1
|
Wang K, Zhang L, Deng B, Zhao K, Chen C, Wang W. Mitochondrial uncoupling protein 2: a central player in pancreatic disease pathophysiology. Mol Med 2024; 30:259. [PMID: 39707176 DOI: 10.1186/s10020-024-01027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
Pancreatic diseases pose considerable health challenges due to their complex etiology and limited therapeutic options. Mitochondrial uncoupling protein 2 (UCP2), highly expressed in pancreatic tissue, participates in numerous physiological processes and signaling pathways, indicating its potential relevance in these diseases. Despite this, UCP2's role in acute pancreatitis (AP) remains underexplored, and its functions in chronic pancreatitis (CP) and pancreatic steatosis are largely unknown. Additionally, the mechanisms connecting various pancreatic diseases are intricate and not yet fully elucidated. Given UCP2's diverse functionality, broad expression in pancreatic tissue, and the distinct pathophysiological features of pancreatic diseases, this review offers a comprehensive analysis of current findings on UCP2's involvement in these conditions. We discuss recent insights into UCP2's complex regulatory mechanisms, propose that UCP2 may serve as a central regulatory factor in pancreatic disease progression, and hypothesize that UCP2 dysfunction could significantly contribute to disease pathogenesis. Understanding UCP2's role and mechanisms in pancreatic diseases may pave the way for innovative therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kailiang Zhao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Zatalian N, Dalman A, Afsharian P, Hezavehei M, Gourabi H. Metformin protects prepubertal mice ovarian reserve against cyclophosphamide via regulation of the PI3K/Akt/mTOR signaling pathway and Yap-1. J Ovarian Res 2024; 17:251. [PMID: 39702299 DOI: 10.1186/s13048-024-01572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cyclophosphamide is a widely utilized chemotherapeutic agent for pediatric cancers, known to elicit adverse effects, including perturbation of the PI3K/Akt/mTOR and Hippo signaling pathways, thereby diminishing ovarian reserve and fertility potential in females. Consequently, this investigation delves into the mitigative effects of metformin on cyclophosphamide-induced ovarian impairment in prepubertal mice. METHODS Twenty-four 14-day-old NMRI female mice were distributed into four groups: Control (Cont), Cyclophosphamide (Cyc), Metformin (Met), and Metformin plus Cyclophosphamide (Met-Cyc). The Met-Cyc group was given daily doses of 150 mg/kg metformin for 11 consecutive days and in parallel 3 intermittent doses of 65 mg/kg cyclophosphamide once every three days. The Met and Cyc groups were given identical doses of Met or Cyc alone. The control group received normal saline treatment. On the 12th day, mice were sacrificed for analysis. Stereological methods were employed to measure the overall volume of the ovaries, including the medulla, cortex, and follicles, along with measuring anti-Müllerian hormone (AMH) levels using an ELISA kit. Furthermore, qRT-PCR was utilized to quantify the expression levels of genes, including P53, Bax, Bcl-2, Rad-51, Pten, Mtor, and Yap-1. RESULTS The findings demonstrate that metformin ameliorates cyclophosphamide-induced ovarian toxicity by increasing AMH levels and attenuating the excessive activation of primordial follicles, the ratio of growing to quiescent follicles, and follicular atresia. This protective effect is mediated by the downregulation of apoptosis-related genes, upregulation of the gene involved in a reparative pathway, and modulation of the PI3K/Akt/mTOR pathway evidenced by increased expression of Pten, Mtor and Hippo pathway by Yap-1 expression. CONCLUSIONS Our results advocate for the potential of metformin as a viable therapeutic option for preserving ovarian function in cyclophosphamide-treated adolescent girls, given its favorable side effect profile and ability to improve cyclophosphamide-induced ovarian damage.
