse
|
9
|
Gijsen F, Katagiri Y, Barlis P, Bourantas C, Collet C, Coskun U, Daemen J, Dijkstra J, Edelman E, Evans P, van der Heiden K, Hose R, Koo BK, Krams R, Marsden A, Migliavacca F, Onuma Y, Ooi A, Poon E, Samady H, Stone P, Takahashi K, Tang D, Thondapu V, Tenekecioglu E, Timmins L, Torii R, Wentzel J, Serruys P. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur Heart J 2020; 40:3421-3433. [PMID: 31566246 PMCID: PMC6823616 DOI: 10.1093/eurheartj/ehz551] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/09/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Frank Gijsen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yuki Katagiri
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Barlis
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Cardiology, Northern Hospital, 185 Cooper Street, Epping, Australia.,St Vincent's Heart Centre, Building C, 41 Victoria Parade, Fitzroy, Australia
| | - Christos Bourantas
- Institute of Cardiovascular Sciences, University College of London, London, UK.,Department of Cardiology, Barts Heart Centre, London, UK.,School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Carlos Collet
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Umit Coskun
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost Daemen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jouke Dijkstra
- LKEB-Division of Image Processing, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Elazer Edelman
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Kim van der Heiden
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rod Hose
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK.,Department of Circulation and Imaging, NTNU, Trondheim, Norway
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.,Institute of Aging, Seoul National University, Seoul, Korea
| | - Rob Krams
- School of Engineering and Materials Science Queen Mary University of London, London, UK
| | - Alison Marsden
- Departments of Bioengineering and Pediatrics, Institute of Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Yoshinobu Onuma
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andrew Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric Poon
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Peter Stone
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kuniaki Takahashi
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Dalin Tang
- Department of Mathematics, Southeast University, Nanjing, China; Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Vikas Thondapu
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erhan Tenekecioglu
- Department of Interventional Cardiology, Thoraxcentre, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Lucas Timmins
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, UK
| | - Jolanda Wentzel
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Patrick Serruys
- Erasmus University Medical Center, Rotterdam, the Netherlands.,Imperial College London, London, UK.,Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Thondapu V, Tenekecioglu E, Poon EKW, Collet C, Torii R, Bourantas CV, Chin C, Sotomi Y, Jonker H, Dijkstra J, Revalor E, Gijsen F, Onuma Y, Ooi A, Barlis P, Serruys PW. Endothelial shear stress 5 years after implantation of a coronary bioresorbable scaffold. Eur Heart J 2019; 39:1602-1609. [PMID: 29409057 DOI: 10.1093/eurheartj/ehx810] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022] Open
Abstract
Aims As a sine qua non for arterial wall physiology, local hemodynamic forces such as endothelial shear stress (ESS) may influence long-term vessel changes as bioabsorbable scaffolds dissolve. The aim of this study was to perform serial computational fluid dynamic (CFD) simulations to examine immediate and long-term haemodynamic and vascular changes following bioresorbable scaffold placement. Methods and results Coronary arterial models with long-term serial assessment (baseline and 5 years) were reconstructed through fusion of intravascular optical coherence tomography and angiography. Pulsatile non-Newtonian CFD simulations were performed to calculate the ESS and relative blood viscosity. Time-averaged, systolic, and diastolic results were compared between follow-ups. Seven patients (seven lesions) were included in this analysis. A marked heterogeneity in ESS and localised regions of high blood viscosity were observed post-implantation. Percent vessel area exposed to low averaged ESS (<1 Pa) significantly decreased over 5 years (15.92% vs. 4.99%, P < 0.0001) whereas moderate (1-7 Pa) and high ESS (>7 Pa) did not significantly change (moderate ESS: 76.93% vs. 80.7%, P = 0.546; high ESS: 7.15% vs. 14.31%, P = 0.281), leading to higher ESS at follow-up. A positive correlation was observed between baseline ESS and change in lumen area at 5 years (P < 0.0001). Maximum blood viscosity significantly decreased over 5 years (4.30 ± 1.54 vs. 3.21± 0.57, P = 0.028). Conclusion Immediately after scaffold implantation, coronary arteries demonstrate an alternans of extremely low and high ESS values and localized areas of high blood viscosity. These initial local haemodynamic disturbances may trigger fibrin deposition and thrombosis. Also, low ESS can promote neointimal hyperplasia, but may also contribute to appropriate scaffold healing with normalisation of ESS and reduction in peak blood viscosity by 5 years.
