1
|
Antoniadis M, Blum M, Ussat M, Laufs U, Lenk K. Standardized angiographic projections allow evaluation of coronary artery side branches with quantitative flow ratio (QFR). IJC HEART & VASCULATURE 2024; 50:101349. [PMID: 38322018 PMCID: PMC10844669 DOI: 10.1016/j.ijcha.2024.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Quantitative flow ratio (QFR) is a novel, software-based noninvasive method for the quantitative evaluation of coronary physiology. QFR results correlate with invasive FFR measurements in the three main epicardial coronary arteries. However, QFR data for the evaluation of coronary side branches (SB) are scarce. The evaluation of QFR-performance of SB was retrospective and prospective. Eighty-seven patients with suspected chronic coronary syndrome, who received angiography using routine core lab projections, were retrospectively analyzed. On the second part 37 patients, who received angiography using recommended standardized coronary angiography projections, were prospectively analyzed. Quantitative analysis was performed for SB with a maximum lumen diameter proximal of ≥2 mm based on quantitative coronary angiography (QCA) by two certified experts with the software QAngio XA 3D 3.2. Using routine projections, QFR computation in 55 % of the SB were obtained (123 out of 224). Using standardized projections, 85 % of SB were computed by QFR (64 out of 75; p < 0.001 vs routine projections). The fluoroscopy time for recommended projections was not significantly different as opposed to routine projections (3.75 ± 2.2 vs. 4.58 ± 3.00 min, p = 2.6986). Using the standardized projections was associated with a higher amount of contrast medium (53.44 ± 24.23 vs. 87.95 ± 43.73 ml, p < 0.01), longer overall procedure time (23.23 ± 16.35 vs. 36.14 ± 17.21 min, p < 0.01) and a higher dose area product (1152.28 ± 576.70 vs. 2540.68 ± 1774.07 cGycm2, p < 0.01). Our study shows that the blood flow of the vast majority of coronary SB can be determined non-invasively by QFR in addition to the main epicardial coronary arteries when standardized projections are used.
Collapse
Affiliation(s)
| | | | - M. Ussat
- Department of Cardiology, Leipzig University Hospital, Leipzig, Germany
| | - U. Laufs
- Department of Cardiology, Leipzig University Hospital, Leipzig, Germany
| | - K. Lenk
- Department of Cardiology, Leipzig University Hospital, Leipzig, Germany
| |
Collapse
|
2
|
Lu W, Zhang X, Yan G, Ma G. The Differences of Quantitative Flow Ratio in Coronary Artery Stenosis with or without Atrial Fibrillation. J Interv Cardiol 2023; 2023:7278343. [PMID: 37868769 PMCID: PMC10589068 DOI: 10.1155/2023/7278343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Quantitative flow ratio (QFR) is a new method for the assessment of the extent of coronary artery stenosis. But it may be obscured by the cardiac remodeling and abnormal blood flow of the coronary artery when encountering atrial fibrillation (AF). The present study aimed to examine the impact of these changed structures and blood flow of coronary arteries on QFR results in AF patients. Methods and Results. We evaluated QFR in 223 patients (112 patients with AF; 111 non-AF patients served as controls) who had undergone percutaneous coronary intervention (PCI) due to severe stenoses in coronary arteries. QFR of the target coronary was determined according to the flow rate of the contrast agent. Results showed that AF patients had significantly higher QFR values than control (0.792 ± 0.118 vs. 0.685 ± 0.167, p < 0.001). We further analyzed local QFR around the stenoses (0.858 ± 0.304 vs. 0.756 ± 0.146, p=0.002), residual QFR (0.958 ± 0.055 vs. 0.929 ± 0.093, p=0.005), and index QFR (0.807 ± 0.108 vs. 0.713 ± 0.152, p < 0.001) in these two groups of patients with and without AF. Further analysis revealed that QFR in AF patients was negatively correlated with coronary flow velocity (R = -0.22, p=0.02) and area of stenosis (R = -0.70, p < 0.001) but positively correlated with the minimum lumen area (MLA) (R = 0.47, p < 0.001). Conclusion. AF patients with coronary artery stenosis have higher QFR values, which are associated with decreased blood flow velocity, smaller stenosis, and larger MLA in AF patients upon cardiac remodeling.
