1
|
Alnefaie GO. A review of the complex interplay between chemoresistance and lncRNAs in lung cancer. J Transl Med 2024; 22:1109. [PMID: 39639388 PMCID: PMC11619437 DOI: 10.1186/s12967-024-05877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Lung Cancer (LC) is characterized by chemoresistance, which poses a significant clinical challenge and results in a poor prognosis for patients. Long non-coding RNAs (lncRNAs) have recently gained recognition as crucial mediators of chemoresistance in LC. Through the regulation of key cellular processes, these molecules play important roles in the progression of LC and response to therapy. The mechanisms by which lncRNAs affect chemoresistance include the modulation of gene expression, chromatin structure, microRNA interactions, and signaling pathways. Exosomes have emerged as key mediators of lncRNA-driven chemoresistance, facilitating the transfer of resistance-associated lncRNAs between cancer cells and contributing to tumor development. Consequently, exosomal lncRNAs may serve as biomarkers and therapeutic targets for the treatment of LC. Therapeutic strategies targeting lncRNAs offer novel approaches to circumvent chemoresistance. Different approaches, including RNA interference (RNAi) and antisense oligonucleotides (ASOs), are available to degrade lncRNAs or alter their function. ASO-based therapies are effective at reducing lncRNA expression levels, increasing chemotherapy sensitivity, and improving clinical outcomes. The use of these strategies can facilitate the development of targeted interventions designed to disrupt lncRNA-mediated mechanisms of chemoresistance. An important aspect of this review is the discussion of the complex relationship between lncRNAs and drug resistance in LC, particularly through exosomal pathways, and the development of innovative therapeutic strategies to enhance drug efficacy by targeting lncRNAs. The development of new pathways and interventions for treating LC holds promise in overcoming this resistance.
Collapse
Affiliation(s)
- Ghaliah Obaid Alnefaie
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
2
|
Zhang Y, Xie J. Targeting non-coding RNAs as a promising biomarker in peritoneal metastasis: Background, mechanism, and therapeutic approach. Biomed Pharmacother 2024; 179:117294. [PMID: 39226726 DOI: 10.1016/j.biopha.2024.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Peritoneal metastasis (PM) pathophysiology is complex and not fully understood. PM, originating from gastrointestinal (GI) cancer, is a condition that significantly worsens patient prognosis due to its complex nature and limited treatment options. The non-coding RNAs (ncRNAs) have been shown to play pivotal roles in cancer biology, influencing tumorigenesis, progression, metastasis, and therapeutic resistance. Increasing evidence has demonstrated the regulatory functions of different classes of ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in PM. Identifying biomarkers for early detection of PM is a crucial step towards improving patient outcomes, and how ncRNA profiles correlate with survival rates, response to therapy, and recurrence risks have raised much attention in recent years. Additionally, exploring innovative therapeutic approaches utilizing ncRNAs, such as targeted therapy and gene silencing, may offer new horizons in treating this dire condition. Recent advances in systemic treatments and the development of novel loco-regional therapies have opened doors to multimodal treatment approaches. Radical surgeries combined with hyperthermic intraperitoneal chemotherapy (HIPEC) have shown promising results, leading to extended patient survival. Current research is focused on the molecular characterization of PM, which is crucial for early detection and developing future therapeutic strategies. By summarizing the latest findings, this study underscores the transformative potential of ncRNAs in enhancing the diagnosis, prognosis, and treatment of PM in GI cancer, paving the way for more personalized and effective clinical strategies.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| |
Collapse
|
3
|
Suri C, Swarnkar S, Bhaskar LVKS, Verma HK. Non-Coding RNA as a Biomarker in Lung Cancer. Noncoding RNA 2024; 10:50. [PMID: 39452836 PMCID: PMC11514784 DOI: 10.3390/ncrna10050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Lung cancer remains one of the most prevalent and deadly cancers globally, with high mortality rates largely due to late-stage diagnosis, aggressive progression, and frequent recurrence. Despite advancements in diagnostic techniques and therapeutic interventions, the overall prognosis for lung cancer patients continues to be dismal. METHOD Emerging research has identified non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, as critical regulators of gene expression, significantly influencing cancer biology. These ncRNAs play pivotal roles in various aspects of lung cancer pathogenesis, including tumor initiation, progression, metastasis, and resistance to therapy. RESULTS We provide a comprehensive analysis of the current understanding of ncRNAs in lung cancer, emphasizing their potential as biomarkers for early diagnosis, prognostication, and the prediction of the therapeutic response. We explore the biological functions of ncRNAs, their involvement in key oncogenic pathways, and the molecular mechanisms by which they modulate gene expression and cellular processes in lung cancer. Furthermore, this review highlights recent advances in ncRNA-based diagnostic tools and therapeutic strategies, such as miRNA mimics and inhibitors, lncRNA-targeted therapies, and circRNA-modulating approaches, offering promising avenues for personalized medicine. CONCLUSION Finally, we discuss the challenges and future directions in ncRNA research, including the need for large-scale validation studies and the development of efficient delivery systems for ncRNA-based therapies. This review underscores the potential of ncRNAs to revolutionize lung cancer management by providing novel diagnostic and therapeutic options that could improve patient outcomes.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Shashikant Swarnkar
- Department of Biochemistry, C.C.M. Medical College, Bhilai 490020, Chhattisgarh, India;
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, Chhattisgarh, India;
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs Health and Immunity, Comprehensive Pnemology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
- Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
4
|
Fayyaz F, Eshkiki ZS, Karamzadeh AR, Moradi Z, Kaviani F, Namazi A, Karimi R, Tabaeian SP, Mansouri F, Akbari A. Relationship between long non-coding RNAs and Hippo signaling pathway in gastrointestinal cancers; molecular mechanisms and clinical significance. Heliyon 2024; 10:e23826. [PMID: 38226210 PMCID: PMC10788524 DOI: 10.1016/j.heliyon.2023.e23826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play a significant biological role in the regulation of various cellular processes such as cell proliferation, differentiation, apoptosis and migration. In various malignancies, lncRNAs interplay with some main cancer-associated signaling pathways, including the Hippo signaling pathway to regulate the various cellular processes. It has been revealed that the cross-talking between lncRNAs and Hippo signaling pathway involves in gastrointestinal (GI) cancers development and progression. Considering the clinical significance of these lncRNAs, they have also been introduced as potential biomarkers in diagnostic, prognostic and therapeutic strategies in GI cancers. Herein, we review the mechanisms of lncRNA-mediated regulation of Hippo signaling pathway and focus on the corresponding molecular mechanisms and clinical significance of these non-coding RNAs in GI cancers.
Collapse
Affiliation(s)
- Farimah Fayyaz
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Reza Karamzadeh
- Occupational Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Zahra Moradi
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
- Young Researchers and Elite Club, Qom Branch, Islamic Azad University, Qom, Iran
| | - Faezeh Kaviani
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Abolfazl Namazi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Karimi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mansouri
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Chen S, Zhou Y, Peng P, Xu L, Tang Q, Chen W, Gu W. SNHG15-Mediated Localization of Nucleolin at the Cell Protrusions Regulates CDH2 mRNA Expression and Cell Invasion. Int J Mol Sci 2023; 24:15600. [PMID: 37958584 PMCID: PMC10650932 DOI: 10.3390/ijms242115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
LncRNAs are emerging as important regulators of gene expression by controlling transcription in the nucleus and by modulating mRNA translation in the cytoplasm. In this study, we reveal a novel function of lncRNA SNHG15 in mediating breast cancer cell invasion through regulating the local translation of CDH2 mRNA. We show that SNHG15 preferentially localizes at the cellular protrusions or cell leading edge and that this localization is directed by IMP1, a multifunctional protein involved in many aspects of RNA regulation. We demonstrate that SNHG15 also forms a complex with nucleolin, allowing nucleolin to be co-transported with SNHG15 to the cell protrusions, where the accumulated nucleolin is able to bind to CDH2 mRNA. Interaction with nucleolin stabilizes local CDH2 mRNA and regulates its translation, thus promoting cell invasive potential. Our findings reveal an underlying mechanism by which lncRNA could serve as a carrier to transport a protein regulator into a specific cell compartment to enhance target mRNA expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Gu
- Key Immunopathology Laboratory of Guangdong Province, Department of Pathophysiology, Shantou University Medical College, Shantou 515041, China; (S.C.); (Y.Z.); (P.P.); (L.X.); (Q.T.); (W.C.)
| |
Collapse
|
6
|
Bergonzini M, Loreni F, Lio A, Russo M, Saitto G, Cammardella A, Irace F, Tramontin C, Chello M, Lusini M, Nenna A, Ferrisi C, Ranocchi F, Musumeci F. Panoramic on Epigenetics in Coronary Artery Disease and the Approach of Personalized Medicine. Biomedicines 2023; 11:2864. [PMID: 37893238 PMCID: PMC10604795 DOI: 10.3390/biomedicines11102864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Epigenetic modifications play a fundamental role in the progression of coronary artery disease (CAD). This panoramic review aims to provide an overview of the current understanding of the epigenetic mechanisms involved in CAD pathogenesis and highlights the potential implications for personalized medicine approaches. Epigenetics is the study of heritable changes that do not influence alterations in the DNA sequence of the genome. It has been shown that epigenetic processes, including DNA/histone methylation, acetylation, and phosphorylation, play an important role. Additionally, miRNAs, lncRNAs, and circRNAs are also involved in epigenetics, regulating gene expression patterns in response to various environmental factors and lifestyle choices. In the context of CAD, epigenetic alterations contribute to the dysregulation of genes involved in inflammation, oxidative stress, lipid metabolism, and vascular function. These epigenetic changes can occur during early developmental stages and persist throughout life, predisposing individuals to an increased risk of CAD. Furthermore, in recent years, the concept of personalized medicine has gained significant attention. Personalized medicine aims to tailor medical interventions based on an individual's unique genetic, epigenetic, environmental, and lifestyle factors. In the context of CAD, understanding the interplay between genetic variants and epigenetic modifications holds promise for the development of more precise diagnostic tools, risk stratification models, and targeted therapies. This review summarizes the current knowledge of epigenetic mechanisms in CAD and discusses the fundamental principles of personalized medicine.