Collapse
Affiliation(s)
- Vikas Thondapu
- Department of Mechanical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, 3010 Victoria, Australia.,Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, Melbourne Medical School, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Erhan Tenekecioglu
- Department of Interventional Cardiology, Erasmus University Medical Centre, Thoraxcenter, Westblaak 98, 3012 KM Rotterdam, Netherlands
| | - Eric K W Poon
- Department of Mechanical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Carlos Collet
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, The Netherlands.,Department of Cardiology, University Hospital Brussels, Avenue du Laerbeek 101, 1090 Jette, Belgium
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, Torrington Place, WC1E 7JE London, UK
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, EC1A 7BE London, UK.,Institute of Cardiovascular Sciences, University College London, 62 Huntley St, Fitzrovia, WC1E 6DD London, UK
| | - Cheng Chin
- School of Mechanical Engineering, The University of Adelaide, Adelaide, 5005 South Australia, Australia
| | - Yohei Sotomi
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, The Netherlands
| | - Hans Jonker
- Department of Program Management, Cardialysis, Westblaak 98, 3012 KM Rotterdam, The Netherlands
| | - Jouke Dijkstra
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Eve Revalor
- Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, Melbourne Medical School, University of Melbourne, Parkville, 3010 Victoria, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, 3010 Parkville, Australia
| | - Frank Gijsen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Wytemaweg 80, Ee2302, 3015 CN Rotterdam, The Netherlands
| | - Yoshinobu Onuma
- Department of Interventional Cardiology, Erasmus University Medical Centre, Thoraxcenter, Westblaak 98, 3012 KM Rotterdam, Netherlands
| | - Andrew Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Peter Barlis
- Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, Melbourne Medical School, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Patrick W Serruys
- Department of Interventional Cardiology, Erasmus University Medical Centre, Thoraxcenter, Westblaak 98, 3012 KM Rotterdam, Netherlands.,Cardiovascular Science Division, National Heart & Lung Institute, Guy Scadding Building, Royal Brompton Campus, Imperial College, London, UK
| |
Collapse
|
11
|
Chu M, Gutiérrez-Chico JL, Li Y, Holck EN, Zhang S, Huang J, Li Z, Chen L, Christiansen EH, Dijkstra J, Holm NR, Tu S. Effects of local hemodynamics and plaque characteristics on neointimal response following bioresorbable scaffolds implantation in coronary bifurcations. Int J Cardiovasc Imaging 2019; 36:241-249. [PMID: 31667662 DOI: 10.1007/s10554-019-01721-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/18/2019] [Indexed: 11/29/2022]
Abstract
Heterogeneous neointimal response has been observed after implantation of all generations of coronary stents. Our aim was assessing local factors of shear stress (SS) and plaque characteristics in neointimal response after implantation of bioresorbable scaffolds (BRS) in bifurcations. Ten patients from the BIFSORB pilot study were analysed. Follow-up optical frequency domain imaging (OFDI) was performed at 1 month and 2 years. Coronary lumen and BRS structure were reconstructed by fusion of OFDI and angiography and were used for subsequent flow simulation. Plaque arc degree and SS were quantified using post-procedural OFDI data and were matched with follow-up OFDI using anatomical landmarks. Strut-level and segment-level analysis were performed for 1-month and 2-year follow-up respectively. A total of 444 struts (54 jailing struts) were included at 1-month follow-up. Time-average SS (TASS) was significantly lower for covered struts than for uncovered struts in non-bifurcation segments (TASS: 1.81 ± 1.87 vs. 3.88 ± 3.72 Pa, p < 0.001). The trend remained the same for jailing struts, although statistically insignificant (TASS: 10.85 ± 13.12 vs. 13.64 ± 14.48 Pa, p = 0.328). For 2-year follow-up, a total of 66 sub-regions were analysed. Neointimal hyperplasia area (NTA) was negatively correlated with TASS in core-segments (ρ = - 0.389, p = 0.037) and positively correlated with plaque arc degree in non-core segments (ρ = 0.387, p = 0.018). Slightly stronger correlations with NTA were observed when combining TASS and plaque arc degree in both core segments (ρ = - 0.412, p = 0.026) and non-core segments (ρ = - 0.395, p = 0.015). Hemodynamic microenvironment and baseline plaque characteristics may regulate neointimal response after BRS implantation in bifurcation. These findings underline the combined role of plaque characteristics and local hemodynamics in vessel healing after stent implantation.
Collapse
Affiliation(s)
- Miao Chu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Room 123, No. 1954, Huashan Road, Shanghai, 200030, People's Republic of China.,Department of Cardiology, Campo de Gibraltar Health Trust, Algeciras (Cádiz), Spain
| | | | - Yingguang Li
- Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands
| | - Emil N Holck
- Department of Cardiology, Aarhus University Hospital, Skejby, Denmark
| | - Su Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Room 123, No. 1954, Huashan Road, Shanghai, 200030, People's Republic of China
| | - Jiayue Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Room 123, No. 1954, Huashan Road, Shanghai, 200030, People's Republic of China
| | - Zehang Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Room 123, No. 1954, Huashan Road, Shanghai, 200030, People's Republic of China
| | - Lianglong Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | | | - Jouke Dijkstra
- Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands
| | - Niels R Holm
- Department of Cardiology, Aarhus University Hospital, Skejby, Denmark
| | - Shengxian Tu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Room 123, No. 1954, Huashan Road, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
12
|
Tenekecioglu E, Torii R, Katagiri Y, Asano T, Modolo R, Miyazaki Y, Chichareon P, Poon EKW, Gijsen FJH, Thondapu V, van Klaveren D, Jonker H, Ooi A, Barlis P, Collet C, Onuma Y, Bourantas CV, Serruys PW. Early strut protrusion and late neointima thickness in the Absorb bioresorbable scaffold: a serial wall shear stress analysis up to five years. EUROINTERVENTION 2019; 15:e370-e379. [PMID: 29969424 DOI: 10.4244/eij-d-18-00381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS The aim of the study was to evaluate the effect of strut protrusion (SP) on wall shear stress (WSS) and neointimal growth (NG) one and five years after implantation of an Absorb bioresorbable vascular scaffold. METHODS AND RESULTS Eight patients were selected from a first-in-man study. Following three-dimensional (3D) reconstruction of coronaries, WSS was quantified using Newtonian steady-flow simulation in each cross-section at 5° subunits (sectors) of the circumferential luminal surface. At one year, neointimal thickness (NT) was measured by optical coherence tomography (OCT) and correlated to WSS and SP post procedure. Median SP was 112.9 (90.8, 133.1) µm post implantation. Post procedure, a logarithmic inverse relationship between SP and post-implantation WSS (r=-0.425, p<0.001; correlation coefficients in a range from -0.143 to -0.553) was observed, whereas a correlation between baseline logarithm-transformed WSS (log-WSS) and NT (r=-0.451, p<0.001; correlation coefficients ranged from -0.140 to -0.662) was documented at one year. Mixed-effects analysis between baseline log-WSS and NT at follow-up yielded a slope of 30 µm/ln Pascal (Pa) and a y-intercept of 98 µm. As a result of NG, median flow area decreased from 6.91 (6.53, 7.48) mm2 post implantation to 5.65 (5.47, 6.02) mm2 at one-year follow-up (p=0.01) and to 5.75±1.37 mm2 at five-year follow-up (p=0.024). However, the vessel surface exposed to low WSS (<1 Pa) decreased significantly post procedure (42%) to one year (35.9%) and five years (15.2%) (p-overall <0.0001). CONCLUSIONS SP disturbs laminar flow, creates regions of low WSS (<1.0 Pa) that are associated with NG and lumen area reduction. Low WSS post implantation reduced significantly at long-term follow-up. Thin struts with effective embedment would substantially reduce NG and accelerate homogenisation of WSS towards physiological values.