Collapse
Affiliation(s)
- Wenbin Lu
- Department of Cardiology, ZhongDa Hospital Affiliated with Southeast University, China
| | - Xiaoguo Zhang
- Department of Cardiology, ZhongDa Hospital Affiliated with Southeast University, China
| | - Gaoliang Yan
- Department of Cardiology, ZhongDa Hospital Affiliated with Southeast University, China
| | - Genshan Ma
- Department of Cardiology, ZhongDa Hospital Affiliated with Southeast University, China
| |
Collapse
|
3
|
Xu K, Jiang Y, Yang W, Zhang W, Wang D, Zhao Y, Zheng S, Hao Z, Shen L, Jiang L, Qiu X, Escaned J, Tu S, Shen L, He B. Post-procedural and long-term functional outcomes of jailed side branches in stented coronary bifurcation lesions assessed with side branch Murray law-based quantitative flow ratio. Front Cardiovasc Med 2023; 10:1217069. [PMID: 37600052 PMCID: PMC10435891 DOI: 10.3389/fcvm.2023.1217069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction In coronary bifurcation lesions treated with percutaneous coronary intervention (PCI) using a 1-stent strategy, the occurrence of side branch (SB) compromise may lead to long-term myocardial ischemia in the SB territory. Murray law-based quantitative flow ratio (μQFR) is a novel angiography-based approach estimating fractional flow reserve from a single angiographic view, and thus is more feasible to assess SB compromise in routine practice. However, its association with long-term SB coronary blood flow remains unknown. Methods A total of 146 patients with 313 non-left main bifurcation lesions receiving 1-stent strategy with drug-eluting stents was included in this retrospective study. These lesions had post-procedural Thrombolysis in Myocardial Infarction (TIMI) flow grade 3 in SBs, and documented angiographic images of index procedure and 6- to 24-month angiographic follow-up. Post-procedural SB μQFR was calculated. Long-term SB coronary blood flow was quantified with the TIMI grading system using angiograms acquired at angiographic follow-up. Results At follow-up, 8 (2.6%), 16 (5.1%), 61 (19.5%), and 228 (72.8%) SBs had a TIMI flow grade of 0, 1, 2, and 3, respectively. The incidences of long-term SB TIMI flow grade ≤1 and ≤2 both tended to decrease across the tertiles of post-procedural SB μQFR. The receiver operating characteristic curve analyses indicated the post-procedural SB μQFR ≤0.77 was the optimal cut-off value to identify long-term SB TIMI flow grade ≤1 (specificity, 37.50%; sensitivity, 87.20%; area under the curve, 0.6673; P = 0.0064), and it was independently associated with 2.57-fold increased risk (adjusted OR, 2.57; 95% CI, 1.02-7.25; P = 0.045) in long-term SB TIMI flow grade ≤1 after adjustment. Discussion Post-procedural SB μQFR was independently associated with increased risk in impaired SB TIMI flow at long-term follow-up. Further investigations should focus on whether PCI optimization based on μQFR may contribute to improve SB flow in the long term.
Collapse
Affiliation(s)
- Ke Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wentao Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunwen Zheng
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyong Hao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisheng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingbiao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Javier Escaned
- Department of Cardiology, Hospital Clínico San Carlos IDISSC, Universidad Complutense de Madrid, Madrid, Spain
| | - Shengxian Tu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Dobrić M, Furtula M, Tešić M, Timčić S, Borzanović D, Lazarević N, Lipovac M, Farkić M, Ilić I, Boljević D, Rakočević J, Aleksandrić S, Juričić S, Ostojić M, Bojić M. Current status and future perspectives of fractional flow reserve derived from invasive coronary angiography. Front Cardiovasc Med 2023; 10:1181803. [PMID: 37346287 PMCID: PMC10279845 DOI: 10.3389/fcvm.2023.1181803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Assessment of the functional significance of coronary artery stenosis using invasive measurement of fractional flow reserve (FFR) or non-hyperemic indices has been shown to be safe and effective in making clinical decisions on whether to perform percutaneous coronary intervention (PCI). Despite strong evidence from clinical trials, utilization of these techniques is still relatively low worldwide. This may be to some extent attributed to factors that are inherent to invasive measurements like prolongation of the procedure, side effects of drugs that induce hyperemia, additional steps that the operator should perform, the possibility to damage the vessel with the wire, and additional costs. During the last few years, there was a growing interest in the non-invasive assessment of coronary artery lesions, which may provide interventionalist with important physiological information regarding lesion severity and overcome some of the limitations. Several dedicated software solutions are available on the market that could provide an estimation of FFR using 3D reconstruction of the interrogated vessel derived from two separated angiographic projections taken during diagnostic coronary angiography. Furthermore, some of them use data about aortic pressure and frame count to more accurately calculate pressure drop (and FFR). The ideal non-invasive system should be integrated into the workflow of the cath lab and performed online (during the diagnostic procedure), thereby not prolonging procedural time significantly, and giving the operator additional information like vessel size, lesion length, and possible post-PCI FFR value. Following the development of these technologies, they were all evaluated in clinical trials where good correlation and agreement with invasive FFR (considered the gold standard) were demonstrated. Currently, only one trial (FAVOR III China) with clinical outcomes was completed and demonstrated that QFR-guided PCI may provide better results at 1-year follow-up as compared to the angiography-guided approach. We are awaiting the results of a few other trials with clinical outcomes that test the performance of these indices in guiding PCI against either FFR or angiography-based approach, in various clinical settings. Herein we will present an overview of the currently available data, a critical review of the major clinical trials, and further directions of development for the five most widely available non-invasive indices: QFR, vFFR, FFRangio, caFFR, and AccuFFRangio.