Collapse
Affiliation(s)
- Marcello Bergonzini
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Loreni
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Lio
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Marco Russo
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Guglielmo Saitto
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Antonio Cammardella
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Irace
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Corrado Tramontin
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Massimo Chello
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mario Lusini
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Nenna
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Chiara Ferrisi
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Federico Ranocchi
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Musumeci
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| |
Collapse
|
7
|
Das PK, Siddika A, Rashel KM, Auwal A, Soha K, Rahman MA, Pillai S, Islam F. Roles of long noncoding RNA in triple-negative breast cancer. Cancer Med 2023; 12:20365-20379. [PMID: 37795578 PMCID: PMC10652353 DOI: 10.1002/cam4.6600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023] Open
Abstract
INTRODUCTION Long noncoding RNAs (lncRNAs) play crucial roles in regulating various hallmarks in cancers. Triple-negative (Estrogen receptor, ER; Human epidermal growth factor receptor 2, HER2; Progesterone receptor, PR) breast cancer (TNBC) is the most aggressive form of breast cancers with a poor prognosis and no available molecular targeted therapy. METHODS We reviewed the current literature on the roles of lncRNAs in the pathogenesis, therapy resistance, and prognosis of patients with TBNC. RESULTS LncRNAs are associated with TNBC pathogenesis, therapy resistance, and prognosis. For example, lncRNAs such as small nucleolar RNA host gene 12 (SNHG12), highly upregulated in liver cancer (HULC) HOX transcript antisense intergenic RNA (HOTAIR), lincRNA-regulator of reprogramming (LincRNA-ROR), etc., are aberrantly expressed in TNBC and are involved in the pathogenesis of the disease. LncRNAs act as a decoy, scaffold, or sponge to regulate the expression of genes, miRNAs, and transcription factors associated with pathogenesis and progression of TNBC. Moreover, lncRNAs such as ferritin heavy chain 1 pseudogene 3 (FTH1P3), BMP/OP-responsive gene (BORG) contributes to the therapy resistance property of TNBC through activating ABCB1 (ATP-binding cassette subfamily B member 1) drug efflux pumps by increasing DNA repair capacity or by inducing signaling pathway involved in therapeutic resistance. CONCLUSION In this review, we outline the functions of various lncRNAs along with their molecular mechanisms involved in the pathogenesis, therapeutic resistance of TBNC. Also, the prognostic implications of lncRNAs in patients with TNBC is illustrated. Moreover, potential strategies targeting lncRNAs against highly aggressive TNBC is discussed in this review.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
- Institute for GlycomicsGriffith UniversityGold CoastAustralia
| | - Ayesha Siddika
- Institute of Tissue Banking & Biomaterial Research, Atomic Energy Research Establishment (AERE) SavarDhakaBangladesh
| | - Khan Mohammad Rashel
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Abdul Auwal
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Kazi Soha
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Md. Arifur Rahman
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Suja Pillai
- School of Biomedical SciencesUniversity of QueenslandSaint LuciaAustralia
| | - Farhadul Islam
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
- Institute for GlycomicsGriffith UniversityGold CoastAustralia
| |
Collapse
|
8
|
Zhang R, Zeng Y, Deng JL. Long non-coding RNA H19: a potential biomarker and therapeutic target in human malignant tumors. Clin Exp Med 2023; 23:1425-1440. [PMID: 36484927 DOI: 10.1007/s10238-022-00947-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs play important roles in cellular functions and disease development. H19, as a long non-coding RNA, is pervasively over-expressed in almost all kinds of human malignant tumors. Although many studies have reported that H19 is closely associated with tumor cell proliferation, apoptosis, invasion, metastasis, and chemoresistance, the role and mechanism of H19 in gene regulation and tumor development are largely unclear. In this review, we summarized the recent progress in the study of the major functions and mechanisms of H19 lncRNA in cancer development and progression. H19 possesses both oncogenic and tumor-suppressing activities, presumably through regulating target gene transcription, mRNA stability and splicing, and competitive inhibition of endogenous RNA degradation. Studies indicate that H19 may involve in cell proliferation and apoptosis, tumor initiation, migration, invasion, metastasis and chemoresistance and may serve as a potential biomarker for early diagnosis, prognosis, and novel molecular target for cancer therapy.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, 230041, People's Republic of China
| | - Ying Zeng
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410008, People's Republic of China
| | - Jun-Li Deng
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China.
| |
Collapse
|
9
|
Hussain MS, Afzal O, Gupta G, Altamimi ASA, Almalki WH, Alzarea SI, Kazmi I, Fuloria NK, Sekar M, Meenakshi DU, Thangavelu L, Sharma A. Long non-coding RNAs in lung cancer: Unraveling the molecular modulators of MAPK signaling. Pathol Res Pract 2023; 249:154738. [PMID: 37595448 DOI: 10.1016/j.prp.2023.154738] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
Lung cancer (LC) continues to pose a significant global medical burden, necessitating a comprehensive understanding of its molecular foundations to establish effective treatment strategies. The mitogen-activated protein kinase (MAPK) signaling system has been scientifically associated with LC growth; however, the intricate regulatory mechanisms governing this system remain unknown. Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of diverse cellular activities, including cancer growth. LncRNAs have been implicated in LC, which can function as oncogenes or tumor suppressors, and their dysregulation has been linked to cancer cell death, metastasis, spread, and proliferation. Due to their involvement in critical pathophysiological processes, lncRNAs are gaining attention as potential candidates for anti-cancer treatments. This article aims to elucidate the regulatory role of lncRNAs in MAPK signaling in LC. We provide a comprehensive review of the key components of the MAPK pathway and their relevance in LC, focusing on aberrant signaling processes associated with disease progression. By examining recent research and experimental findings, this article examines the molecular mechanisms through which lncRNAs influence MAPK signaling in lung cancer, ultimately contributing to tumor development.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | | | - Lakshmi Thangavelu
- Center for Global Health Research , Saveetha Medical College , Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Ajay Sharma
- Delhi Pharmaceutical Science and Research University, Pushp Vihar Sector-3, MB Road, New Delhi 110017, India.
| |
Collapse
|
10
|
Kciuk M, Yahya EB, Mohamed MMI, Abdulsamad MA, Allaq AA, Gielecińska A, Kontek R. Insights into the Role of LncRNAs and miRNAs in Glioma Progression and Their Potential as Novel Therapeutic Targets. Cancers (Basel) 2023; 15:3298. [PMID: 37444408 DOI: 10.3390/cancers15133298] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence supports that both long non-coding and micro RNAs (lncRNAs and miRNAs) are implicated in glioma tumorigenesis and progression. Poor outcome of gliomas has been linked to late-stage diagnosis and mostly ineffectiveness of conventional treatment due to low knowledge about the early stage of gliomas, which are not possible to observe with conventional diagnostic approaches. The past few years witnessed a revolutionary advance in biotechnology and neuroscience with the understanding of tumor-related molecules, including non-coding RNAs that are involved in the angiogenesis and progression of glioma cells and thus are used as prognostic biomarkers as well as novel therapeutic targets. The emerging research on lncRNAs and miRNAs highlights their crucial role in glioma progression, offering new insights into the disease. These non-coding RNAs hold significant potential as novel therapeutic targets, paving the way for innovative treatment approaches against glioma. This review encompasses a comprehensive discussion about the role of lncRNAs and miRNAs in gene regulation that is responsible for the promotion or the inhibition of glioma progression and collects the existing links between these key cancer-related molecules.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
11
|
Farhadi S, Mohammadi-Yeganeh S, Kiani J, Hashemi SM, Koochaki A, Sharifi K, Ghanbarian H. Exosomal delivery of 7SK long non-coding RNA suppresses viability, proliferation, aggressiveness and tumorigenicity in triple negative breast cancer cells. Life Sci 2023; 322:121646. [PMID: 37011870 DOI: 10.1016/j.lfs.2023.121646] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
AIMS RN7SK (7SK), a highly conserved non-coding RNA, serves as a transcription regulator via interaction with a few proteins. Despite increasing evidences which support the cancer-promoting roles of 7SK-interacting proteins, limited reports address the direct link between 7SK and cancer. To test the hypothetic suppression of cancer by overexpression of 7SK, the effects of exosomal 7SK delivery on cancer phenotypes were studied. MATERIALS AND METHODS Exosomes derived from human mesenchymal stem cells were loaded with 7SK (Exo-7SK). MDA-MB-231, triple negative breast cancer (TNBC), cell line was treated with Exo-7sk. Expression levels of 7SK were evaluated by qPCR. Cell viability was assessed via MTT and Annexin V/PI assays as well as qPCR assessment of apoptosis-regulating genes. Cell proliferation was evaluated by growth curve analysis, colony formation and cell cycle assays. Aggressiveness of TNBCs was evaluated via transwell migration and invasion assays and qPCR assessment of genes regulating epithelial to mesenchymal transition (EMT). Moreover, tumor formation ability was assessed using a nude mice xenograft model. KEY FINDINGS Treatment of MDA-MB-231 cells with Exo-7SK resulted in efficient overexpression of 7SK; reduced viability; altered transcription levels of apoptosis-regulating genes; reduced proliferation; reduced migration and invasion; altered transcription of EMT-regulating genes; and reduced in vivo tumor formation ability. Finally, Exo-7SK reduced mRNA levels of HMGA1, a 7SK interacting protein with master gene regulatory and cancer promoting roles, and its bioinformatically-selected cancer promoting target genes. SIGNIFICANCE Altogether, as a proof of the concept, our findings suggest that exosomal delivery of 7SK may suppress cancer phenotypes via downregulation of HMGA1.