Collapse
Affiliation(s)
- Erhan Tenekecioglu
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Coronary Shear Stress after Implantation of Bioresorbable Scaffolds – a Modern Interdisciplinary Concept at the Border between Interventional Cardiology and Cardiac Imaging. JOURNAL OF INTERDISCIPLINARY MEDICINE 2019. [DOI: 10.2478/jim-2019-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abstract
Bioresorbable scaffolds/stents offer new and exciting perspectives in the treatment of patients with acute coronary syndromes, especially after the recent development of invasive imaging techniques, such as optical coherence tomography, which allow complete assessment of vascu-lar segments. A particular advantage of bioresorbable scaffolds is that once the biosorption of the scaffold is complete, the vascular segment regains its normal physiological functions, thus eliminating the risk of late complications. New studies show the importance of shear stress in the progression of vascular atherosclerosis or in accelerating endothelial turnover. Based on the current knowledge in this field, a future standardized determination of shear stress may help in the long-term follow-up of patients that have suffered or are at risk of developing an acute coronary syndrome.
Collapse
|
14
|
Xu K, Fu G, Xu B, Zhou Y, Su X, Liu H, Zhang Z, Yu B, Wang X, Han Y. Safety and efficacy of the novel sirolimus‐eluting bioresorbable scaffold for the treatment of de novo coronary artery disease: One‐year results from a prospective patient‐level pooled analysis of NeoVas trials. Catheter Cardiovasc Interv 2019; 93:832-838. [PMID: 30888736 DOI: 10.1002/ccd.28067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Kai Xu
- General Hospital of Northern Theater Command Shenyang Liaoning China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of MedicineZhejiang University, Hangzhou Zhejiang China
| | - Bo Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Centre for Coronary Heart Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen HospitalCapital Medical University Beijing China
| | - Xi Su
- Department of Cardiology, Wuhan Asia Heart HospitalAffiliated to Wuhan University of Science and Technology Wuhan Hubei China
| | - Huiliang Liu
- Department of CardiologyChinese Armed Police Force General Hospital Beijing China
| | - Zheng Zhang
- Department of CardiologyThe First Hospital of Lanzhou University Lanzhou Gansu China
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial IschemiaChinese Ministry of Education Harbin China
| | - Xiaozeng Wang
- General Hospital of Northern Theater Command Shenyang Liaoning China
| | - Yaling Han
- General Hospital of Northern Theater Command Shenyang Liaoning China
| | | |
Collapse
|
15
|
Tenekecioglu E, Torii R, Katagiri Y, Chichareon P, Asano T, Miyazaki Y, Takahashi K, Modolo R, Al-Lamee R, Al-Lamee K, Colet C, Reiber JHC, Pekkan K, van Geuns R, Bourantas CV, Onuma Y, Serruys PW. Post-implantation shear stress assessment: an emerging tool for differentiation of bioresorbable scaffolds. Int J Cardiovasc Imaging 2018; 35:409-418. [PMID: 30426299 PMCID: PMC6453863 DOI: 10.1007/s10554-018-1481-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/20/2018] [Indexed: 12/27/2022]
Abstract
Optical coherence tomography based computational flow dynamic (CFD) modeling provides detailed information about the local flow behavior in stented/scaffolded vessel segments. Our aim is to investigate the in-vivo effect of strut thickness and strut protrusion on endothelial wall shear stress (ESS) distribution in ArterioSorb Absorbable Drug-Eluting Scaffold (ArterioSorb) and Absorb everolimus-eluting Bioresorbable Vascular Scaffold (Absorb) devices that struts with similar morphology (quadratic structure) but different thickness. In three animals, six coronary arteries were treated with ArterioSorb. At different six animals, six coronary arteries were treated with Absorb. Following three-dimensional(3D) reconstruction of the coronary arteries, Newtonian steady flow simulation was performed and the ESS were estimated. Mixed effects models were used to compare ESS distribution in the two devices. There were 4591 struts in the analyzed 477 cross-sections in Absorb (strut thickness = 157 µm) and 3105 struts in 429 cross-sections in ArterioSorb (strut thickness = 95 µm) for the protrusion analysis. In cross-section level analysis, there was significant difference between the scaffolds in the protrusion distances. The protrusion was higher in Absorb (97% of the strut thickness) than in ArterioSorb (88% of the strut thickness). ESS was significantly higher in ArterioSorb (1.52 ± 0.34 Pa) than in Absorb (0.73 ± 2.19 Pa) (p = 0.001). Low- and very-low ESS data were seen more often in Absorb than in ArterioSorb. ArterioSorb is associated with a more favorable ESS distribution compared to the Absorb. These differences should be attributed to different strut thickness/strut protrusion that has significant effect on shear stress distribution.