Collapse
Affiliation(s)
- Negin Zatalian
- Department of Molecular Cell Biology-Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, No. 2, Hafez St., Banihashem St., Resalat Ave., Tehran, 16635-148, Iran
| | - Azam Dalman
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, No. 2, Hafez St., Banihashem St., Resalat Ave., Tehran, 16635-148, Iran.
| | - Parvaneh Afsharian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, No. 2, Hafez St., Banihashem St., Resalat Ave., Tehran, 16635-148, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, No. 2, Hafez St., Banihashem St., Resalat Ave., Tehran, 16635-148, Iran
- Research Center for Reproduction and Fertility, Faculty of Veterinary Medicine, Montreal University, St-Hyacinthe, QC, Canada
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, No. 2, Hafez St., Banihashem St., Resalat Ave., Tehran, 16635-148, Iran.
| |
Collapse
|
3
|
Wlodarczyk B, Durko L, Walczak K, Talar-Wojnarowska R, Malecka-Wojciesko E. Select Endocrine Disorders and Exosomes in Early PDAC Diagnosis. Int J Mol Sci 2024; 25:12159. [PMID: 39596226 PMCID: PMC11594802 DOI: 10.3390/ijms252212159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Disturbances in carbohydrate metabolism are suggested to be the early symptoms of pancreatic ductal adenocarcinoma (PDAC). The accumulated data suggests that endocrine function-related biomarkers may represent a breakthrough in the early detection of PDAC. Factors which may predispose one to the development of PDAC are insulin resistance and hyperinsulinemia. Elevated insulin levels induce the onset of carcinogenesis by altering the differentiation and function of islet cells through stimulating growth factors, including insulin-like growth factors (IGFs). Impaired β cell function, along with the impact of PDAC-released factors (e.g., adrenomedullin (ADM), IGF-1, and macrophage inhibitory factor (MIF) on pancreatic islets, may contribute to the induction of diabetes associated with PDAC. Recently, exosomes have attracted worldwide attention due to their role in varied features of cell function, particularly in cancer progression. Exosomes comprise of small extracellular vesicles produced by almost all cells. These vesicles contain a vast array of biomolecules, including proteins and microRNAs. Exosomes participate in cancer growth and promote angiogenesis. They promote tumorigenesis and metastasis, and are associated with the acquisition of cancer cells resistant to chemotherapy. Data have been accumulating recently on the role of exosomes in the rapid recognition, prognosis and potential therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Barbara Wlodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| | - Lukasz Durko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| | - Konrad Walczak
- Department of Internal Diseases and Nephrodiabetology, Medical University of Lodz, 90-549 Lodz, Poland
| | | | - Ewa Malecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
4
|
Vatté J, Bourdeau V, Ferbeyre G, Schmitzer AR. Effects of Biguanide-PROTACs in Pancreatic Cancer Cells. Molecules 2024; 29:5329. [PMID: 39598718 PMCID: PMC11596947 DOI: 10.3390/molecules29225329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
This study focuses on the synthesis of Biguanide-PROTACs, formed by conjugating the biguanide motif with a spacer and a ligand for recognition subunits of two E3 ubiquitin ligases. Evaluation of their activity on pancreatic cancer cell (KP4) proliferation established a correlation between membrane permeability and median effective concentration. Mechanistic insights revealed that only two compounds exhibited biguanide-like AMPK activation, while only one hydrophobic compound uniquely altered mitochondrial protein levels. The prospect of developing and expanding the Biguanide-PROTAC library holds several promises, offering potential insights into biguanide mechanisms and the creation of more potent anticancer agents. This study contributes to understanding the intricate interplay between compound structure, permeability, and anticancer activity, paving the way for targeted drug development in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Julie Vatté
- Département de Chimie, Faculté des Arts et des Sciences, Université de Montréal, 1375 a. Thérèse Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Véronique Bourdeau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H2V 0B3, Canada (G.F.)
| | - Gerardo Ferbeyre
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H2V 0B3, Canada (G.F.)