Collapse
|
12
|
Islam S, Mukherjee C. Molecular regulation of hypoxia through the lenses of noncoding RNAs and epitranscriptome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1750. [PMID: 35785444 DOI: 10.1002/wrna.1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Cells maintain homeostasis in response to environmental stress through specific cell stress responses. Hypoxic stress, well known to be associated with diverse solid tumors, is one of the main reasons for cancer-related mortality. Although cells can balance themselves well during hypoxic stress, the underlying molecular mechanisms are not well understood. The enhanced appreciation of diverse roles played by noncoding transcriptome and epigenome in recent years has brought to light the involvement of noncoding RNAs and epigenetic modifiers in hypoxic regulation. The emergence of techniques like deep sequencing has facilitated the identification of large numbers of long noncoding RNAs (lncRNAs) that are differentially regulated in various cancers. Similarly, proteomic studies have identified diverse epigenetic modifiers such as HATs, HDACs, DNMTs, polycomb groups of proteins, and their possible roles in the regulation of hypoxia. The crosstalk between lncRNAs and epigenetic modifiers play a pivotal role in hypoxia-induced cancer initiation and progression. Besides the lncRNAs, several other noncoding RNAs like circular RNAs, miRNAs, and so forth are also expressed during hypoxic conditions. Hypoxia has a profound effect on the expression of noncoding RNAs and epigenetic modifiers. Conversely, noncoding RNAs/epigenetic modifies can regulate the hypoxia signaling axis by modulating the stability of the hypoxia-inducible factors (HIFs). The focus of this review is to illustrate the molecular orchestration underlying hypoxia biology, especially in cancers, which can help in identifying promising therapeutic targets in hypoxia-induced cancers. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Safirul Islam
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| | - Chandrama Mukherjee
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| |
Collapse
|
13
|
Integrated Microarray-Based Data Analysis of miRNA Expression Profiles: Identification of Novel Biomarkers of Cisplatin-Resistance in Testicular Germ Cell Tumours. Int J Mol Sci 2023; 24:ijms24032495. [PMID: 36768818 PMCID: PMC9916636 DOI: 10.3390/ijms24032495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Testicular germ cell tumours (TGCTs) are the most common solid malignancy among young men, and their incidence is still increasing. Despite good curability with cisplatin (CDDP)-based chemotherapy, about 10% of TGCTs are non-responsive and show a chemoresistant phenotype. To further increase TGCT curability, better prediction of risk of relapse and early detection of refractory cases is needed. Therefore, to diagnose this malignancy more precisely, stratify patients more accurately and improve decision-making on treatment modality, new biomarkers are still required. Numerous studies showed association of differential expressions of microRNAs (miRNAs) with cancer. Using microarray analysis followed by RT-qPCR validation, we identified specific miRNA expression patterns that discriminate chemoresistant phenotypes in TGCTs. Comparing CDDP-resistant vs. -sensitive TGCT cell lines, we identified miR-218-5p, miR-31-5p, miR-125b-5p, miR-27b-3p, miR-199a-5p, miR-214-3p, let-7a and miR-517a-3p as significantly up-regulated and miR-374b-5p, miR-378a-3p, miR-20b-5p and miR-30e-3p as significantly down-regulated. In patient tumour samples, we observed the highest median values of relative expression of miR-218-5p, miR-31-5p, miR-375-5p and miR-517a-3p, but also miR-20b-5p and miR-378a-3p, in metastatic tumour samples when compared with primary tumour or control samples. In TGCT patient plasma samples, we detected increased expression of miR-218-5p, miR-31-5p, miR-517a-3p and miR-375-5p when compared to healthy individuals. We propose that miR-218-5p, miR-31-5p, miR-375-5p, miR-517-3p, miR-20b-5p and miR-378a-3p represent a new panel of biomarkers for better prediction of chemoresistance and more aggressive phenotypes potentially underlying metastatic spread in non-seminomatous TGCTs. In addition, we provide predictions of the targets and functional and regulatory networks of selected miRNAs.
Collapse
|
14
|
Shenoy US, Adiga D, Gadicherla S, Kabekkodu SP, Hunter KD, Radhakrishnan R. HOX cluster-embedded lncRNAs and epithelial-mesenchymal transition in cancer: Molecular mechanisms and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188840. [PMID: 36403923 DOI: 10.1016/j.bbcan.2022.188840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Although there has been substantial improvement in the treatment modalities, cancer remains the major cause of fatality worldwide. Metastasis, recurrence, and resistance to oncological therapies are the leading causes of cancer mortality. Epithelial-mesenchymal transition (EMT) is a complex biological process that allows cancer cells to undergo morphological transformation into a mesenchymal phenotype to acquire invasive potential. It encompasses reversible and dynamic ontogenesis by neoplastic cells during metastatic dissemination. Hence, understanding the molecular landscape of EMT is imperative to identify a reliable clinical biomarker to combat metastatic spread. Accumulating evidence reveals the role of HOX (homeobox) cluster-embedded long non-coding RNAs (lncRNAs) in EMT and cancer metastasis. They play a crucial role in the induction of EMT, modulating diverse biological targets. The present review emphasizes the involvement of HOX cluster-embedded lncRNAs in EMT as a molecular sponge, chromatin remodeler, signaling regulator, and immune system modulator. Furthermore, the molecular mechanisms behind therapy resistance and the potential use of novel drugs targeting HOX cluster-embedded lncRNAs in the clinical management of distant metastasis will be discussed.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Srikanth Gadicherla
- Deparment of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India; Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
15
|
Roles of anoikis in colorectal cancer therapy and the assessment of anoikis-regulatory molecules as therapeutic targets. Pathol Res Pract 2023; 241:154256. [PMID: 36455367 DOI: 10.1016/j.prp.2022.154256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Colorectal cancer (CRC) is a deadly malignancy and therapeutic approaches for CRC are evolving every day. Anoikis is a key mechanism for programmed cell death of cancer cells that undergo anchorage-independent growth at a different matrix than the one which is expected. Yet, anoikis is a less studied mechanism of cell death in comparison to other mechanisms such as apoptosis. Relating to this, resistance to anoikis among cancer cells remains critical for improved metastasis and survival in a new environment evading anoikis. Since CRC cells have the ability to metastasize from proximal sites to secondary organs such as liver and promote cancer in those distant sites, a clear knowledge of the mechanisms essential for anchorage-independent growth and subsequent metastasis is necessary to counteract CRC progression and spread. Therefore, the identification of novel drug candidates and studying the roles of anoikis in assisting CRC therapy using such drugs can prevent anchorage-independent cancer cell growth. Additionally, the identification of novel biomarkers or therapeutic targets seems essential for implementing superior therapy, impeding relapse among malignant cells and improving the survival rate of clinical patients. As there are no reviews published on this topic till date, anoikis as a mechanism of cell death and its therapeutic roles in CRC are discussed in this review. In addition, several molecules were identified as therapeutic targets for CRC.
Collapse
|
16
|
Jafari-Raddani F, Davoodi-Moghaddam Z, Yousefi AM, Ghaffari SH, Bashash D. An overview of long noncoding RNAs: Biology, functions, therapeutics, analysis methods, and bioinformatics tools. Cell Biochem Funct 2022; 40:800-825. [PMID: 36111699 DOI: 10.1002/cbf.3748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a diverse class of RNAs whose functions are widespread in all branches of life and have been the focus of attention in the last decade. While a huge number of lncRNAs have been identified, there is still much work to be done and plenty to be learned. In the current review, we begin with the biogenesis and function of lncRNAs as they are involved in the different cellular processes from regulating the architecture of chromosomes to controlling translation and post-translation modifications. Questions on how overexpression, mutations, or deficiency of lncRNAs can affect the cellular status and result in the pathogenesis of various human diseases are responded to. Besides, we allocate an overview of several studies, concerning the application of lncRNAs either as diagnostic and prognostic biomarkers or novel therapeutics. We also introduce the currently available techniques to explore details of lncRNAs such as their function, cellular localization, and structure. In the last section, as exponentially growing data in this area need to be gathered and organized in comprehensive databases, we have a particular focus on presenting general and specialized databases. Taken together, with this review, we aim to provide the latest information on different aspects of lncRNAs to highlight their importance in physiopathologic states and take a step towards helping future studies.
Collapse
Affiliation(s)
- Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Prasad M, Veeraraghavan VP, Jayaraman S. Methylated ZNF582: a therapeutic target in oral cancer. Epigenomics 2022; 14:1389-1392. [PMID: 36722134 DOI: 10.2217/epi-2022-0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tweetable abstract Zinc finger proteins control the transcription of downstream genes that are implicated in migration, invasion, cell death and proliferation. More mechanistic research on ZNF582 is needed to ascertain how this protein's methylation regulates the inflammatory pathway in oral cancer.
Collapse
Affiliation(s)
- Monisha Prasad
- Center of Molecular Medicine & Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Vishnu Priya Veeraraghavan
- Center of Molecular Medicine & Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Selvaraj Jayaraman
- Center of Molecular Medicine & Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| |
Collapse
|
18
|
Ngongang NN, Mezajou CF, Kameni C, Ngum JA, Simo USF, Tatang FJ, Ngate Nguengo S, Chakam Nouthio AP, Wandji Pajiep MA, Toumeni MH, Takou Madjoumo ES, Tchinda MF, Ngangue RJEM, Dongmo FFD, Wade A, Akami M, Ngane Ngono AR, Tamgue O. TNF and HNRNPL Related Immunoregulatory Long non-coding RNA (THRIL) and long intergenic noncoding RNA-p21 (lincRNA-p21) as potential useful biomarkers for the diagnosis of tuberculosis. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.969307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Early diagnosis is crucial in controlling tuberculosis globally and in developing countries with the emergence of drug-resistant Mycobacterium tuberculosis strains. Long non-coding RNAs (lncRNAs) are promising tuberculosis diagnostic biomarkers. Two lncRNA diagnostic markers, lncRNA THRIL and lincRNA-p21, were studied as tuberculosis diagnostic biomarkers. This cross-sectional study was conducted at the Center of Respiratory Diseases of LAQUINTINIE hospital and the National Veterinary Laboratory of Douala from December 2020 to August 2021. The ability of lncRNAs to distinguish between 19 healthy controls, 15 latent tuberculosis, and 21 active tuberculosis was estimated using quantitative polymerase chain reaction and Receiver Operating Characteristic curve analysis. Our analysis showed that lncRNA THRIL and lincRNA-p21 were significantly upregulated (P <0.05) in active and latent tuberculosis compared with healthy controls. LincRNA-p21 expression was significantly increased (P <0.05) in active tuberculosis compared with latent tuberculosis, whereas lncRNA THRIL was not significantly affected (P ≥0.05). Both lncRNA THRIL and lincRNA-p21 showed excellent performance in classifying latent tuberculosis and healthy controls (AUC = 92.86%). Furthermore, lncRNA THRIL was good at discriminating active tuberculosis from healthy controls (AUC = 89.79%), while lincRNA-p21 showed excellent discriminating performance (AUC = 100%). LncRNA THRIL was identified as a poor discriminator of latent tuberculosis from active tuberculosis (AUC = 64.28%), while lincRNA-p21 showed excellent diagnostic performance in this distinction (AUC = 92.86%). Our cross-sectional study suggests that lncRNA THRIL and lincRNA-p21 are promising tuberculosis diagnostic biomarkers that can differentiate between latent and active infection.
Collapse
|
19
|
Reactive Oxygen Species and Long Non-Coding RNAs, an Unexpected Crossroad in Cancer Cells. Int J Mol Sci 2022; 23:ijms231710133. [PMID: 36077530 PMCID: PMC9456385 DOI: 10.3390/ijms231710133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Long non-coding RNAs (lncRNA) have recently been identified as key regulators of oxidative stress in several malignancies. The level of reactive oxygen species (ROS) must be constantly regulated to maintain cancer cell proliferation and chemoresistance and to prevent apoptosis. This review will discuss how lncRNAs alter the ROS level in cancer cells. We will first describe the role of lncRNAs in the nuclear factor like 2 (Nrf-2) coordinated antioxidant response of cancer cells. Secondly, we show how lncRNAs can promote the Warburg effect in cancer cells, thus shifting the cancer cell’s “building blocks” towards molecules important in oxidative stress regulation. Lastly, we explain the role that lncRNAs play in ROS-induced cancer cell apoptosis and proliferation.