Collapse
Affiliation(s)
- Milan Dobrić
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
- University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Matija Furtula
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| | - Milorad Tešić
- University of Belgrade Faculty of Medicine, Belgrade, Serbia
- Cardiology Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Stefan Timčić
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| | - Dušan Borzanović
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| | - Nikola Lazarević
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| | - Mirko Lipovac
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| | - Mihajlo Farkić
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| | - Ivan Ilić
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
- University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Darko Boljević
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| | - Jelena Rakočević
- Institute of Histology and Embryology “Aleksandar Đ. Kostić”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Srđan Aleksandrić
- University of Belgrade Faculty of Medicine, Belgrade, Serbia
- Cardiology Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Stefan Juričić
- Cardiology Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Miodrag Ostojić
- University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Milovan Bojić
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| |
Collapse
|
5
|
Comparison of vessel fractional flow reserve with invasive resting full-cycle ratio in patients with intermediate coronary lesions. Int J Cardiol 2023; 377:1-8. [PMID: 36693476 DOI: 10.1016/j.ijcard.2023.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Vessel fractional flow reserve (vFFR) is a novel angiography-derived index for the assessment of myocardial ischemia without the need for pressure wires and hyperemic agents. vFFR has demonstrated very good diagnostic performance compared with the hyperemic index fractional flow reserve (FFR). The aim of this study was to compare vFFR to the non-hyperemic pressure ratio resting full-cycle ratio (RFR). METHODS This was a retrospective, observational, single-center study of an all-comer cohort undergoing RFR assessment. Invasive coronary angiography was obtained without a dedicated vFFR acquisition protocol, and vFFR calculation was attempted in all vessels interrogated by RFR (1483 lesions of 1030 patients). RESULTS vFFR could be analyzed in 986 lesions from 705 patients. Median diameter stenosis was 37% (interquartile range (IQR): 30.0-44.0%), vFFR 0.86 (IQR: 0.81-0.91) and RFR 0.94 (IQR: (0.90-0.97). The correlation between vFFR and RFR was strong (r = 0.70, 95% confidence interval (CI): 0.66-0.74, p < 0.001). Using RFR ≤0.89 as reference, the sensitivity, specificity, positive predictive value, negative predictive value, and overall diagnostic accuracy for vFFR were 77%, 93%, 77%, and 92% and 89%. vFFR yielded a high area under the curve (AUC) of 0.92 (95% CI: 0.90-0.94). The good diagnostic performance of vFFR was confirmed among subgroups of patients with diabetes, severe aortic stenosis, female gender and lesions located in the left anterior descending artery. CONCLUSION vFFR has a high diagnostic performance taking RFR as the reference standard for evaluating the functional significance of coronary stenoses.
Collapse
|
6
|
Functional Evaluation of Coronary Stenosis: is Quantitative Flow Ratio a Step Forward? COR ET VASA 2022. [DOI: 10.33678/cor.2022.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Sinha K, Berczeli M, Lumsden AB, Roy TL. Imaging: New Frontiers in Vascular Training. Methodist Debakey Cardiovasc J 2022; 18:39-48. [PMID: 35734160 PMCID: PMC9165676 DOI: 10.14797/mdcvj.1093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Advances in medical imaging have redefined the practice of vascular surgery. Current training programs for vascular surgery do not incorporate formal training in vascular imaging other than in duplex ultrasound when a physician is undergoing the vascular interpretation certification process. Yet imaging modalities and techniques have grown exponentially in the adjacent fields of interventional radiology, interventional and diagnostic cardiology, and neuroradiology, so much so that advanced imaging fellowships have been established in these fields. This article reviews the current state of vascular imaging training, identifies gaps in the current training regimen, and proposes an advanced vascular imaging fellowship for the future.
