1
|
Lashgari M, Ravikumar N, Teh I, Li JR, Buckley DL, Schneider JE, Frangi AF. Three-dimensional micro-structurally informed in silico myocardium-Towards virtual imaging trials in cardiac diffusion weighted MRI. Med Image Anal 2022; 82:102592. [PMID: 36095906 DOI: 10.1016/j.media.2022.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
In silico tissue models (viz. numerical phantoms) provide a mechanism for evaluating quantitative models of magnetic resonance imaging. This includes the validation and sensitivity analysis of imaging biomarkers and tissue microstructure parameters. This study proposes a novel method to generate a realistic numerical phantom of myocardial microstructure. The proposed method extends previous studies by accounting for the variability of the cardiomyocyte shape, water exchange between the cardiomyocytes (intercalated discs), disorder class of myocardial microstructure, and four sheetlet orientations. In the first stage of the method, cardiomyocytes and sheetlets are generated by considering the shape variability and intercalated discs in cardiomyocyte-cardiomyocyte connections. Sheetlets are then aggregated and oriented in the directions of interest. The morphometric study demonstrates no significant difference (p>0.01) between the distribution of volume, length, and primary and secondary axes of the numerical and real (literature) cardiomyocyte data. Moreover, structural correlation analysis validates that the in-silico tissue is in the same class of disorderliness as the real tissue. Additionally, the absolute angle differences between the simulated helical angle (HA) and input HA (reference value) of the cardiomyocytes (4.3°±3.1°) demonstrate a good agreement with the absolute angle difference between the measured HA using experimental cardiac diffusion tensor imaging (cDTI) and histology (reference value) reported by (Holmes et al., 2000) (3.7°±6.4°) and (Scollan et al. 1998) (4.9°±14.6°). Furthermore, the angular distance between eigenvectors and sheetlet angles of the input and simulated cDTI is much smaller than those between measured angles using structural tensor imaging (as a gold standard) and experimental cDTI. Combined with the qualitative results, these results confirm that the proposed method can generate richer numerical phantoms for the myocardium than previous studies.
Collapse
Affiliation(s)
- Mojtaba Lashgari
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK; Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK.
| | - Nishant Ravikumar
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK; Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Irvin Teh
- Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Jing-Rebecca Li
- INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France
| | - David L Buckley
- Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Jurgen E Schneider
- Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Alejandro F Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK; Biomedical Imaging Science Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK; INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France; Medical Imaging Research Center (MIRC), Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Medical Imaging Research Center (MIRC), Department of Electrical Engineering, KU Leuven, Leuven, Belgium; Alan Turing Institute, London, UK.
| |
Collapse
|
2
|
Wang H, Wisneski A, Imbrie-Moore AM, Paulsen MJ, Wang Z, Xuan Y, Lopez Hernandez H, Hironaka CE, Lucian HJ, Shin HS, Anilkumar S, Thakore AD, Farry JM, Eskandari A, Williams KM, Grady F, Wu MA, Jung J, Stapleton LM, Steele AN, Zhu Y, Woo YJ. Natural cardiac regeneration conserves native biaxial left ventricular biomechanics after myocardial infarction in neonatal rats. J Mech Behav Biomed Mater 2022; 126:105074. [PMID: 35030471 PMCID: PMC8899021 DOI: 10.1016/j.jmbbm.2022.105074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 12/23/2021] [Accepted: 01/02/2022] [Indexed: 02/03/2023]
Abstract