Collapse
Affiliation(s)
- Erhan Tenekecioglu
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Yuki Katagiri
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ply Chichareon
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Taku Asano
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yosuke Miyazaki
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Kuniaki Takahashi
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rodrigo Modolo
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rasha Al-Lamee
- International Centre for Circulatory Health, Imperial College London, London, UK
| | | | - Carlos Colet
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cardiology, Universitair Ziekenhuis Brussel, Brussel, Belgium
| | - Johan H C Reiber
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Robert van Geuns
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Christos V Bourantas
- Department of Cardiology, University College of London Hospitals, London, UK.,Department of Cardiology, Barts Heart Centre, London, UK
| | - Yoshinobu Onuma
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Patrick W Serruys
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands. .,Imperial College, London, UK. .,Dr.h.c. Melbourne School of Engineering, University of Melbourne, Melbourne (AUS), Westblaak 98, 3012KM, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Serruys PW, Onuma Y. Dmax for sizing, PSP-1, PSP-2, PSP-3 or OCT guidance: interventionalist's jargon or indispensable implantation techniques for short- and long-term outcomes of Absorb BRS? EUROINTERVENTION 2018; 12:2047-2056. [PMID: 28246059 DOI: 10.4244/eijy17m02_01] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Tenekecioglu E, Torii R, Bourantas CV, Cavalcante R, Sotomi Y, Zeng Y, Collet C, Crake T, Abizaid A, Onuma Y, Su S, Santoso T, Serruys PW. Hemodynamic analysis of a novel bioresorbable scaffold in porcine coronary artery model. Catheter Cardiovasc Interv 2018; 91:1084-1091. [PMID: 28843033 DOI: 10.1002/ccd.27253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 07/04/2017] [Accepted: 07/22/2017] [Indexed: 11/11/2022]
Abstract
BACKGROUND The shear stress distribution assessment can provide useful insights for the hemodynamic performance of the implanted stent/scaffold. Our aim was to investigate the effect of a novel bioresorbable scaffold, Mirage on local hemodynamics in animal models. METHOD The main epicardial coronary arteries of 7 healthy mini-pigs were implanted with 11 Mirage Microfiber sirolimus-eluting Bioresorbable Scaffolds (MMSES). Optical coherence tomography (OCT) was performed post scaffold implantation and the obtained images were fused with angiographic data to reconstruct the coronary artery anatomy. Blood flow simulation was performed and Endothelial Shear Stress(ESS) distribution was estimated for each of the 11 scaffolds. ESS data were extracted in each circumferential 5-degree subunit of each cross-section in the scaffolded segment. The generalized linear mixed-effect analysis was implemented for the comparison of ESS in two scaffold groups; 150-µm strut thickness MMSES and 125-µm strut thickness MMSES. RESULTS ESS was significantly higher in MMSES (150 µm) [0.85(0.49-1.40) Pa], compared to MMSES (125 µm) [0.68(0.35-1.18) Pa]. Both MMSES (150 µm) and MMSES (125 µm) revealed low recirculation zone percentages per luminal surface area [3.17% ± 1.97% in MMSES (150 µm), 2.71% ± 1.32% in MMSES (125 µm)]. CONCLUSION Thinner strut Mirage scaffolds induced lower shear stress due to the small size vessels treated as compared to the thick strut version of the Mirage which was implanted in relatively bigger size vessels. Vessel size should be taken into account in planning BRS implantation. Small vessels may not get benefit from BRS implantation even with a streamlined strut profile. This pilot study warrants comparative assessment with commercially available bioresorbable scaffolds.
Collapse
Affiliation(s)
- Erhan Tenekecioglu
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Christos V Bourantas
- Department of Cardiology, University College of London Hospitals, London, United Kingdom
| | - Rafael Cavalcante
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Yohei Sotomi
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yaping Zeng
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Carlos Collet
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom Crake
- Department of Cardiology, University College of London Hospitals, London, United Kingdom
| | - Alexandre Abizaid
- Department of Invasive Cardiology, Institute Dante Pazzanese of Cardiology, São Paulo, Brazil
| | - Yoshinobu Onuma
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | | | - Teguh Santoso
- Department of Internal Medicine, Faculty of Medicine, Dr. Cipto Mangunkusumo and Medistra Hospitals, University of Indonesia, Jakarta, Indonesia
| | - Patrick W Serruys
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands.,Department of Cardiology, International Centre for Circulatory Health, Imperial College, London, United Kingdom
| |
Collapse
|
18
|
Chiastra C, Migliori S, Burzotta F, Dubini G, Migliavacca F. Patient-Specific Modeling of Stented Coronary Arteries Reconstructed from Optical Coherence Tomography: Towards a Widespread Clinical Use of Fluid Dynamics Analyses. J Cardiovasc Transl Res 2017; 11:156-172. [PMID: 29282628 PMCID: PMC5908818 DOI: 10.1007/s12265-017-9777-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022]
Abstract
The recent widespread application of optical coherence tomography (OCT) in interventional cardiology has improved patient-specific modeling of stented coronary arteries for the investigation of local hemodynamics. In this review, the workflow for the creation of fluid dynamics models of stented coronary arteries from OCT images is presented. The algorithms for lumen contours and stent strut detection from OCT as well as the reconstruction methods of stented geometries are discussed. Furthermore, the state of the art of studies that investigate the hemodynamics of OCT-based stented coronary artery geometries is reported. Although those studies analyzed few patient-specific cases, the application of the current reconstruction methods of stented geometries to large populations is possible. However, the improvement of these methods and the reduction of the time needed for the entire modeling process are crucial for a widespread clinical use of the OCT-based models and future in silico clinical trials.