- Montréal Cancer Institute, CR-CHUM, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Andreea R. Schmitzer
- Département de Chimie, Faculté des Arts et des Sciences, Université de Montréal, 1375 a. Thérèse Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| |
Collapse
|
5
|
Cristovão A, Andrade N, Martel F, Silva C. Effect of Sodium-Glucose Co-Transporter 2 Inhibitors Combined with Metformin on Pancreatic Cancer Cell Lines. Int J Mol Sci 2024; 25:9932. [PMID: 39337420 PMCID: PMC11432055 DOI: 10.3390/ijms25189932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Pancreatic cancer (PC) is the ninth-leading cause of cancer-related deaths worldwide. Diabetic patients have an increased risk and mortality rates for PC. Sodium-glucose co-transporter 2 (SGLT2) inhibitors and metformin (Met) are widely used anti-diabetic medications. Both Met and SGLT2 inhibitors have anticancer properties in PC, but nothing is known concerning their combined effect. So, we investigated the in vitro effect of SGLT2 inhibitors combined with Met. Canagliflozin and dapagliflozin possessed cytotoxic, antiproliferative, and pro-apoptotic properties in the tested PC cell lines. In PANC-1 cells, the antimigratory and pro-apoptotic effects were enhanced when dapagliflozin was combined with Met, and G1 cell cycle arrest was enhanced when dapagliflozin or canagliflozin was combined with Met. In AsPC-1 cells, the cytotoxic effect and the G1 cell cycle arrest were enhanced when canagliflozin and dapagliflozin, respectively, were combined with Met. Only the cytotoxic effects of SGLT2 inhibitors, but not the combination treatments, involved PI3K and JNK-dependent pathways in AsPC-1 cells. In conclusion, combination treatments increased the anticancer effects in a cell type-dependent way in the two investigated cell lines. Additionally, the cytotoxic effect of SGLT2 inhibitors was dependent on the PI3K and JNK pathways in AsPC-1 cells, but Met appears to act via a distinct mechanism.
Collapse
Affiliation(s)
- André Cristovão
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (A.C.); (N.A.); (C.S.)
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (A.C.); (N.A.); (C.S.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4200-135 Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (A.C.); (N.A.); (C.S.)
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, 4200-135 Porto, Portugal
| | - Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (A.C.); (N.A.); (C.S.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
6
|
Hernández-Tenorio R, Villanueva-Rodríguez M, Guzmán-Mar JL, Hinojosa-Reyes L, Hernández-Ramírez A, Vigil-Castillo HH. Priority list of pharmaceutical active compounds in aquatic environments of Mexico considering their occurrence, environmental and human health risks. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104502. [PMID: 39002617 DOI: 10.1016/j.etap.2024.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Pharmaceutical active compounds (PhACs) are detected pollutants in aquatic environments worldwide at concentrations ranging from ng L-1 to µg L-1. Currently, PhAC monitoring is poorly realized in Mexico. This study proposes a priority list of PhACs in Mexican aquatic environments, considering their occurrence and environmental and human health risks. Ecological risks were assessed as Risk Quotients (RQ) values using the PhAC concentrations detected in surface water, obtaining high risks (RQ > 1) against aquatic organisms, especially of naproxen, ibuprofen, diclofenac, acetaminophen, 17β-estradiol, carbamazepine, ketoprofen, caffeine. In contrast, potential human health risks (RQH) were assessed on the Mexican population using the concentrations quantified in groundwater, demonstrating potential risks (RQH > 0.2) on the population, particularly of DCF and CBZ. Thus, a priority list of PhACs can be used as a reference for environmental monitoring in Mexican water supplies as well as PhACs monitoring in countries of the Caribbean region and Central America.
Collapse
Affiliation(s)
- Rafael Hernández-Tenorio
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Sede Noreste, Vía de la Innovación 404, Autopista Monterrey-Aeropuerto Km 10, Parque PIIT, Apodaca, Nuevo León C.P. 66628, Mexico.