Collapse
|
20
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samadian M. A review on the role of MCM3AP-AS1 in the carcinogenesis and tumor progression. Cancer Cell Int 2022; 22:225. [PMID: 35790972 PMCID: PMC9258118 DOI: 10.1186/s12935-022-02644-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Minichromosome Maintenance Complex Component 3 Associated Protein Antisense 1 (MCM3AP-AS1) is an RNA gene located on 21q22.3. The sense transcript from this locus has dual roles in the pathogenesis of solid tumors and hematological malignancies. MCM3AP-AS1 has been shown to sequester miR-194-5p, miR-876-5p, miR-543-3p, miR-28-5p, miR-93, miR-545, miR-599, miR‐193a‐5p, miR-363-5p, miR-204-5p, miR-211-5p, miR-15a, miR-708-5p, miR-138, miR-138-5p, miR-34a, miR-211, miR‐340‐5p, miR-148a, miR-195-5p and miR-126. Some cancer-related signaling pathway, namely PTEN/AKT, PI3K/AKT and ERK1/2 are influenced by this lncRNA. Cell line studies, animal studies and clinical studies have consistently reported oncogenic role of MCM3AP-AS1 in different tissues except for cervical cancer in which this lncRNA has tumor suppressor role. In the current manuscript, we collected evidence from these three sources of evidence to review the impact of MCM3AP-AS1 in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Li H, Zhang Y, Liu Y, Qu Z, Liu Y, Qi J. Long Noncoding RNA MALAT1 and Colorectal Cancer: A Propensity Score Analysis of Two Prospective Cohorts. Front Oncol 2022; 12:824767. [PMID: 35558512 PMCID: PMC9088002 DOI: 10.3389/fonc.2022.824767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Previous researches have shown that the aberrant expression of Metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) in tumour tissues may serve as a biomarker for colorectal cancer (CRC) prognosis. However, these previous studies have small sample sizes and lacked validation from independent external populations. We therefore aimed to clarify the prognostic value of MALAT1 expression status in CRC patients using a large cohort and validate the findings with another large external cohort. Methods The prognostic association between MALAT1 expression status and CRC outcomes was evaluated initially in a prospective cohort in China (n=164) and then validated in an external TCGA population (n=596). In the initial cohort, MALAT1 expression levels were quantified by quantitative reverse transcriptase polymerase chain reaction. Propensity score (PS) adjustment method was used to control potential confounding biases. The prognostic significance was reported as PS-adjusted hazard ratio (HR) and corresponding 95% confidence interval (CI). Results There was no statistically significant association between MALAT1 expression status and CRC patient overall survival (OS) or disease free survival (DFS) in both initial cohort and external validation cohort populations. When combining these populations together, the results did not change materially. The summarized HRPS-adjusted were 1.010 (95% CI, 0.752-1.355, P=0.950) and 1.170 (95% CI, 0.910-1.502, P=0.220) for OS and DFS, respectively. Conclusions MALAT1 expression status is not associated with prognostic outcomes of CRC patients. However, additional larger population studies are needed to further validate these findings.
Collapse
Affiliation(s)
- Heng Li
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxue Zhang
- Department of Hygiene Microbiology, Public Health School of Harbin Medical University, Harbin, China
| | - Yanlong Liu
- Department of Colorectal Surgery, The Third Affiliated Cancer Hospital of Harbin Medical University, Harbin, China
| | - Zhangyi Qu
- Department of Hygiene Microbiology, Public Health School of Harbin Medical University, Harbin, China
| | - Yupeng Liu
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Tang G, Zhao H, Xie Z, Wei S, Chen G. Long non-coding RNA HAGLROS facilitates tumorigenesis and progression in hepatocellular carcinoma by sponging miR-26b-5p to up-regulate karyopherin α2 (KPNA2) and inactivate p53 signaling. Bioengineered 2022; 13:7829-7846. [PMID: 35291921 PMCID: PMC9208501 DOI: 10.1080/21655979.2022.2049472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a principal histologic type of liver cancer with high mortality. Long non-coding RNAs (LncRNAs) exert a crucial role in the pathogenesis of human tumors. To date, the functions and mechanisms of lncRNA HAGLROS in HCC are rarely reported. In the current study, HAGLROS exhibited a higher level in HCC tissues and cells. HAGLROS expression was positively correlated with tumor size, TNM stage and poor clinical prognosis. Loss-of-function experiments showed that knockdown of HAGLROS significantly lowered cell proliferation, cell cycle progression, migration, invasion and epithelial to mesenchymal transition (EMT) but induced apoptosis in vitro. Consistently, tumor growth in the nude mice was effectively slowed by the depletion of HAGLROS. Mechanistically, HAGLROS could competitively bind to miR-26b-5p to prevent the suppression of miR-26b-5p on its downstream target gene Karyopherin α2 (KPNA2). Moreover, the inhibitory effects of HAGLROS knockdown on cell malignant behaviors were reversed due to the miR-26b-5p down-regulation or KPNA2 overexpression. It was interesting to note that HAGLROS inactivated p53 signaling through targeting miR-26b-5p/KPNA2. In conclusion, our results demonstrated that HAGLROS contributed to the malignant progression of HCC via serving as a sponge for miR-26b-5p to facilitate KPNA2 expression and inactivate p53 signaling. Targeting HAGLROS/miR-26b-5p/KPNA2 axis might be an alternative therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Gaofeng Tang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Huibo Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhantao Xie
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Sidong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Guoyong Chen
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
23
|
Sabol M, Calleja-Agius J, Di Fiore R, Suleiman S, Ozcan S, Ward MP, Ozretić P. (In)Distinctive Role of Long Non-Coding RNAs in Common and Rare Ovarian Cancers. Cancers (Basel) 2021; 13:cancers13205040. [PMID: 34680193 PMCID: PMC8534192 DOI: 10.3390/cancers13205040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Rare ovarian cancers (ROCs) are OCs with an annual incidence of fewer than 6 cases per 100,000 women. They affect women of all ages, but due to their low incidence and the potential clinical inexperience in management, there can be a delay in diagnosis, leading to a poor prognosis. The underlying causes for these tumors are varied, but generally, the tumors arise due to alterations in gene/protein expression in cellular processes that regulate normal proliferation and its checkpoints. Dysregulation of the cellular processes that lead to cancer includes gene mutations, epimutations, non-coding RNA (ncRNA) regulation, posttranscriptional and posttranslational modifications. Long non-coding RNA (lncRNA) are defined as transcribed RNA molecules, more than 200 nucleotides in length which are not translated into proteins. They regulate gene expression through several mechanisms and therefore add another level of complexity to the regulatory mechanisms affecting tumor development. Since few studies have been performed on ROCs, in this review we summarize the mechanisms of action of lncRNA in OC, with an emphasis on ROCs.
Collapse
Affiliation(s)
- Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (J.C.-A.); (R.D.F.); (S.S.)
| | - Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (J.C.-A.); (R.D.F.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (J.C.-A.); (R.D.F.); (S.S.)
| | - Sureyya Ozcan
- Department of Chemistry, Middle East Technical University (METU), 06800 Ankara, Turkey;
- Cancer Systems Biology Laboratory (CanSyl), Middle East Technical University (METU), 06800 Ankara, Turkey
| | - Mark P. Ward
- Department of Histopathology, Trinity St James’s Cancer Institute, Emer Casey Molecular Pathology Laboratory, Trinity College Dublin and Coombe Women’s and Infants University Hospital, D08 RX0X Dublin, Ireland;
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-(1)-4571292
| |
Collapse
|
24
|
Wang Y, Li X, Chen W, Wu W. The common region of lncRNAs UCA1 and UCA1α contributes to the bladder cancer tumorigenesis. Eur J Cancer Prev 2021; 30:389-392. [PMID: 33795587 DOI: 10.1097/cej.0000000000000642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Accumulating evidence suggests that the long noncoding RNAs (lncRNAs) urothelial cancer associated 1 (UCA1) and urothelial cancer associated 1α (UCA1α) play a critical role in the development and progression of bladder cancer. However, the detailed mechanism, in particular the role of the common region of UCA1 and UCA1α, termed UCA1 same sequence (USS, approximately 1265 bp), remains unknown. To address this, the full length of 1265 bp USS was obtained initially, and then produced pcDNA3.1(+)-based overexpression vectors and designed siRNAs for UCA1, UCA1α, and USS, and assessed their effects on the human bladder cancer cell lines UMUC3 (which does not express UCA1 and UCA1α) and 5637 (which has high expression of UCA1 and UCA1α), respectively. Overexpression of UCA1, UCA1α, and USS significantly increased bladder cancer cell proliferation and the number of S-phase cells, but significantly decreased cell apoptosis and the number of G0/G1 phase cells. Consistently, silencing UCA1 and USS significantly decreased bladder cancer cell proliferation and the number of S phase cells, but significantly increased apoptosis and the number of G0/G1 phase cells. These results suggest that USS, the common region of UCA1 and UCA1α, can promote bladder cancer tumorigenesis by increasing cell proliferation and decreasing cell apoptosis in a similar way to UCA1 and UCA1α lncRNAs. This not only transforms our understanding of the role of UCA1, UCA1α, and their common region in tumorigenesis, but may also provide a new target for future clinical applications.
Collapse
Affiliation(s)
- Yu Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang
| | - Xu Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Wei Chen
- Department of Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenjing Wu
- Department of Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
25
|
Song JY, Li XP, Qin XJ, Zhang JD, Zhao JY, Wang R. A fourteen-lncRNA risk score system for prognostic prediction of patients with non-small cell lung cancer. Cancer Biomark 2021; 29:493-508. [PMID: 32831192 PMCID: PMC7739968 DOI: 10.3233/cbm-190505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growing evidence has underscored long non-coding RNAs (lncRNAs) serving as potential biomarkers for cancer prognosis. However, systematic tracking of a lncRNA signature for prognosis prediction in non-small cell lung cancer (NSCLC) has not been accomplished yet. Here, comprehensive analysis with differential gene expression analysis, univariate and multivariate Cox regression analysis based on The Cancer Genome Atlas (TCGA) database was performed to identify the lncRNA signature for prediction of the overall survival of NSCLC patients. A risk-score model based on a 14-lncRNA signature was identified, which could classify patients into high-risk and low-risk groups and show poor and improved outcomes, respectively. The receiver operating characteristic (ROC) curve revealed that the risk-score model has good performance with high AUC value. Multivariate Cox's regression model and stratified analysis indicated that the risk-score was independent of other clinicopathological prognostic factors. Furthermore, the risk-score model was competent for the prediction of metastasis-free survival in NSCLC patients. Moreover, the risk-score model was applicable for prediction of the overall survival in the other 30 caner types of TCGA. Our study highlighted the significant implications of lncRNAs as prognostic predictors in NSCLC. We hope the lncRNA signature could contribute to personalized therapy decisions in the future.