Collapse
Affiliation(s)
- Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| | - Susanna Migliori
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Francesco Burzotta
- Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| |
Collapse
|
19
|
Tenekecioglu E, Torii R, Bourantas C, Sotomi Y, Cavalcante R, Zeng Y, Collet C, Crake T, Suwannasom P, Onuma Y, Serruys P. Difference in haemodynamic microenvironment in vessels scaffolded with Absorb BVS and Mirage BRMS: insights from a preclinical endothelial shear stress study. EUROINTERVENTION 2017; 13:1327-1335. [DOI: 10.4244/eij-d-17-00283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Katagiri Y, Tenekecioglu E, Serruys PW, Collet C, Katsikis A, Asano T, Miyazaki Y, Piek JJ, Wykrzykowska JJ, Bourantas C, Onuma Y. What does the future hold for novel intravascular imaging devices: a focus on morphological and physiological assessment of plaque. Expert Rev Med Devices 2017; 14:985-999. [DOI: 10.1080/17434440.2017.1407646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yuki Katagiri
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Carlos Collet
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Athanasios Katsikis
- Department of Cardiology, General Military Hospital of Athens, Athens, Greece
| | - Taku Asano
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yosuke Miyazaki
- ThoraxCenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan J Piek
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Christos Bourantas
- Barts Heart Centre, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Sciences, University College London, London, UK
| | - Yoshinobu Onuma
- ThoraxCenter, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Ng J, Bourantas CV, Torii R, Ang HY, Tenekecioglu E, Serruys PW, Foin N. Local Hemodynamic Forces After Stenting: Implications on Restenosis and Thrombosis. Arterioscler Thromb Vasc Biol 2017; 37:2231-2242. [PMID: 29122816 DOI: 10.1161/atvbaha.117.309728] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022]
Abstract
Local hemodynamic forces are well-known to modulate atherosclerotic evolution, which remains one of the largest cause of death worldwide. Percutaneous coronary interventions with stent implantation restores blood flow to the downstream myocardium and is only limited by stent failure caused by restenosis, stent thrombosis, or neoatherosclerosis. Cumulative evidence has shown that local hemodynamic forces affect restenosis and the platelet activation process, modulating the pathophysiological mechanisms that lead to stent failure. This article first covers the pathophysiological mechanisms through which wall shear stress regulates arterial disease formation/neointima proliferation and the role of shear rate on stent thrombosis. Subsequently, the article reviews the current evidence on (1) the implications of stent design on the local hemodynamic forces, and (2) how stent/scaffold expansion can influence local flow, thereby affecting the risk of adverse events.
Collapse
Affiliation(s)
- Jaryl Ng
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Christos V Bourantas
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Ryo Torii
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Hui Ying Ang
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Erhan Tenekecioglu
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Patrick W Serruys
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Nicolas Foin
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.).
| |
Collapse
|
22
|
Sotomi Y, Suwannasom P, Tenekecioglu E, Collet C, Nakatani S, Okamura T, Muramatsu T, Ishibashi Y, Tateishi H, Miyazaki Y, Asano T, Katagiri Y, von zur Muehlen C, Tanabe K, Kozuma K, Ozaki Y, Serruys PW, Onuma Y. Imaging assessment of bioresorbable vascular scaffolds. Cardiovasc Interv Ther 2017; 33:11-22. [DOI: 10.1007/s12928-017-0486-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
23
|
Tenekecioglu E, Torii R, Bourantas C, Crake T, Zeng Y, Sotomi Y, Onuma Y, Yılmaz M, Santoso T, Serruys PW. Preclinical assessment of the endothelial shear stress in porcine-based models following implantation of two different bioresorbable scaffolds: effect of scaffold design on the local haemodynamic micro-environment. EUROINTERVENTION 2017; 12:1296. [PMID: 27180301 DOI: 10.4244/eijy16m05_01] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Erhan Tenekecioglu
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tenekecioglu E, Sotomi Y, Torii R, Bourantas C, Miyazaki Y, Collet C, Crake T, Su S, Onuma Y, Serruys PW. Strut protrusion and shape impact on endothelial shear stress: insights from pre-clinical study comparing Mirage and Absorb bioresorbable scaffolds. Int J Cardiovasc Imaging 2017; 33:1313-1322. [PMID: 28365819 PMCID: PMC5539274 DOI: 10.1007/s10554-017-1124-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/21/2017] [Indexed: 12/16/2022]
Abstract
Protrusion of scaffold struts is related with local coronary flow dynamics that can promote scaffold restenosis and thrombosis. That fact has prompted us to investigate in vivo the protrusion status of different types of scaffolds and their relationship with endothelial shear stress (ESS) distributions. Six Absorb everolimus-eluting Bioresorbable Vascular Scaffolds (Absorb, Abbott Vascular) and 11 Mirage sirolimus-eluting Bioresorbable Microfiber Scaffolds (Mirage, Manli Cardiology) were implanted in coronaries of eight mini pigs. Optical coherence tomography (OCT) was performed post-scaffold implantation and obtained images were fused with angiographic data to reconstruct the three dimensional coronary anatomy. Blood flow simulation was performed and ESS distribution was estimated for each scaffold. Protrusion distance was estimated using a dedicated software. Correlation between OCT-derived protrusion and ESS distribution was assessed for both scaffold groups. A significant difference was observed in the protrusion distances (156 ± 137 µm for Absorb, 139 ± 153 µm for Mirage; p = 0.035), whereas difference remained after adjusting the protrusion distances according to the luminal areas. Strut protrusion of Absorb is inversely correlated with ESS (r = −0.369, p < 0.0001), whereas in Mirage protrusion was positively correlated with EES (r = 0.192, p < 0.0001). Protrusion distance was higher in Absorb than in Mirage. The protrusion of the thick quadratic struts of Absorb has a tendency to lower shear stress in the close vicinity of struts. However, circular shape of the less thick struts of Mirage didn’t show this trend in creating zone of recirculation around the struts. Strut geometry has different effect on the relationship between protrusion and shear stress in Absorb and Mirage scaffolds.
Collapse
Affiliation(s)
- Erhan Tenekecioglu
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Yohei Sotomi
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Christos Bourantas
- Department of Cardiology, University College of London Hospitals, London, UK
| | - Yosuke Miyazaki
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Carlos Collet
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom Crake
- Department of Cardiology, University College of London Hospitals, London, UK
| | | | - Yoshinobu Onuma
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Patrick W Serruys
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands. .,Imperial College, London, UK. .,Emeritus Professor of Medicine Erasmus University, Westblaak 98, 3012KM, Rotterdam, The Netherlands.