After myocardial infarction (MI), adult mammals exhibit scar formation, adverse left ventricular (LV) remodeling, LV stiffening, and impaired contractility, ultimately resulting in heart failure. Neonatal mammals, however, are capable of natural heart regeneration after MI. We hypothesized that neonatal cardiac regeneration conserves native biaxial LV mechanics after MI. Wistar rat neonates (1 day old, n = 46) and adults (8-10 weeks old, n = 20) underwent sham surgery or permanent left anterior descending coronary artery ligation. At 6 weeks after neonatal MI, Masson's trichrome staining revealed negligible fibrosis. Echocardiography for the neonatal MI (n = 15) and sham rats (n = 14) revealed no differences in LV wall thickness or chamber diameter, and both groups had normal ejection fraction (72.7% vs 77.5%, respectively, p = 0.1946). Biaxial tensile testing revealed similar stress-strain curves along both the circumferential and longitudinal axes across a full range of physiologic stresses and strains. The circumferential modulus (267.9 kPa vs 274.2 kPa, p = 0.7847), longitudinal modulus (269.3 kPa vs 277.1 kPa, p = 0.7435), and maximum shear stress (3.30 kPa vs 3.95 kPa, p = 0.5418) did not differ significantly between the neonatal MI and sham groups, respectively. In contrast, transmural scars were observed at 4 weeks after adult MI. Adult MI hearts (n = 7) exhibited profound LV wall thinning (p < 0.0001), chamber dilation (p = 0.0246), and LV dysfunction (ejection fraction 45.4% vs 79.7%, p < 0.0001) compared to adult sham hearts (n = 7). Adult MI hearts were significantly stiffer than adult sham hearts in both the circumferential (321.5 kPa vs 180.0 kPa, p = 0.0111) and longitudinal axes (315.4 kPa vs 172.3 kPa, p = 0.0173), and also exhibited greater maximum shear stress (14.87 kPa vs 3.23 kPa, p = 0.0162). Our study is the first to show that native biaxial LV mechanics are conserved after neonatal heart regeneration following MI, thus adding biomechanical support for the therapeutic potential of cardiac regeneration in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Andrew Wisneski
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Zhongjie Wang
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Yue Xuan
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Camille E Hironaka
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Haley J Lucian
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Hye Sook Shin
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Shreya Anilkumar
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Akshara D Thakore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Justin M Farry
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Anahita Eskandari
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Kiah M Williams
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Frederick Grady
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Matthew A Wu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Jinsuh Jung
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Lyndsay M Stapleton
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Amanda N Steele
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
KHOSRAVANIPOUR MOHAMMADJAVAD, MOKHTARI-DIZAJI MANIJHE, FARHAN FARSHID, SATTARZADEH-BADKOUBEH ROYA. COMPARISON OF TWO THICK SHELL MODELS PERFORMANCE IN NONINVASIVE EVALUATION OF MYOCARDIAL WALL STRESS. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421500561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coronary artery stenosis is the most common heart disease, leading to altered myocardial mechanics. This study aimed to compare Ghista–Sandler and Mirsky wall stress models and evaluate the discriminant analysis of noninvasive wall stress based on these models. 59 Coronary artery disease (CAD) patients were divided into two groups; moderate stenosis and severe stenosis in the left anterior descending artery proximal part were enrolled in this study. The wall stress in the end-systolic and end-diastolic phases at LV anterior and interventricular septum wall segments calculated by using the equation proposed by Ghista–Sandler and Mirsky. The specificity and sensitivity of wall stress at groups were calculated by Ghista–Sandler and Mirsky models. The wall thickness and principal radius of segments in healthy subjects and patients with severe and moderate stenosis were shown statistically differences in some segments of anterior and septum walls ([Formula: see text]). Statistical analysis showed that calculated stresses in myocardial wall segments of patients with severe and moderate coronary stenosis and healthy people had a significant difference in systole and diastolic phase. Results of the discriminant analysis showed the specificity value obtained by the Ghista–Sandler model were higher in most wall stress combinations than the Mirsky model. Sensitivity in identifying patients with severe stenosis was higher in the Ghista–Sandler model. It is concluded that specificity and sensitivity based on wall stresses calculated by the Ghista–Sandler model were higher in comparison with the Mirsky model. The Ghista–Sandler model has better performance than the Mirsky model in diagnosing patients with stenosis.