Collapse
Affiliation(s)
- Jia-Yi Song
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao-Ping Li
- Department of Pediatric Endocrinology, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiu-Jiao Qin
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing-Dong Zhang
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jian-Yu Zhao
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Wang
- Department of Geriatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
26
|
Salah M, Zawam H, Fouad NB, Soliman N, Maksoud FAWA. Study of HOTAIR LncRNA in AML patients in context to FLT3-ITD and NPM1 mutations status. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Long non-coding RNAs (LncRNAs) have recently been considered promising biomarkers for oncogenesis due to their epigenetic regulatory effects. HOTAIR is one of the oncogenic LncRNAs that was previously studied in different non-hematological malignancies. The current study set out to detect the expression level of HOTAIR LncRNA in AML patients concerning their clinical characteristics, laboratory data, FLT3-ITD, and NPM1 mutations, as well as treatment outcome. This study included quantitative detection of HOTAIR gene expression in 47 cases of AML using quantitative reverse transcription polymerase chain reaction, as well as NPM1 and FLT3-ITD genotyping.
Results
The HOTAIR expression was significantly higher in AML patients 6.87 (0.001) than in normal controls 1.66 (0.004–6.82) (p 0.007). The HOTAIR expression level was affected by chemotherapy, and it was correlated to hemoglobin level (p 0.001), age, total leukocytic count (p 0.022), and NPM1 mutation (p 0.017). HOTAIR gene expression level showed a correlation to relapse-free survival in the study group (p 0.04).
Conclusion
HOTAIR is overexpressed in patients with acute myeloid leukemia (AML). HOTAIR pre-treatment and post-chemotherapy gene expression levels can predict chemosensitivity and relapse.
Collapse
|
27
|
A generative-discriminative framework that integrates imaging, genetic, and diagnosis into coupled low dimensional space. Neuroimage 2021; 238:118200. [PMID: 34118398 DOI: 10.1016/j.neuroimage.2021.118200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/08/2021] [Accepted: 05/22/2021] [Indexed: 11/21/2022] Open
Abstract
We propose a novel optimization framework that integrates imaging and genetics data for simultaneous biomarker identification and disease classification. The generative component of our model uses a dictionary learning framework to project the imaging and genetic data into a shared low dimensional space. We have coupled both the data modalities by tying the linear projection coefficients to the same latent space. The discriminative component of our model uses logistic regression on the projection vectors for disease diagnosis. This prediction task implicitly guides our framework to find interpretable biomarkers that are substantially different between a healthy and disease population. We exploit the interconnectedness of different brain regions by incorporating a graph regularization penalty into the joint objective function. We also use a group sparsity penalty to find a representative set of genetic basis vectors that span a low dimensional space where subjects are easily separable between patients and controls. We have evaluated our model on a population study of schizophrenia that includes two task fMRI paradigms and single nucleotide polymorphism (SNP) data. Using ten-fold cross validation, we compare our generative-discriminative framework with canonical correlation analysis (CCA) of imaging and genetics data, parallel independent component analysis (pICA) of imaging and genetics data, random forest (RF) classification, and a linear support vector machine (SVM). We also quantify the reproducibility of the imaging and genetics biomarkers via subsampling. Our framework achieves higher class prediction accuracy and identifies robust biomarkers. Moreover, the implicated brain regions and genetic variants underlie the well documented deficits in schizophrenia.
Collapse
|
28
|
Falahati Z, Mohseni-Dargah M, Mirfakhraie R. Emerging Roles of Long Non-coding RNAs in Uterine Leiomyoma Pathogenesis: a Review. Reprod Sci 2021; 29:1086-1101. [PMID: 33844188 DOI: 10.1007/s43032-021-00571-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/01/2021] [Indexed: 01/19/2023]
Abstract
Uterine leiomyoma (UL), as the most prevalent type of women's health disorders, is a benign tumor that originates from the smooth muscle cell layer of the uterus. A great number of associated complications are observed including infertility, miscarriage, bleeding, pain, dysmenorrhea, menorrhagia, and dyspareunia. Although the etiology of UL is largely undefined, environmental and genetic factors are witnessed to engage in the UL development. As long non-coding RNAs (lncRNAs) are involved in various types of cellular functions, in recent years, a great deal of attention has been drawn to them and their possible roles in UL pathogenesis. Moreover, they have illustrated their potential to be promising candidates for UL treatment. In this review paper, firstly, an overview of UL pathogenesis is presented. Then, the regulation of lncRNAs in UL and their possible mechanisms in cancer development are reviewed. Eventually, therapeutic approaches targeting lncRNAs in various cancers and UL are explored.
Collapse
Affiliation(s)
- Zahra Falahati
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Masoud Mohseni-Dargah
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Koodakyar St., Velenjak Ave, Chamran Highway, Tehran, Iran.
- Genomic Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Bi F, Chen C, Fu J, Yu L, Geng J. Inhibiting proliferation and metastasis of osteosarcoma cells by downregulation of long non-coding RNA colon cancer-associated transcript 2 targeting microRNA-143. Oncol Lett 2021; 21:265. [PMID: 33664828 PMCID: PMC7882883 DOI: 10.3892/ol.2021.12526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is a malignant bone tumor, which has a high incidence in children and adolescents. However, the pathogenesis of osteosarcoma remains unclear. Long noncoding RNA (lncRNA) is a new potential therapeutic target and diagnostic biomarker for osteosarcoma. Hence, the present study aimed to explore the effect of lncRNA colon cancer-associated transcript (CCAT2) on osteosarcoma and its potential underlying mechanisms. For this purpose, the proliferation of osteosarcoma cells was measured using the CCK-8 assay. The scratch-wound and cell invasion assays were used to determine the migration and invasion of osteosarcoma cells, respectively. LncRNA CCAT2 and microRNA (miR)-143 binding sites were identified by the dual-luciferase reporter assay. RNA and protein expression levels were detected by reverse-transcription quantitative PCR and western blotting, respectively. Downregulation of lncRNA CCAT2 inhibited the proliferation, migration, and invasion of osteosarcoma cells. The findings also revealed that miR-143 bound directly to lncRNA CCAT2. The expression of miR-143 was upregulated by the knockdown of lncRNA CCAT2. Downregulation of the FOS-like antigen 2 was also observed after knockdown of lncRNA CCAT2. The function of lncRNA CCAT2 in osteosarcoma cells was attenuated by co-transfection with anti-miR-143 oligodeoxyribonucleotide. In conclusion, downregulation of lncRNA CCAT2 inhibited the proliferation and metastasis of osteosarcoma cells by targeting miR-143. lncRNA CCAT2 was identified as a potential target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Fengjiang Bi
- Department of Orthopedics, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161005, P.R. China
| | - Can Chen
- Department of Orthopedics, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161005, P.R. China
| | - Jing Fu
- Department of Orthopedics, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161005, P.R. China
| | - Lei Yu
- Department of Orthopedics, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161005, P.R. China
| | - Jia Geng
- Department of Orthopedics, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161005, P.R. China,Correspondence to: Dr Jia Geng, Department of Orthopedics, The First Hospital of Qiqihaer, 30 Park Road, Qiqihaer, Heilongjiang 161005, P.R. China, E-mail:
| |
Collapse
|
30
|
Boliar S, Russell DG. Lnc(ing)RNAs to the "shock and kill" strategy for HIV-1 cure. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1272-1280. [PMID: 33717648 PMCID: PMC7907223 DOI: 10.1016/j.omtn.2021.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The advent of antiretroviral therapy almost 25 years ago has transformed HIV-1 infection into a manageable chronic condition, albeit still incurable. The inability of the treatment regimen to eliminate latently infected cells that harbor the virus in an epigenetically silent state poses a major hurdle. Current cure approaches are focused on a "shock and kill" strategy that uses latency-reversing agents to chemically reverse the proviral quiescence in latently infected cells, followed by immune-mediated clearance of reactivated cells. To date, hundreds of compounds have been investigated for viral reactivation, yet none has resulted in a functional cure. The insufficiency of these latency-reversing agents (LRAs) alone indicates a critical need for additional, alternate approaches such as genetic manipulation. Long non-coding RNAs (lncRNAs) are an emerging class of regulatory RNAs with functional roles in many cellular processes, including epigenetic modulation. A number of lncRNAs have already been implicated to play important roles in HIV-1 latency and, as such, pharmacological modulation of lncRNAs constitutes a rational alternative approach in HIV-1 cure research. In this review, we discuss the current state of knowledge of the role of lncRNAs in HIV-1 infection and explore the scope for a lncRNA-mediated genetic approach within the shock and kill strategy of HIV-1 cure.
Collapse
Affiliation(s)
- Saikat Boliar
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Corresponding author: Saikat Boliar, Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - David G. Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
miRNAs and Biomarkers in Testicular Germ Cell Tumors: An Update. Int J Mol Sci 2021; 22:ijms22031380. [PMID: 33573132 PMCID: PMC7866514 DOI: 10.3390/ijms22031380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are the leading form of solid cancer and death affecting males between the ages of 20 and 40. Today, their surgical resection and chemotherapy are the treatments of first choice, even if sometimes this is not enough to save the lives of patients with TGCT. As seen for several tumors, the deregulation of microRNAs (miRNAs) is also a key feature in TGCTs. miRNAs are small molecules of RNA with biological activity that are released into biological fluids by testicular cancer cells. Their presence, therefore, can be detected and monitored by considering miRNAs as diagnostic and prognostic markers for TGCTs. The purpose of this review is to collect all the studies executed on miRNAs that have a potential role as biomarkers for testicular tumors.
Collapse
|
32
|
Johnson M, Mowa CN. Transcriptomic profile of VEGF-regulated genes in human cervical epithelia. Cell Tissue Res 2021; 384:771-788. [PMID: 33511468 DOI: 10.1007/s00441-020-03354-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022]
Abstract
Cervical epithelial cells play a central role in cervical remodeling (CR) during pregnancy and cervical events during menstrual cycle, including mounting physical and immunological barriers, proliferation and differentiation, maintenance of fluid balance, and likely in withstanding the mechanical force exerted by the growing fetus prior to term. In the present study, we attempt to decipher the specific roles of VEGF in fetal human cervical epithelial cells by delineating VEGF signature genes using RNA sequencing in order to characterize the specific biological effects of VEGF in these cells.Out of a total of 25,000 genes screened, 162 genes were found to be differentially expressed in human cervical epithelial cells, of which 12 genes were found to be statistically significantly differentially expressed. The differentially expressed genes (162) were categorized by biological function, which included (1) proliferation, (2) immune response, (3) structure/matrix, (4) mitochondrial function, and (5) cell adhesion/communication and others (pseudogenes, non-coding RNA, miscellaneous genes, and uncharacterized genes). We conclude that VEGF plays a key role in CR by altering the expression of genes that regulate proliferation, immune response, energy metabolism and cell structure, and biological processes that are essential to development and likely CR.