| |
Collapse
|
25
|
Tenekecioglu E, Torii R, Bourantas C, Abdelghani M, Cavalcante R, Sotomi Y, Crake T, Su S, Santoso T, Onuma Y, Serruys PW. Assessment of the hemodynamic characteristics of Absorb BVS in a porcine coronary artery model. Int J Cardiol 2017; 227:467-473. [DOI: 10.1016/j.ijcard.2016.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 11/30/2022]
|
26
|
Overlapping implantation of bioresorbable novolimus-eluting scaffolds: an observational optical coherence tomography study. Heart Vessels 2016; 32:781-789. [PMID: 28004176 DOI: 10.1007/s00380-016-0932-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
Abstract
Overlapping implantation of bioresorbable vascular scaffolds is frequently necessary, but its influence on vessel and scaffold structure has not been thoroughly analyzed previously. The aim of this study was to analyze the acute effects of overlapping implantation on BRS as determined by optical coherence tomography (OCT). A total of 38 patients with de novo coronary artery stenoses who underwent OCT in the context of implantation of novolimus-eluting BRS (DESolve, Elixir Medical Corporation, Sunnyvale, California, USA) were investigated. In 15 patients, overlapping implantation of two BRS was performed, while 23 patients with implantation of one single BRS served as the control group. OCT data were retrospectively analyzed regarding acute scaffold implantation results. There were no significant differences between the overlap and control group in terms of residual in-scaffold area stenosis, scaffold area, mean or minimal lumen area, eccentricity index, incomplete scaffold apposition area or malapposition. While strut fracture was slightly more frequent in BRS with overlap its incidence was low overall. In patients with overlapping BRS, overlap segments did not display smaller lumen areas than segments without overlap (mean lumen area overlap: 8.16 ± 2.97 mm2 vs. no overlap: 7.70 ± 2.55 mm2; p = 0.71; minimal lumen area overlap: 6.83 ± 2.71 mm2 vs. no overlap: 6.17 ± 2.58 mm2; p = 0.37). Acute mechanical performance of novolimus-eluting BRS is not impaired by overlapping implantation. It can be assumed that vessel expansion compensates for the double scaffold layer in the overlap area resulting in a similar lumen area in overlap areas and in those with a single strut layer.
Collapse
|
27
|
Intravascular hemodynamics and coronary artery disease: New insights and clinical implications. Hellenic J Cardiol 2016; 57:389-400. [PMID: 27894949 DOI: 10.1016/j.hjc.2016.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
Intracoronary hemodynamics play a pivotal role in the initiation and progression of the atherosclerotic process. Low pro-inflammatory endothelial shear stress impacts vascular physiology and leads to the occurrence of coronary artery disease and its implications.
Collapse
|
28
|
Affiliation(s)
- David P. Faxon
- From Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA
| | - David O. Williams
- From Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
29
|
O’Brien CC, Kolandaivelu K, Brown J, Lopes AC, Kunio M, Kolachalama VB, Edelman ER. Constraining OCT with Knowledge of Device Design Enables High Accuracy Hemodynamic Assessment of Endovascular Implants. PLoS One 2016; 11:e0149178. [PMID: 26906566 PMCID: PMC4764338 DOI: 10.1371/journal.pone.0149178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/27/2015] [Indexed: 11/21/2022] Open
Abstract
Background Stacking cross-sectional intravascular images permits three-dimensional rendering of endovascular implants, yet introduces between-frame uncertainties that limit characterization of device placement and the hemodynamic microenvironment. In a porcine coronary stent model, we demonstrate enhanced OCT reconstruction with preservation of between-frame features through fusion with angiography and a priori knowledge of stent design. Methods and Results Strut positions were extracted from sequential OCT frames. Reconstruction with standard interpolation generated discontinuous stent structures. By computationally constraining interpolation to known stent skeletons fitted to 3D ‘clouds’ of OCT-Angio-derived struts, implant anatomy was resolved, accurately rendering features from implant diameter and curvature (n = 1 vessels, r2 = 0.91, 0.90, respectively) to individual strut-wall configurations (average displacement error ~15 μm). This framework facilitated hemodynamic simulation (n = 1 vessel), showing the critical importance of accurate anatomic rendering in characterizing both quantitative and basic qualitative flow patterns. Discontinuities with standard approaches systematically introduced noise and bias, poorly capturing regional flow effects. In contrast, the enhanced method preserved multi-scale (local strut to regional stent) flow interactions, demonstrating the impact of regional contexts in defining the hemodynamic consequence of local deployment errors. Conclusion Fusion of planar angiography and knowledge of device design permits enhanced OCT image analysis of in situ tissue-device interactions. Given emerging interests in simulation-derived hemodynamic assessment as surrogate measures of biological risk, such fused modalities offer a new window into patient-specific implant environments.
Collapse
Affiliation(s)
- Caroline C. O’Brien
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| | - Kumaran Kolandaivelu
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Jonathan Brown
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Augusto C. Lopes
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Mie Kunio
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Vijaya B. Kolachalama
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA, United States of America
| | - Elazer R. Edelman
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
30
|
Schrauwen JTC, Karanasos A, van Ditzhuijzen NS, Aben JP, van der Steen AFW, Wentzel JJ, Gijsen FJH. Influence of the Accuracy of Angiography-Based Reconstructions on Velocity and Wall Shear Stress Computations in Coronary Bifurcations: A Phantom Study. PLoS One 2015; 10:e0145114. [PMID: 26690897 PMCID: PMC4686962 DOI: 10.1371/journal.pone.0145114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/28/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Wall shear stress (WSS) plays a key role in the onset and progression of atherosclerosis in human coronary arteries. Especially sites with low and oscillating WSS near bifurcations have a higher propensity to develop atherosclerosis. WSS computations in coronary bifurcations can be performed in angiography-based 3D reconstructions. It is essential to evaluate how reconstruction errors influence WSS computations in mildly-diseased coronary bifurcations. In mildly-diseased lesions WSS could potentially provide more insight in plaque progression. MATERIALS METHODS Four Plexiglas phantom models of coronary bifurcations were imaged with bi-plane angiography. The lumens were segmented by two clinically experienced readers. Based on the segmentations 3D models were generated. This resulted in three models per phantom: one gold-standard from the phantom model itself, and one from each reader. Steady-state and transient simulations were performed with computational fluid dynamics to compute the WSS. A similarity index and a noninferiority test were used to compare the WSS in the phantoms and their reconstructions. The margin for this test was based on the resolution constraints of angiography. RESULTS The reconstruction errors were similar to previously reported data; in seven out of eight reconstructions less than 0.10 mm. WSS in the regions proximal and far distal of the stenosis showed a good agreement. However, the low WSS areas directly distal of the stenosis showed some disagreement between the phantoms and the readers. This was due to small deviations in the reconstruction of the stenosis that caused differences in the resulting jet, and consequently the size and location of the low WSS area. DISCUSSION This study showed that WSS can accurately be computed within angiography-based 3D reconstructions of coronary arteries with early stage atherosclerosis. Qualitatively, there was a good agreement between the phantoms and the readers. Quantitatively, the low WSS regions directly distal to the stenosis were sensitive to small reconstruction errors.