Collapse
Affiliation(s)
| | - MANIJHE MOKHTARI-DIZAJI
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - FARSHID FARHAN
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Wang H, Wisneski A, Paulsen MJ, Imbrie-Moore A, Wang Z, Xuan Y, Hernandez HL, Lucian HJ, Eskandari A, Thakore AD, Farry JM, Hironaka CE, von Bornstaedt D, Steele AN, Stapleton LM, Williams KM, Wu MA, MacArthur JW, Woo YJ. Bioengineered analog of stromal cell-derived factor 1α preserves the biaxial mechanical properties of native myocardium after infarction. J Mech Behav Biomed Mater 2019; 96:165-171. [PMID: 31035067 DOI: 10.1016/j.jmbbm.2019.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/04/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023]
Abstract
Adverse remodeling of the left ventricle (LV) after myocardial infarction (MI) results in abnormal tissue biomechanics and impaired cardiac function, often leading to heart failure. We hypothesized that intramyocardial delivery of engineered stromal cell-derived factor 1α analog (ESA), our previously-developed supra-efficient pro-angiogenic chemokine, preserves biaxial LV mechanical properties after MI. Male Wistar rats (n = 45) underwent sham surgery (n = 15) or permanent left anterior descending coronary artery ligation. Rats sustaining MI were randomized for intramyocardial injections of either saline (100 μL, n = 15) or ESA (6 μg/kg, n = 15), delivered at four standardized borderzone sites. After 4 weeks, echocardiography was performed, and the hearts were explanted. Tensile testing of the anterolateral LV wall was performed using a displacement-controlled biaxial load frame, and modulus was determined after constitutive modeling. At 4 weeks post-MI, compared to saline controls, ESA-treated hearts had greater wall thickness (1.68 ± 0.05 mm vs 1.42 ± 0.08 mm, p = 0.008), smaller end-diastolic LV internal dimension (6.88 ± 0.29 mm vs 7.69 ± 0.22 mm, p = 0.044), and improved ejection fraction (62.8 ± 3.0% vs 49.4 ± 4.5%, p = 0.014). Histologic analysis revealed significantly reduced infarct size for ESA-treated hearts compared to saline controls (29.4 ± 2.9% vs 41.6 ± 3.1%, p = 0.021). Infarcted hearts treated with ESA exhibited decreased modulus compared to those treated with saline in both the circumferential (211.5 ± 6.9 kPa vs 264.3 ± 12.5 kPa, p = 0.001) and longitudinal axes (194.5 ± 6.5 kPa vs 258.1 ± 14.4 kPa, p < 0.001). In both principal directions, ESA-treated infarcted hearts possessed similar tissue compliance as sham non-infarcted hearts. Overall, intramyocardial ESA therapy improves post-MI ventricular remodeling and function, reduces infarct size, and preserves native LV biaxial mechanical properties.
Collapse
Affiliation(s)
- Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Andrew Wisneski
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Annabel Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Zhongjie Wang
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Yue Xuan
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Haley J Lucian
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Anahita Eskandari
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Akshara D Thakore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Justin M Farry
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Camille E Hironaka
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Amanda N Steele
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lyndsay M Stapleton
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kiah M Williams
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Matthew A Wu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - John W MacArthur
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Mosleh W, Elango K, Shah T, Chaudhari M, Gandhi S, Kattel S, Karki R, Khalil C, Frodey K, Dahal S, Okeeffe C, Aljebaje Z, Nagahama M, Punnanithinont N, Sharma UC. Elevated end-diastolic wall stress after acute myocardial infarction predicts adverse cardiovascular outcomes and longer hospital length of stay. Echocardiography 2018; 35:1721-1728. [DOI: 10.1111/echo.14136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022] Open
Affiliation(s)
- Wassim Mosleh
- Department of Medicine; Division of Cardiology; University at Buffalo; Buffalo New York
| | - Kalaimani Elango
- Department of Medicine; Division of Cardiology; University at Buffalo; Buffalo New York
| | - Tanvi Shah
- Department of Medicine; Division of Cardiology; University at Buffalo; Buffalo New York
| | - Milind Chaudhari
- Department of Medicine; Division of Cardiology; University at Buffalo; Buffalo New York
| | - Sumeet Gandhi
- Department of Medicine; Division of Cardiology; University at Buffalo; Buffalo New York
| | - Sharma Kattel
- Department of Medicine; Division of Cardiology; University at Buffalo; Buffalo New York
| | - Roshan Karki
- Department of Medicine; Division of Cardiology; University at Buffalo; Buffalo New York
| | - Charl Khalil
- Department of Medicine; Division of Cardiology; University at Buffalo; Buffalo New York
| | - Kevin Frodey
- Department of Medicine; Division of Cardiology; University at Buffalo; Buffalo New York
| | - Suraj Dahal
- Department of Medicine; Division of Cardiology; University at Buffalo; Buffalo New York
| | - Cale Okeeffe
- Department of Medicine; Division of Cardiology; University at Buffalo; Buffalo New York
| | - Zaid Aljebaje
- Department of Medicine; Division of Cardiology; University at Buffalo; Buffalo New York
| | - Makoto Nagahama
- Department of Medicine; Division of Cardiology; University at Buffalo; Buffalo New York
| | | | - Umesh C. Sharma
- Department of Medicine; Division of Cardiology; University at Buffalo; Buffalo New York
| |
Collapse
|