| | - Minerva Villanueva-Rodríguez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Av. Universidad s/n, San Nicolás de los Garza, Nuevo León 66455, Mexico
| | - Jorge Luis Guzmán-Mar
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Av. Universidad s/n, San Nicolás de los Garza, Nuevo León 66455, Mexico
| | - Laura Hinojosa-Reyes
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Av. Universidad s/n, San Nicolás de los Garza, Nuevo León 66455, Mexico
| | - Aracely Hernández-Ramírez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Av. Universidad s/n, San Nicolás de los Garza, Nuevo León 66455, Mexico
| | - Héctor H Vigil-Castillo
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Av. Universidad s/n, San Nicolás de los Garza, Nuevo León 66455, Mexico
| |
Collapse
|
7
|
Wang D, Wang J, Cui Y. Tandem mass tag-based quantitative proteomic analysis of metformin's inhibitory effects on ovarian cancer cells. J Cancer Res Ther 2024; 20:1293-1299. [PMID: 39206991 DOI: 10.4103/jcrt.jcrt_2449_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/03/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Metformin (MET), a type 2 diabetes treatment, has attracted increased attention for its potential antitumor properties; however, the precise mechanism underlying this activity remains unclear. Our previous in vivo and in vitro studies revealed MET's inhibitory effect on ovarian cancer, with the synergistic effects of MET and the MDM2 inhibitor RG7388 contributing to ovarian cancer treatment. This study further explores the mechanism underlying MET's inhibition of ovarian cancer. MATERIALS AND METHODS Following MET treatment, we analyzed the differentially expressed proteins in ovarian cancer cells using a tandem mass tag (TMT)-based proteomic approach coupled with bioinformatics. RESULTS Using A2780 and SKOV3 ovarian cancer cells, we identified six upregulated and two downregulated proteins after MET treatment. Bioinformatics analysis revealed that these proteins predominately affect ovarian cancer cells by regulating iron ion transport, iron ion homeostasis, and mitochondrial and ribosomal functions. Validation via western blot confirmed MET-induced elevation of hydroxybutyrate dehydrogenase type 2 (BDH2) protein expression levels in A2780 and SKOV3 cells. CONCLUSIONS Overall, our findings suggest that combining MET with other metabolic drugs, such as iron-chelating agents and mitochondrial inhibitors, may result in synergistic antitumor effects, thereby offering novel avenues for ovarian cancer treatment development.
Collapse
Affiliation(s)
- Dongyue Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingchen Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Yingying Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
8
|
Zamanian MY, Golmohammadi M, Yumashev A, Hjazi A, Toama MA, AbdRabou MA, Gehlot A, Alwaily ER, Shirsalimi N, Yadav PK, Moriasi G. Effects of metformin on cancers in experimental and clinical studies: Focusing on autophagy and AMPK/mTOR signaling pathways. Cell Biochem Funct 2024; 42:e4071. [PMID: 38863255 DOI: 10.1002/cbf.4071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
Metformin (MET) is a preferred drug for the treatment of type 2 diabetes mellitus. Recent studies show that apart from its blood glucose-lowering effects, it also inhibits the development of various tumours, by inducing autophagy. Various studies have confirmed the inhibitory effects of MET on cancer cell lines' propagation, migration, and invasion. The objective of the study was to comprehensively review the potential of MET as an anticancer agent, particularly focusing on its ability to induce autophagy and inhibit the development and progression of various tumors. The study aimed to explore the inhibitory effects of MET on cancer cell proliferation, migration, and invasion, and its impact on key signaling pathways such as adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and PI3K. This review noted that MET exerts its anticancer effects by regulating key signalling pathways such as phosphoinositide 3-kinase (PI3K), LC3-I and LC3-II, Beclin-1, p53, and the autophagy-related gene (ATG), inhibiting the mTOR protein, downregulating the expression of p62/SQSTM1, and blockage of the cell cycle at the G0/G1. Moreover, MET can stimulate autophagy through pathways associated with the 5' AMPK, thereby inhibiting he development and progression of various human cancers, including hepatocellular carcinoma, prostate cancer, pancreatic cancer, osteosarcoma, myeloma, and non-small cell lung cancer. In summary, this detailed review provides a framework for further investigations that may appraise the autophagy-induced anticancer potential of MET and its repurposing for cancer treatment.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mariam Alaa Toama
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Anita Gehlot
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Niyousha Shirsalimi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pankaj Kumar Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Gervason Moriasi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
9
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H, Alouch S, Aljada A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci 2024; 25:4083. [PMID: 38612893 PMCID: PMC11012626 DOI: 10.3390/ijms25074083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Mohammed Al-Rimawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | | | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Samhar Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| |
Collapse
|
10
|
Mencucci MV, Abba MC, Maiztegui B. Decoding the role of microRNA dysregulation in the interplay of pancreatic cancer and type 2 diabetes. Mol Cell Endocrinol 2024; 583:112144. [PMID: 38161049 DOI: 10.1016/j.mce.2023.112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
This study examines the complex relationship between pancreatic cancer (PC) and type 2 diabetes (T2D) by focusing on the role of microRNAs (miRNAs). miRNAs are small non-coding RNAs that regulate gene expression and have been implicated in many diseases, including T2D and cancer. To begin, we conducted a literature review to identify miRNAs associated with the PC-T2D link. However, we found limited research on this specific association, with most studies focusing on the antitumor effects of metformin. Furthermore, we performed a bioinformatics analysis to identify new potential miRNAs that might be relevant in the context of PC-T2D. First, we identified miRNAs and gene expression alterations common to both diseases using publicly available datasets. Subsequently, we performed an integrative analysis between the identified miRNAs and genes alterations. As a result, we identified nine miRNAs that could potentially play an important role in the interplay between PC and T2D. These miRNAs have the potential to influence nearby cells and distant tissues, affecting critical processes like extracellular matrix remodeling and cell adhesion, ultimately contributing to the development of T2D or PC. Taken together, these analyses underscore the importance of further exploring the role of miRNAs in the complex interplay of PC and T2D.