Collapse
Affiliation(s)
- Jelle T C Schrauwen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Antonios Karanasos
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Jolanda J Wentzel
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Frank J H Gijsen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
31
|
Pedrigi RM, Poulsen CB, Mehta VV, Ramsing Holm N, Pareek N, Post AL, Kilic ID, Banya WAS, Dall'Ara G, Mattesini A, Bjørklund MM, Andersen NP, Grøndal AK, Petretto E, Foin N, Davies JE, Di Mario C, Fog Bentzon J, Erik Bøtker H, Falk E, Krams R, de Silva R. Inducing Persistent Flow Disturbances Accelerates Atherogenesis and Promotes Thin Cap Fibroatheroma Development in D374Y-PCSK9 Hypercholesterolemic Minipigs. Circulation 2015; 132:1003-12. [PMID: 26179404 DOI: 10.1161/circulationaha.115.016270] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although disturbed flow is thought to play a central role in the development of advanced coronary atherosclerotic plaques, no causal relationship has been established. We evaluated whether inducing disturbed flow would cause the development of advanced coronary plaques, including thin cap fibroatheroma. METHODS AND RESULTS D374Y-PCSK9 hypercholesterolemic minipigs (n=5) were instrumented with an intracoronary shear-modifying stent (SMS). Frequency-domain optical coherence tomography was obtained at baseline, immediately poststent, 19 weeks, and 34 weeks, and used to compute shear stress metrics of disturbed flow. At 34 weeks, plaque type was assessed within serially collected histological sections and coregistered to the distribution of each shear metric. The SMS caused a flow-limiting stenosis, and blood flow exiting the SMS caused regions of increased shear stress on the outer curvature and large regions of low and multidirectional shear stress on the inner curvature of the vessel. As a result, plaque burden was ≈3-fold higher downstream of the SMS than both upstream of the SMS and in the control artery (P<0.001). Advanced plaques were also primarily observed downstream of the SMS, in locations initially exposed to both low (P<0.002) and multidirectional (P<0.002) shear stress. Thin cap fibroatheroma regions demonstrated significantly lower shear stress that persisted over the duration of the study in comparison with other plaque types (P<0.005). CONCLUSIONS These data support a causal role for lowered and multidirectional shear stress in the initiation of advanced coronary atherosclerotic plaques. Persistently lowered shear stress appears to be the principal flow disturbance needed for the formation of thin cap fibroatheroma.
Collapse
Affiliation(s)
- Ryan M Pedrigi
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Christian Bo Poulsen
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Vikram V Mehta
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Niels Ramsing Holm
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Nilesh Pareek
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Anouk L Post
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Ismail Dogu Kilic
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Winston A S Banya
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Gianni Dall'Ara
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Alessio Mattesini
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Martin M Bjørklund
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Niels P Andersen
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Anna K Grøndal
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Enrico Petretto
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Nicolas Foin
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Justin E Davies
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Carlo Di Mario
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Jacob Fog Bentzon
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Hans Erik Bøtker
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Erling Falk
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Rob Krams
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Ranil de Silva
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.).
| |
Collapse
|
32
|
Ishibashi Y, Nakatani S, Onuma Y. Definite and probable bioresorbable scaffold thrombosis in stable and ACS patients. EUROINTERVENTION 2015; 11:e1-2. [DOI: 10.4244/eijy14m09_08] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Toutouzas K, Chatzizisis YS, Riga M, Giannopoulos A, Antoniadis AP, Tu S, Fujino Y, Mitsouras D, Doulaverakis C, Tsampoulatidis I, Koutkias VG, Bouki K, Li Y, Chouvarda I, Cheimariotis G, Maglaveras N, Kompatsiaris I, Nakamura S, Reiber JHC, Rybicki F, Karvounis H, Stefanadis C, Tousoulis D, Giannoglou GD. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA. Atherosclerosis 2015; 240:510-9. [PMID: 25932791 DOI: 10.1016/j.atherosclerosis.2015.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/15/2015] [Accepted: 04/06/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Geometrically-correct 3D OCT is a new imaging modality with the potential to investigate the association of local hemodynamic microenvironment with OCT-derived high-risk features. We aimed to describe the methodology of 3D OCT and investigate the accuracy, inter- and intra-observer agreement of 3D OCT in reconstructing coronary arteries and calculating ESS, using 3D IVUS and 3D QCA as references. METHODS-RESULTS 35 coronary artery segments derived from 30 patients were reconstructed in 3D space using 3D OCT. 3D OCT was validated against 3D IVUS and 3D QCA. The agreement in artery reconstruction among 3D OCT, 3D IVUS and 3D QCA was assessed in 3-mm-long subsegments using lumen morphometry and ESS parameters. The inter- and intra-observer agreement of 3D OCT, 3D IVUS and 3D QCA were assessed in a representative sample of 61 subsegments (n = 5 arteries). The data processing times for each reconstruction methodology were also calculated. There was a very high agreement between 3D OCT vs. 3D IVUS and 3D OCT vs. 3D QCA in terms of total reconstructed artery length and volume, as well as in terms of segmental morphometric and ESS metrics with mean differences close to zero and narrow limits of agreement (Bland-Altman analysis). 3D OCT exhibited excellent inter- and intra-observer agreement. The analysis time with 3D OCT was significantly lower compared to 3D IVUS. CONCLUSIONS Geometrically-correct 3D OCT is a feasible, accurate and reproducible 3D reconstruction technique that can perform reliable ESS calculations in coronary arteries.