Collapse
|
33
|
Sumi MP, Mahajan B, Sattar RSA, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Saluja SS. Elucidation of Epigenetic Landscape in Coronary Artery Disease: A Review on Basic Concept to Personalized Medicine. Epigenet Insights 2021; 14:2516865720988567. [PMID: 33598635 PMCID: PMC7863167 DOI: 10.1177/2516865720988567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Despite extensive clinical research and management protocols applied in the field of coronary artery diseases (CAD), it still holds the number 1 position in mortality worldwide. This indicates that we need to work on precision medicine to discover the diagnostic, therapeutic, and prognostic targets to improve the outcome of CAD. In precision medicine, epigenetic changes play a vital role in disease onset and progression. Epigenetics is the study of heritable changes that do not affect the alterations of DNA sequence in the genome. It comprises various covalent modifications that occur in DNA or histone proteins affecting the spatial arrangement of the DNA and histones. These multiple modifications include DNA/histone methylation, acetylation, phosphorylation, and SUMOylation. Besides these covalent modifications, non-coding RNAs-viz. miRNA, lncRNA, and circRNA are also involved in epigenetics. Smoking, alcohol, diet, environmental pollutants, obesity, and lifestyle are some of the prime factors affecting epigenetic alterations. Novel molecular techniques such as next-generation sequencing, chromatin immunoprecipitation, and mass spectrometry have been developed to identify important cross points in the epigenetic web in relation to various diseases. The studies regarding exploration of epigenetics, have led researchers to identify multiple diagnostic markers and therapeutic targets that are being used in different disease diagnosis and management. Here in this review, we will discuss various ground-breaking contributions of past and recent studies in the epigenetic field in concert with coronary artery diseases. Future prospects of epigenetics and its implication in CAD personalized medicine will also be discussed in brief.
Collapse
Affiliation(s)
- Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
- Department of Biochemistry, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Abhay Kumar Sharma
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Ejaz Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| |
Collapse
|
34
|
Fathi Dizaji B. Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00074-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Long non-coding RNAs are important regulators of gene expression and diverse biological processes. Their aberrant expression contributes to a verity of diseases including cancer development and progression, providing them with great potential to be diagnostic and prognostic biomarkers and therapeutic targets. Therefore, they can have a key role in personalized cancer medicine.
This review aims at introducing possible strategies to target long ncRNAs therapeutically in cancer. Also, chemical modification of nucleic acid-based therapeutics to improve their pharmacological properties is explained. Then, approaches for the systematic delivery of reagents into the tumor cells or organs are briefly discussed, followed by describing obstacles to the expansion of the therapeutics.
Main text
Long ncRNAs function as oncogenes or tumor suppressors, whose activity can modulate all hallmarks of cancer. They are expressed in a very restricted spatial and temporal pattern and can be easily detected in the cells or biological fluids of patients. These properties make them excellent targets for the development of anticancer drugs. Targeting methods aim to attenuate oncogenic lncRNAs or interfere with lncRNA functions to prevent carcinogenesis. Numerous strategies including suppression of oncogenic long ncRNAs, alternation of their epigenetic effects, interfering with their function, restoration of downregulated or lost long ncRNAs, and recruitment of long ncRNAs regulatory elements and expression patterns are recommended for targeting long ncRNAs therapeutically in cancer. These approaches have shown inhibitory effects on malignancy. In this regard, proliferation, migration, and invasion of tumor cells have been inhibited and apoptosis has been induced in different cancer cells in vitro and in vivo. Downregulation of oncogenic long ncRNAs and upregulation of some growth factors (e.g., neurotrophic factor) have been achieved.
Conclusions
Targeting long non-coding RNAs therapeutically in cancer and efficient and safe delivery of the reagents have been rarely addressed. Only one clinical trial involving lncRNAs has been reported. Among different technologies, RNAi is the most commonly used and effective tool to target lncRNAs. However, other technologies need to be examined and further research is essential to put lncRNAs into clinical practice.
Collapse
|
35
|
Glaß M, Dorn A, Hüttelmaier S, Haemmerle M, Gutschner T. Comprehensive Analysis of LincRNAs in Classical and Basal-Like Subtypes of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12082077. [PMID: 32727085 PMCID: PMC7464731 DOI: 10.3390/cancers12082077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinomas (PDAC) belong to the deadliest malignancies in the western world. Mutations in TP53 and KRAS genes along with some other frequent polymorphisms occur almost universally and are major drivers of tumour initiation. However, these mutations cannot explain the heterogeneity in therapeutic responses and differences in overall survival observed in PDAC patients. Thus, recent classifications of PDAC tumour samples have leveraged transcriptome-wide gene expression data to account for epigenetic, transcriptional and post-transcriptional mechanisms that may contribute to this deadly disease. Intriguingly, long intervening RNAs (lincRNAs) are a special class of long non-coding RNAs (lncRNAs) that can control gene expression programs on multiple levels thereby contributing to cancer progression. However, their subtype-specific expression and function as well as molecular interactions in PDAC are not fully understood yet. In this study, we systematically investigated the expression of lincRNAs in pancreatic cancer and its molecular subtypes using publicly available data from large-scale studies. We identified 27 deregulated lincRNAs that showed a significant different expression pattern in PDAC subtypes suggesting context-dependent roles. We further analyzed these lincRNAs regarding their common expression patterns. Moreover, we inferred clues on their functions based on correlation analyses and predicted interactions with RNA-binding proteins, microRNAs, and mRNAs. In summary, we identified several PDAC-associated lincRNAs of prognostic relevance and potential context-dependent functions and molecular interactions. Hence, our study provides a valuable resource for future investigations to decipher the role of lincRNAs in pancreatic cancer.
Collapse
Affiliation(s)
- Markus Glaß
- Institute of Molecular Medicine, Section for Cell Biology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (M.G.); (S.H.)
| | - Agnes Dorn
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Cell Biology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (M.G.); (S.H.)
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
- Correspondence: (M.H.); (T.G.)
| | - Tony Gutschner
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
- Correspondence: (M.H.); (T.G.)
| |
Collapse
|
36
|
The Depletion of ABI3BP by MicroRNA-183 Promotes the Development of Esophageal Carcinoma. Mediators Inflamm 2020; 2020:3420946. [PMID: 32774142 PMCID: PMC7399787 DOI: 10.1155/2020/3420946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background Esophageal cancer (EC), as a serious threat to human life and health, is one of the most common cancers around the world. Many studies have suggested that many microRNAs are involved in tumorigenesis and progression. Methods To search for a novel and promising predictive therapeutic target or biomarker to achieve the goal of the early diagnosis and treatment of EC, we used the EC cell lines Eca-109 and KYSE-150 and normal human esophageal epithelial cells (HEECs) to investigate the effect of ABI3BP on EC. Results We found that ABI family member 3 binding protein (ABI3BP) was downregulated in EC and suppressed the proliferation, activity, migration, and invasion of EC cells. ABI3BP was downregulated by miR-183, which plays the role of an oncogene. Conclusion ABI3BP and miR-183 can be considered potential biomarkers for the diagnosis of patients with EC and can be effective targets for antitumor therapy.
Collapse
|
37
|
Li G, Gao L, Zhao J, Liu D, Li H, Hu M. LncRNA ANRIL/miR-7-5p/TCF4 axis contributes to the progression of T cell acute lymphoblastic leukemia. Cancer Cell Int 2020; 20:335. [PMID: 32714094 PMCID: PMC7376839 DOI: 10.1186/s12935-020-01376-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Antisense non-coding RNA in the INK4 locus (ANRIL) is of great importance in cell biological behaviors, and ANRIL functions in many kinds of cancers including leukemia. However, the mechanism of ANRIL in the progression of T-cell acute lymphoblastic leukemia (T-ALL) has not been clarified clearly. Methods qRT-PCR was performed to detect ANRIL expression in T-ALL samples. T-ALL cell lines (MOLT4, CCRF-CEM and KOPT-K1) were used as the cell models. The function of ANRIL on T-ALL cells was investigated by CCK-8 assays, Transwell assays, and apoptosis experiments in vitro. qRT-PCR, Western blot, luciferase reporter assay and RIP assay were used to confirm the interactions between ANRIL and miR-7-5p, miR-7-5p and its target gene transcription factor 4 (TCF4). Results ANRIL was significantly up-regulated in T-ALL samples. Its knockdown markedly inhibited viability, migration and invasion of T-ALL cells, but its overexpression exerted the opposite effects. TCF4 was proved to be a target gene of miR-7-5p. ANRIL down-regulated miR-7-5p via sponging it and in turn up-regulated TCF4. Conclusions LncRNA ANRIL can modulate malignant phenotypes of T-ALL cells, possibly by regulating miR-7-5p/TCF4 axis, and it serves as a potential therapeutic target for T-ALL.
Collapse
Affiliation(s)
- Gang Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Lan Gao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Jing Zhao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Dejun Liu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Hui Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Min Hu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| |
Collapse
|
38
|
Wang HS, Zhang W, Zhu HL, Li QP, Miao L. Long noncoding RNA SNHG6 mainly functions as a competing endogenous RNA in human tumors. Cancer Cell Int 2020; 20:219. [PMID: 32518528 PMCID: PMC7275348 DOI: 10.1186/s12935-020-01303-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Increased expression of the small nucleolar RNA host gene 6 (SNHG6) has been reported in different cancers, such as hepatocellular carcinoma, colorectal cancer, and lung cancer. The high expression level of SNHG6 is associated with tumor progression and poor prognosis. This paper provides an overview of recent studies on the oncogenic role and potential clinical utilities of SNHG6. Upregulated SNHG6 arrests tumor cell cycle and reduces apoptosis but promotes migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), and chemoresistance in tumors. Mechanically, SNHG6 primarily sponges tumor suppressor microRNA (miRNA), functioning as a competing endogenous RNA. Once sponged, miRNA is unable to degrade, silence, or hamper the translation of its downstream, mostly oncogenic genes, ultimately driving cancer-related processes. Thus, SNHG6 might serve as a biomarker for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Hui-Shan Wang
- Nanjing Medical University, Nanjing, Jiangsu Province China
| | - Wen Zhang
- Nanjing Medical University, Nanjing, Jiangsu Province China
| | - Han-Long Zhu
- Nanjing Medical University, Nanjing, Jiangsu Province China
| | - Quan-Peng Li
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, Nanjing, 210011 Jiangsu Province China
| | - Lin Miao
- Nanjing Medical University, Nanjing, Jiangsu Province China.,Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, Nanjing, 210011 Jiangsu Province China
| |
Collapse
|
39
|
The Good, the Bad, the Question- H19 in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051261. [PMID: 32429417 PMCID: PMC7281302 DOI: 10.3390/cancers12051261] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, is challenging to treat due to its typical late diagnosis, mostly at an advanced stage. Therefore, there is a particular need for research in diagnostic and prognostic biomarkers and therapeutic targets for HCC. The use of long noncoding (lnc) RNAs can widen the list of novel molecular targets improving cancer therapy. In hepatocarcinogenesis, the role of the lncRNA H19, which has been known for more than 30 years now, is still controversially discussed. H19 was described to work either as a tumor suppressor in vitro and in vivo, or to have oncogenic features. This review attempts to survey the conflicting study results and tries to elucidate the potential reasons for the contrary findings, i.e., different methods, models, or readout parameters. This review encompasses in vitro and in vivo models as well as studies on human patient samples. Although the function of H19 in HCC remains elusive, a short outlook summarizes some ideas of using the H19 locus as a novel target for liver cancer therapy.