Collapse
Affiliation(s)
- Kavya Sinha
- Houston Methodist Hospital, Houston, Texas, US
| | - Marton Berczeli
- Houston Methodist Hospital, Houston, Texas, US
- Semmelweis University, Budapest, Hungary
| | - Alan B. Lumsden
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas, US
| | | |
Collapse
|
8
|
Scoccia A, Tomaniak M, Neleman T, Groenland FTW, Plantes ACZD, Daemen J. Angiography-Based Fractional Flow Reserve: State of the Art. Curr Cardiol Rep 2022; 24:667-678. [PMID: 35435570 PMCID: PMC9188492 DOI: 10.1007/s11886-022-01687-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 12/02/2022]
Abstract
Purpose of Review Three-dimensional quantitative coronary angiography-based methods of fractional flow reserve (FFR) derivation have emerged as an appealing alternative to conventional pressure-wire-based physiological lesion assessment and have the potential to further extend the use of physiology in general. Here, we summarize the current evidence related to angiography-based FFR and perspectives on future developments. Recent Findings Growing evidence suggests good diagnostic performance of angiography-based FFR measurements, both in chronic and acute coronary syndromes, as well as in specific lesion subsets, such as long and calcified lesions, left main coronary stenosis, and bifurcations. More recently, promising results on the superiority of angiography-based FFR as compared to angiography-guided PCI have been published. Summary Currently available angiography -FFR indices proved to be an excellent alternative to invasive pressure wire-based FFR. Dedicated prospective outcome data comparing these indices to routine guideline recommended PCI including the use of FFR are eagerly awaited.
Collapse
Affiliation(s)
- Alessandra Scoccia
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, room Rg-628, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Mariusz Tomaniak
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, room Rg-628, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.,First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Tara Neleman
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, room Rg-628, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Frederik T W Groenland
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, room Rg-628, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Annemieke C Ziedses des Plantes
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, room Rg-628, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Joost Daemen
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, room Rg-628, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Tomaniak M, Neleman T, Ziedses des Plantes A, Masdjedi K, van Zandvoort LJC, Kochman J, den Dekker WK, Wilschut JM, Diletti R, Kardys I, Zijlstra F, Van Mieghem NM, Daemen J. Diagnostic Accuracy of Coronary Angiography-Based Vessel Fractional Flow Reserve (vFFR) Virtual Stenting. J Clin Med 2022; 11:jcm11051397. [PMID: 35268488 PMCID: PMC8910880 DOI: 10.3390/jcm11051397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
3D coronary angiography-based vessel fractional flow reserve (vFFR) proved to be an accurate diagnostic alternative to invasively measured pressure wire based fractional flow reserve (FFR). The ability to compute post-PCI vFFR using pre-PCI vFFR virtual stent analysis is unknown. We aimed to assess the feasibility and diagnostic accuracy of pre-PCI vFFR virtual stenting analysis (residual vFFR) with post-PCI FFR as a reference. This is an observational, single-center retrospective cohort study including consecutive patients from the FFR-SEARCH registry. We blindly calculated residual vFFR from pre-PCI angiograms and compared them to invasive pressure-wire based post-PCI FFR. Inclusion criteria involved presentation with either stable or unstable angina or non-ST elevation myocardial infarction (NSTEMI), ≥1 significant stenosis in one of the epicardial coronary arteries (percentage diameter stenosis of >70% by QCA or hemodynamically relevant stenosis with FFR ≤0.80) and pre procedural angiograms eligible for vFFR analysis. Exclusion criteria comprised patients with ST elevation myocardial infarction (STEMI), coronary bypass grafts, cardiogenic shock or severe hemodynamic instability. Eighty-one pre-PCI residual vFFR measurements were compared to post-PCI FFR and post-PCI vFFR measurements. Mean residual vFFR was 0.91 ± 0.06, mean post-PCI FFR 0.91 ± 0.06 and mean post-PCI vFFR was 0.92 ± 0.05. Residual vFFR showed a high linear correlation (r = 0.84) and good agreement (mean difference (95% confidence interval): 0.005 (−0.002−0.012)) with post-PCI FFR, as well as with post-PCI-vFFR (r = 0.77, mean difference −0.007 (−0.015−0.0003)). Residual vFFR showed good accuracy in the identification of lesions with post-PCI FFR < 0.90 (sensitivity 94%, specificity 71%, area under the curve (AUC) 0.93 (95% CI: 0.86−0.99), p < 0.001). Virtual stenting using vFFR provided an accurate estimation of post-PCI FFR and post-PCI vFFR. Further studies are needed to prospectively validate a vFFR-guided PCI strategy.
Collapse
Affiliation(s)
- Mariusz Tomaniak
- Department of Cardiology, Erasmus University Medical Center, ThoraxCenter, 3000 CA Rotterdam, The Netherlands; (M.T.); (T.N.); (A.Z.d.P.); (K.M.); (L.J.C.v.Z.); (W.K.d.D.); (J.M.W.); (R.D.); (I.K.); (F.Z.); (N.M.V.M.)