Collapse
Affiliation(s)
- Konstantinos Toutouzas
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - Yiannis S Chatzizisis
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece.
| | - Maria Riga
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - Andreas Giannopoulos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Antonios P Antoniadis
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Shengxian Tu
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yusuke Fujino
- Department of Cardiology, New Tokyo Hospital, Chiba, Japan
| | - Dimitrios Mitsouras
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charalampos Doulaverakis
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Ioannis Tsampoulatidis
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Vassilis G Koutkias
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Konstantina Bouki
- Second Department of Cardiology, General Hospital of Nikaia, Piraeus, Greece
| | - Yingguang Li
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioanna Chouvarda
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Grigorios Cheimariotis
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Nicos Maglaveras
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Ioannis Kompatsiaris
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Sunao Nakamura
- Department of Cardiology, New Tokyo Hospital, Chiba, Japan
| | - Johan H C Reiber
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank Rybicki
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haralambos Karvounis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Christodoulos Stefanadis
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - Dimitris Tousoulis
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - George D Giannoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| |
Collapse
|
34
|
Sinclair H, Bourantas C, Bagnall A, Mintz GS, Kunadian V. OCT for the Identification of Vulnerable Plaque in Acute Coronary Syndrome. JACC Cardiovasc Imaging 2015; 8:198-209. [DOI: 10.1016/j.jcmg.2014.12.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 12/22/2022]
|
35
|
Serruys PW, Chevalier B, Dudek D, Cequier A, Carrié D, Iniguez A, Dominici M, van der Schaaf RJ, Haude M, Wasungu L, Veldhof S, Peng L, Staehr P, Grundeken MJ, Ishibashi Y, Garcia-Garcia HM, Onuma Y. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet 2015; 385:43-54. [PMID: 25230593 DOI: 10.1016/s0140-6736(14)61455-0] [Citation(s) in RCA: 451] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Despite rapid dissemination of an everolimus-eluting bioresorbable scaffold for treatment for coronary artery disease, no data from comparisons with its metallic stent counterpart are available. In a randomised controlled trial we aimed to compare an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent. Here we report secondary clinical and procedural outcomes after 1 year of follow-up. METHODS In a single-blind, multicentre, randomised trial, we enrolled eligible patients aged 18-85 years with evidence of myocardial ischaemia and one or two de-novo native lesions in different epicardial vessels. We randomly assigned patients in a 2:1 ratio to receive treatment with an everolimus-eluting bioresorbable scaffold (Absorb, Abbott Vascular, Santa Clara, CA, USA) or treatment with an everolimus-eluting metallic stent (Xience, Abbott Vascular, Santa Clara, CA, USA). Randomisation was stratified by diabetes status and number of planned target lesions. The co-primary endpoints of this study are vasomotion (change in mean lumen diameter before and after nitrate administration at 3 years) and difference between minimum lumen diameter (after nitrate administration) after the index procedure and at 3 years. Secondary endpoints were procedural performance assessed by quantitative angiography and intravascular ultrasound; composite clinical endpoints based on death, myocardial infarction, and coronary revascularisation; device and procedural success; and angina status assessed by the Seattle Angina Questionnaire and exercise testing at 6 and 12 months. Cumulative angina rate based on adverse event reporting was analysed post hoc. This trial is registered at ClinicalTrials.gov, number NCT01425281. FINDINGS Between Nov 28, 2011, and June 4, 2013, we enrolled 501 patients and randomly assigned them to the bioresorbable scaffold group (335 patients, 364 lesions) or the metallic stent group (166 patients, 182 lesions). Dilatation pressure and balloon diameter at the highest pressure during implantation or postdilatation were higher and larger in the metallic stent group, whereas the acute recoil post implantation was similar (0.19 mm for both, p=0.85). Acute lumen gain was lower for the bioresorbable scaffold by quantitative coronary angiography (1.15 mm vs 1.46 mm, p<0.0001) and quantitative intravascular ultrasound (2.85 mm(2)vs 3.60 mm(2), p<0.0001), resulting in a smaller lumen diameter or area post procedure. At 1 year, however, cumulative rates of first new or worsening angina from adverse event reporting were lower (72 patients [22%] in the bioresorbable scaffold group vs 50 [30%] in the metallic stent group, p=0.04), whereas performance during maximum exercise and angina status by SAQ were similar. The 1-year composite device orientated endpoint was similar between the bioresorbable scaffold and metallic stent groups (16 patients [5%] vs five patients [3%], p=0.35). Three patients in the bioresorbable scaffold group had definite or probable scaffold thromboses (one definite acute, one definite sub-acute, and one probable late), compared with no patients in the metallic stent group. There were 17 (5%) major cardiac adverse events in the bioresorbable scaffold group compared with five (3%) events in the metallic stent group, with the most common adverse events being myocardial infarction (15 cases [4%] vs two cases [1%], respectively) and clinically indicated target-lesion revascularisation (four cases [1%] vs three cases [2%], respectively). INTERPRETATION The everolimus-eluting bioresorbable scaffold showed similar 1-year composite secondary clinical outcomes to the everolimus-eluting metallic stent. FUNDING Abbott Vascular.
Collapse
Affiliation(s)
- Patrick W Serruys
- International Centre for Cardiovascular Health, Imperial College, London, UK.
| | | | - Dariusz Dudek
- Jagiellonian University, Department of Cardiology and Cardio Vascular Interventions, University Hospital, Krakow, Poland
| | | | | | | | | | | | - Michael Haude
- Städtisches Kliniken Neuss Lukaskrankenhaus GmbH, Neuss, Germany
| | | | | | - Lei Peng
- Abbott Vascular, Santa Clara, CA, USA
| | | | | | | | | | - Yoshinobu Onuma
- Erasmus MC, Rotterdam, Netherlands; Cardialysis BV, Rotterdam, Netherlands
| |
Collapse
|