Collapse
|
40
|
Dorn A, Glaß M, Neu CT, Heydel B, Hüttelmaier S, Gutschner T, Haemmerle M. LINC00261 Is Differentially Expressed in Pancreatic Cancer Subtypes and Regulates a Pro-Epithelial Cell Identity. Cancers (Basel) 2020; 12:cancers12051227. [PMID: 32414223 PMCID: PMC7281485 DOI: 10.3390/cancers12051227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the major causes of cancer-associated deaths worldwide, with a dismal prognosis that has not significantly changed over the last decades. Transcriptional analysis has provided valuable insights into pancreatic tumorigenesis. Specifically, pancreatic cancer subtypes were identified, characterized by specific mutations and gene expression changes associated with differences in patient survival. In addition to differentially regulated mRNAs, non-coding RNAs, including long non-coding RNAs (lncRNAs), were shown to have subtype-specific expression patterns. Hence, we aimed to characterize prognostic lncRNAs with deregulated expression in the squamous subtype of PDAC, which has the worst prognosis. Extensive in silico analyses followed by in vitro experiments identified long intergenic non-coding RNA 261 (LINC00261) as a downregulated lncRNA in the squamous subtype of PDAC, which is generally associated with transforming growth factor β (TGFβ) signaling in human cancer cells. Its genomic neighbor, the transcription factor forkhead box protein A2 (FOXA2), regulated LINC00261 expression by direct binding of the LINC00261 promoter. CRISPR-mediated knockdown and promoter knockout validated the importance of LINC00261 in TGFβ-mediated epithelial–mesenchymal transition (EMT) and established the epithelial marker E-cadherin, an important cell adhesion protein, as a downstream target of LINC00261. Consequently, depletion of LINC00261 enhanced motility and invasiveness of PANC-1 cells in vitro. Altogether, our data suggest that LINC00261 is an important tumor-suppressive lncRNA in PDAC that is involved in maintaining a pro-epithelial state associated with favorable disease outcome.
Collapse
Affiliation(s)
- Agnes Dorn
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.D.); (C.T.N.); (B.H.)
| | - Markus Glaß
- Institute of Molecular Medicine, Section for Cell Biology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (M.G.); (S.H.)
| | - Carolin T. Neu
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.D.); (C.T.N.); (B.H.)
| | - Beate Heydel
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.D.); (C.T.N.); (B.H.)
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Cell Biology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (M.G.); (S.H.)
| | - Tony Gutschner
- Junior Research Group ‘RNA biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
- Correspondence: (T.G.); (M.H.); Tel.: +49-345-5573945 (T.G.); +49-345-5573964 (M.H.)
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.D.); (C.T.N.); (B.H.)
- Correspondence: (T.G.); (M.H.); Tel.: +49-345-5573945 (T.G.); +49-345-5573964 (M.H.)
| |
Collapse
|
41
|
Non-Coding microRNAs as Novel Potential Tumor Markers in Testicular Cancer. Cancers (Basel) 2020; 12:cancers12030749. [PMID: 32235691 PMCID: PMC7140096 DOI: 10.3390/cancers12030749] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Testicular cancer is an important disease with increasing incidence and a high burden of morbidity and mortality in young men worldwide. Histological examination of the testicular tissue after orchiectomy plays an important role alongside patient history, imaging, clinical presentation and laboratory parameters. Surgical procedures and chemotherapeutic treatment provide a high chance of cure in early stages, though some patients in advanced stages belonging to a poor risk group experience cancer-related death. Though conventional serum-based tumor markers, including α-fetoprotein (AFP), the β-subunit of human chorionic gonadotropin (β-hCG), and lactate dehydrogenase (LDH), are useful as prognostic and diagnostic biomarkers, unfortunately, these tumor markers only have a sensitivity of about 60%, and in pure seminoma even lower with about 20%. Therefore, the development of new tumor markers is an important and intensively ongoing issue. The analysis of epigenetic modification and non-coding RNA microRNAs (miRNAs) are carrying most promising potential as tumor markers in future. miRNAs are small RNAs secreted by testicular tumor cells and circulate and be measurable in body fluids. In recent years, miRNAs of the miR-371-373 cluster in particular have been identified as potentially superior tumor markers in testicular cancer patients. Studies showed that miR-371a-3p and miR-302/367 expression significantly differ between testicular tumors and healthy testicular tissue. Several studies including high prospective multi-center trials clearly demonstrated that these miRNAs significantly exceed the sensitivity and specificity of conventional tumor markers and may help to facilitate the diagnosis, follow-up, and early detection of recurrences in testicular cancer patients. In addition, other miRNAs such as miR-223-3p, miR-449, miR-383, miR-514a-3p, miR-199a-3p, and miR-214 will be discussed in this review. However, further studies are needed to identify the value of these novel markers in additional clinical scenarios, including the monitoring in active surveillance or after adjuvant chemotherapy, but also to show the limitations of these tumor markers. The aim of this review is to give an overview on the current knowledge regarding the relevance of non-coding miRNAs as biomarkers in testicular cancer.
Collapse
|
42
|
Wang H, Wang L, Tang L, Luo J, Ji H, Zhang W, Zhou J, Li Q, Miao L. Long noncoding RNA SNHG6 promotes proliferation and angiogenesis of cholangiocarcinoma cells through sponging miR-101-3p and activation of E2F8. J Cancer 2020; 11:3002-3012. [PMID: 32226515 PMCID: PMC7086249 DOI: 10.7150/jca.40592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) development is an extremely complex process with alterations occurring in numerous genes. SNHG6, a validated lncRNA, has been reported to regulate the expression of multiple tumor-related genes in hepatocellular carcinoma, colorectal cancer and breast cancer. Here, we elucidated the function and possible molecular mechanisms of SNHG6 in human CCA cells. Our results proved that the expression SNHG6 was upregulated in CCA tissues and cell lines. Ectopic expression of SNHG6 promoted cell proliferation, cell cycle progression, migration, and angiogenesis in CCA cells, whereas knockdown of SNHG6 repressed these cellular processes. Further mechanistic studies revealed that SNHG6 could compete with the transcription factor E2F8 to bind with miR-101-3p, thus affecting E2F8 expression. Taken together, these results provided a comprehensive analysis of the role of SNHG6 in CCA cells and offered important clues to understand the key roles of competing endogenous RNA (ceRNA) mechanisms in human cholangiocarcinoma.
Collapse
Affiliation(s)
- Huishan Wang
- Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Li Wang
- Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Lingyu Tang
- Taizhou hospital of traditional Chinese medicine, 86 Jichuandong Road, Hailing District, Taizhou 225300, Jiangsu Province, China
| | - Jing Luo
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Ji
- Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Wen Zhang
- Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Jian Zhou
- Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Quanpeng Li
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, Nanjing 210011, Jiangsu Province, China
| | - Lin Miao
- Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, Nanjing 210011, Jiangsu Province, China
| |
Collapse
|
43
|
Qiao Z, Yang D, Liu L, Liu Z, Wang J, He D, Wu H, Wang J, Ma Z. Genome-wide identification and characterization of long non-coding RNAs in MDCK cell lines with high and low tumorigenicities. Genomics 2020; 112:1077-1086. [DOI: 10.1016/j.ygeno.2019.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/03/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
44
|
Huang Z, Zhao J, Wang W, Zhou J, Zhang J. Depletion of LncRNA NEAT1 Rescues Mitochondrial Dysfunction Through NEDD4L-Dependent PINK1 Degradation in Animal Models of Alzheimer's Disease. Front Cell Neurosci 2020; 14:28. [PMID: 32140098 PMCID: PMC7043103 DOI: 10.3389/fncel.2020.00028] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/30/2020] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Unfortunately, the mechanism of AD remains unclear, and no effective therapies are available yet. An increasing amount of studies have demonstrated that long non-coding RNAs (LncRNAs) play a notable role in the pathogenesis of plenty of human diseases, and they have served as biomarkers and potential therapeutic targets. However, the function of LncRNAs in AD remains unclear. This study aimed to explore the potential role of LncRNA nuclear enriched abundant transcript 1 (NEAT1) in AD. We found that LncRNA NEAT1 was upregulated in the AD animal models. Furthermore, we demonstrated that NEAT1 could interact with NEDD4L and promote PTEN-induced putative kinase 1 (PINK1)’s ubiquitination and degradation and then impaired PINK1-dependent autophagy. Collectively, the lncRNA NEAT1 promotes the pathogenesis of AD and serves as a promising novel target for pharmacological intervention.
Collapse
Affiliation(s)
- Zhonghua Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Zhao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhou
- Medical Science Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
45
|
Xu Y, Cao Z, Ding Y, Li Z, Xiang X, Lai R, Sheng Z, Liu Y, Cai W, Hu R, Wang H, Xie Q. Long Non-coding RNA NEAT1 Alleviates Acute-on-Chronic Liver Failure Through Blocking TRAF6 Mediated Inflammatory Response. Front Physiol 2019; 10:1503. [PMID: 31920708 PMCID: PMC6920254 DOI: 10.3389/fphys.2019.01503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have recently been tightly linked to plenty of human diseases. However, knowledge of acute-on-chronic liver failure (ACLF) related lncRNAs remains insufficient. In this work, we studied the role of the lncRNA nuclear enriched abundant transcript 1 (NEAT1) in the pathogenesis of ACLF. Methods ACLF model was established by challenging D-galactosamine (D-GalN)/ lipopolysaccharide (LPS) i.p. in rats with cirrhosis. The serum levels of IL-1, IL-6, and HMGB1 were determined using ELISA. Quantitative real time-PCR and western blot were performed to evaluate RNA and protein levels of inflammatory response. RNA immunoprecipitation assay was performed to confirm protein that interacts with NEAT1. Findings Over-expression of NEAT1 could interact with TRAF6 and decrease its ubiquitination level, and significantly reduced the expression levels of IL-6, IL-22. Importantly, in ACLF rat model, NEAT1 over-expression reduced several cytokines expression and alleviated the pathological status in contrast to the control group. Additionally, NEAT1 was increased and positively correlated with IL-22 and IL-6 levels in PBMCs from the ACLF patients. Interpretation NEAT1 can suppress inflammatory response through blockade of TRAF6 ubiquitination in ACLF rat model, suggesting that lncRNA NEAT1 might play protective roles in the pathogenesis of ACLF and provide promising novel target for pharmacological intervention.