- First Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Tara Neleman
- Department of Cardiology, Erasmus University Medical Center, ThoraxCenter, 3000 CA Rotterdam, The Netherlands; (M.T.); (T.N.); (A.Z.d.P.); (K.M.); (L.J.C.v.Z.); (W.K.d.D.); (J.M.W.); (R.D.); (I.K.); (F.Z.); (N.M.V.M.)
| | - Anniek Ziedses des Plantes
- Department of Cardiology, Erasmus University Medical Center, ThoraxCenter, 3000 CA Rotterdam, The Netherlands; (M.T.); (T.N.); (A.Z.d.P.); (K.M.); (L.J.C.v.Z.); (W.K.d.D.); (J.M.W.); (R.D.); (I.K.); (F.Z.); (N.M.V.M.)
| | - Kaneshka Masdjedi
- Department of Cardiology, Erasmus University Medical Center, ThoraxCenter, 3000 CA Rotterdam, The Netherlands; (M.T.); (T.N.); (A.Z.d.P.); (K.M.); (L.J.C.v.Z.); (W.K.d.D.); (J.M.W.); (R.D.); (I.K.); (F.Z.); (N.M.V.M.)
| | - Laurens J. C. van Zandvoort
- Department of Cardiology, Erasmus University Medical Center, ThoraxCenter, 3000 CA Rotterdam, The Netherlands; (M.T.); (T.N.); (A.Z.d.P.); (K.M.); (L.J.C.v.Z.); (W.K.d.D.); (J.M.W.); (R.D.); (I.K.); (F.Z.); (N.M.V.M.)
| | - Janusz Kochman
- First Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Wijnand K. den Dekker
- Department of Cardiology, Erasmus University Medical Center, ThoraxCenter, 3000 CA Rotterdam, The Netherlands; (M.T.); (T.N.); (A.Z.d.P.); (K.M.); (L.J.C.v.Z.); (W.K.d.D.); (J.M.W.); (R.D.); (I.K.); (F.Z.); (N.M.V.M.)
| | - Jeroen M. Wilschut
- Department of Cardiology, Erasmus University Medical Center, ThoraxCenter, 3000 CA Rotterdam, The Netherlands; (M.T.); (T.N.); (A.Z.d.P.); (K.M.); (L.J.C.v.Z.); (W.K.d.D.); (J.M.W.); (R.D.); (I.K.); (F.Z.); (N.M.V.M.)
| | - Roberto Diletti
- Department of Cardiology, Erasmus University Medical Center, ThoraxCenter, 3000 CA Rotterdam, The Netherlands; (M.T.); (T.N.); (A.Z.d.P.); (K.M.); (L.J.C.v.Z.); (W.K.d.D.); (J.M.W.); (R.D.); (I.K.); (F.Z.); (N.M.V.M.)
| | - Isabella Kardys
- Department of Cardiology, Erasmus University Medical Center, ThoraxCenter, 3000 CA Rotterdam, The Netherlands; (M.T.); (T.N.); (A.Z.d.P.); (K.M.); (L.J.C.v.Z.); (W.K.d.D.); (J.M.W.); (R.D.); (I.K.); (F.Z.); (N.M.V.M.)
| | - Felix Zijlstra
- Department of Cardiology, Erasmus University Medical Center, ThoraxCenter, 3000 CA Rotterdam, The Netherlands; (M.T.); (T.N.); (A.Z.d.P.); (K.M.); (L.J.C.v.Z.); (W.K.d.D.); (J.M.W.); (R.D.); (I.K.); (F.Z.); (N.M.V.M.)
| | - Nicolas M. Van Mieghem
- Department of Cardiology, Erasmus University Medical Center, ThoraxCenter, 3000 CA Rotterdam, The Netherlands; (M.T.); (T.N.); (A.Z.d.P.); (K.M.); (L.J.C.v.Z.); (W.K.d.D.); (J.M.W.); (R.D.); (I.K.); (F.Z.); (N.M.V.M.)
| | - Joost Daemen
- Department of Cardiology, Erasmus University Medical Center, ThoraxCenter, 3000 CA Rotterdam, The Netherlands; (M.T.); (T.N.); (A.Z.d.P.); (K.M.); (L.J.C.v.Z.); (W.K.d.D.); (J.M.W.); (R.D.); (I.K.); (F.Z.); (N.M.V.M.)
- Correspondence: ; Tel.: +31-10-703-5260
| |
Collapse
|