Collapse
Affiliation(s)
- Yumin Xu
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhujun Cao
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yezhou Ding
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziqiang Li
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rongtao Lai
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zike Sheng
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhan Liu
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronggui Hu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Hui Wang
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
46
|
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G. Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Front Cell Dev Biol 2019; 7:221. [PMID: 31632972 PMCID: PMC6781797 DOI: 10.3389/fcell.2019.00221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Johnson
- Asbestos Diseases Research Institute, Sydney, NSW, Australia.,Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia.,Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karin Schelch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Burgess
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
47
|
Ma J, Xiao Y, Tian B, Chen S, Zhang B, Wu J, Wu Z, Li X, Tang J, Yang D, Zhou Y, Wang H, Su M, Wang W. Long noncoding RNA lnc-ABCA12-3 promotes cell migration, invasion, and proliferation by regulating fibronectin 1 in esophageal squamous cell carcinoma. J Cell Biochem 2019; 121:1374-1387. [PMID: 31512786 DOI: 10.1002/jcb.29373] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play important roles in human cancers, including esophageal squamous cell carcinoma (ESCC). We previously demonstrated that a novel lncRNA, lnc-ABCA12-3, was overexpressed in ESCC tissues. However, the exact function of lnc-ABCA12-3 is unknown. In the current study, we aimed to evaluate the expression of lnc-ABCA12-3 in ESCC and to explore the potential mechanism of lnc-ABCA12-3 in cell migration, invasion, and proliferation. We showed that lnc-ABCA12-3 was upregulated in ESCC tumor tissues and cell lines. The increased expression of lnc-ABCA12-3 was positively associated with advanced tumor-node-metastasis stages and poor prognosis. The knockdown of lnc-ABCA12-3 inhibited the cell migration, invasion, and proliferation abilities of KYSE-510 and Eca-109 cells. We also found that fibronectin 1 (FN1) was upregulated in ESCC tumor tissues. The expression of FN1 messenger RNA was positively correlated with the expression of lnc-ABCA12-3 in ESCC tumor tissues. After lnc-ABCA12-3 knockdown, the expression of FN1 was downregulated. In addition, the overexpression of FN1 restored the abilities of cell migration, invasion and proliferation in Eca-109 cells. Further studies indicated that lnc-ABCA12-3 acted as a competing endogenous RNA for miR-200b-3p to regulate FN1 expression. In conclusion, these results suggest that lnc-ABCA12-3 is a novel oncogene in tumorigenesis and that its high expression is related to a poor prognosis for patients with ESCC. lnc-ABCA12-3 promotes cell migration, invasion, and proliferation via the regulation of FN1 in ESCC. Our data suggest that lnc-ABCA12-3 might serve as a potential prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Junliang Ma
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Tian
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shaolin Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Baihua Zhang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jie Wu
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhining Wu
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xu Li
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinming Tang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Desong Yang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Min Su
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenxiang Wang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
48
|
Kołat D, Hammouz R, Bednarek AK, Płuciennik E. Exosomes as carriers transporting long non‑coding RNAs: Molecular characteristics and their function in cancer (Review). Mol Med Rep 2019; 20:851-862. [PMID: 31173220 PMCID: PMC6625196 DOI: 10.3892/mmr.2019.10340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) comprise a sizeable class of non‑coding RNAs with a length of over 200 base pairs. Little is known about their biological function, although over 20,000 lncRNAs have been annotated in the human genome. Through a diverse range of mechanisms, their primary function is in the regulation of the transcription of protein‑coding genes. lncRNA transcriptional activation can result from a group of nucleus‑retained and chromatin‑associated lncRNAs, which function as scaffolds in the cis/trans recruitment of transcription factors, co‑activators or chromatin remodelers, and/or promoter enhancers. Exosomes are released as extracellular vesicles and they are produced by endocytic pathways. Their synthesis is initiated by various processes including ceramide synthesis, release of intracellular Ca2+ or acid‑base balance disorders. Prior to vesicle creation, selective cargo loading occurs in the Endosomal Sorting Complex Required for Transport. Participation of endosomal sorting proteins such as tetraspanins or specific sumoylated proteins required for transport has been indicated in research. The endosomal‑sorting complex consists of four components, these induce the formation of multivesicular bodies and the induction of membrane deformation to form exosomes. Nanovesicles could be formed inside multivesicular bodies to allow transport outside the cell or digestion in lysosomes. The molecular content of exosomes is more heterogenic than its synthesis process, with different cargoes being examined inside vesicles with regard to the type or stage of cancers. This paper will review the importance of lncRNAs as crucial molecular content of exosomes, indicating its involvement in tumour suppression, pro‑tumorigenic events and the development of novel therapeutic approaches in the near future. Further studies of their mechanisms of function are essential, as well as overcoming several challenges to gain a clearer insight to the approaches for the best clinical application.
Collapse
Affiliation(s)
- Damian Kołat
- Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Łódź, 90-752 Łódź, Poland
| | - Raneem Hammouz
- Department of Molecular Carcinogenesis, Medical University of Łódź, 90-752 Łódź, Poland
| | - Andrzej K. Bednarek
- Department of Molecular Carcinogenesis, Medical University of Łódź, 90-752 Łódź, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Łódź, 90-752 Łódź, Poland
- Correspondence to: Dr Elżbieta Płuciennik, Department of Molecular Carcinogenesis, Medical University of Łódź, Zeligowskiego 7/9, 90-752 Łódź, Poland, E-mail:
| |
Collapse
|
49
|
Tong J, Ma X, Yu H, Yang J. SNHG15: a promising cancer-related long noncoding RNA. Cancer Manag Res 2019; 11:5961-5969. [PMID: 31308739 PMCID: PMC6613027 DOI: 10.2147/cmar.s208054] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is expected to rank as the leading cause of death worldwide due to increasing morbidity and mortality. Long noncoding RNAs (lncRNAs) have been found to play pivotal roles in multiple biological processes, such as transcriptional interference, posttranscriptional regulation and epigenetic modification. Small nucleolar RNA host gene 15 (SNHG15), a snoRNA host gene which produces a short half-lived lncRNA, was reported to be upregulated in tumor cells and participate in the occurrence and development of multiple cancers. And more than half of the SNHG15 research in cancers has been published within the last 2 years. In this review, we summarized the current evidence concerning the biological functions and molecular mechanisms of SNHG15 in various cancers, including gastric, hepatocellular, pancreatic, colorectal, breast, and thyroid cancer, osteosarcoma, glioma, lung cancer, renal cell carcinoma, and epithelial ovarian cancer. SNHG15 plays critical roles in regulation of cell proliferation, migration and invasion of tumors via different potential mechanisms. Moreover, the abnormal expression of SNHG15 was associated with clinical features of patients with cancers. Consequently, SNHG15 could be considered as a promising biomarker for cancer diagnosis, prognosis or treatment.
Collapse
Affiliation(s)
- Jinfei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xudong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| | - Hailan Yu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jianhua Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
50
|
Ma J, Xiao Y, Tian B, Chen S, Zhang B, Wu J, Wu Z, Li X, Tang J, Yang D, Zhou Y, Wang H, Su M, Wang W. Genome-wide analyses of long non-coding RNA expression profiles and functional network analysis in esophageal squamous cell carcinoma. Sci Rep 2019; 9:9162. [PMID: 31235759 PMCID: PMC6591223 DOI: 10.1038/s41598-019-45493-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 06/07/2019] [Indexed: 12/15/2022] Open
Abstract
Esophageal cancer (EC) is a serious malignancy and that is the fifth leading cause of cancer-related death worldwide. Esophageal squamous cell carcinoma (ESCC) is the main subtype of EC in China. In recent years, long non-coding RNAs (lncRNAs) have demonstrated to be novel tumor-associated regulatory factors. However, the functions and mechanisms of lncRNAs in ESCC have not been fully understood. In this study, we attempted to construct Genome-wide expression profiles of lncRNAs and their potential functions in ESCC. By using microarray, we found a total of 2,366 lncRNAs (1,032 upregulated and 1,334 downregulated) and 3,052 mRNAs (1,477 upregulated and 1,575 downregulated) were differentially expressed between the paired five ESCC tumor tissues and adjacent normal esophageal tissues (fold change, FC ≥2.0 or ≤0.5, p ≤ 0.05). Eight lncRNAs were detected by qRT-PCR to verify the results of the microarray, and the clinicopathological parameters were analyzed in 53 patients with ESCC. GO analysis and KEGG pathway analysis showed that the main biological functions of these abnormal lncRNAs were related to immune response, extracellular vesicular exosome, and protein binding. At the same time, the cis and trans models were used to analyze the potential synergistic regulatory relationship between lncRNAs and their potential target genes. Related genes were the processes that affect cell growth, differentiation, and migration. Then we mapped the lncRNAs-mRNAs co-expression pattern by calculating the PCCs of each lncRNA and mRNA expression value. Furthermore, we investigated the function and potential mechanism of a novel highly expressed lncRNA, lnc-KIAA1244-2, and found that its expression is associated with tumor size, N classification and clinical stage. Knockdown of lnc-KIAA1244-2 inhibited the cell proliferation and inhibited the TNFAIP3 expression in Eca-109 cells. Taken together, the expression patterns of lncRNAs and mRNAs in ESCC tumor tissues are different from those in normal adjacent tissues, and some abnormal expressed lncRNAs may play important roles in the development and progression of ESCC. Lnc-KIAA1244-2 could promote the cell proliferation of ESCC cells and might be a potent therapeutic target for ESCC.
Collapse
Affiliation(s)
- Junliang Ma
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China.,Hunan University of Medicine, Huaihua, Hunan, 418000, P.R. China
| | - Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410001, P.R. China
| | - Bo Tian
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Shaolin Chen
- Hunan University of Medicine, Huaihua, Hunan, 418000, P.R. China
| | - Baihua Zhang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Jie Wu
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Zhining Wu
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Xu Li
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Jinming Tang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Desong Yang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Yong Zhou
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Min Su
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China. .,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China.
| | - Wenxiang Wang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China. .,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China.
| |
Collapse
|