Collapse
Affiliation(s)
- María Victoria Mencucci
- CENEXA, Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET-CeAs CICPBA), Facultad de Ciencias Médicas UNLP, 60 y 120 (s/n), 1900 La Plata, Argentina.
| | - Martín Carlos Abba
- CINIBA, Centro de Investigaciones Inmunológicas Básicas y Aplicadas (UNLP-CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina.
| | - Bárbara Maiztegui
- CENEXA, Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET-CeAs CICPBA), Facultad de Ciencias Médicas UNLP, 60 y 120 (s/n), 1900 La Plata, Argentina.
| |
Collapse
|
11
|
Yang Y, Chen B, Zheng C, Zeng H, Zhou J, Chen Y, Su Q, Wang J, Wang J, Wang Y, Wang H, Jin R, Bo Z, Chen G, Wang Y. Association of glucose-lowering drug target and risk of gastrointestinal cancer: a mendelian randomization study. Cell Biosci 2024; 14:36. [PMID: 38504335 PMCID: PMC10953268 DOI: 10.1186/s13578-024-01214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND & AIMS Glucose-lowering drug is associated with various cancers, but the causality with gastrointestinal cancer risk is rarely reported. We aimed to explore the causality between them in this Mendelian randomization (MR) study. METHODS Two-sample MR, summary-data-based (SMR), mediation MR, and colocalization analyses was employed. Ten glucose-lowering drug targets (PPARG, DPP4, GLP1R, INSR, SLC5A2, ABCC8, KCNJ11, ETFDH, GPD2, PRKAB1) and seven types of gastrointestinal cancer (anal carcinoma, cardia cancer, gastric cancer, hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), pancreatic cancer, rectum cancer) were included. Patients with gastrointestinal cancers from six different large GWAS databases, including the UK Biobank and Finnish cohorts were incorporated, for discovery and external validation. Meta-analysis was employed to integrate the results from both discovery and validation cohorts, thereby ensuring the reliability of findings. RESULTS ABCC8/KCNJ11 were associated with pancreatic cancer risk in both two-sample MR (odds ratio (OR): 15.058, per standard deviation unit (SD) change of glucose-lowering durg target perturbation equivalent to 1 SD unit of HbA1c lowering; 95% confidence interval (95% CI): 3.824-59.295; P-value = 0.0001) and SMR (OR: 1.142; 95% CI: 1.013-1.287; P-value = 0.030) analyses. The mediation effect of body mass index (OR: 0.938; 95% CI: 0.884-0.995; proportion of mediation effect: 3.001%; P-value = 0.033) on ABCC8/KCNJ11 and pancreatic cancer was uncovered. Strong connections of DPP4 with anal carcinoma (OR: 0.123; 95% CI: 0.020-0.745; P-value = 0.023) and ICC (OR: 7.733; 95% CI: 1.743-34.310; P-value = 0.007) were detected. PPARG was associated with anal carcinoma (OR: 12.909; 95% CI: 3.217-51.795; P-value = 0.0003), HCC (OR: 36.507; 95% CI: 8.929-149.259; P-value < 0.0001), and pancreatic cancer (OR: 0.110; 95% CI: 0.071-0.172; P-value < 0.0001). SLC5A2 was connected with pancreatic cancer (OR: 8.096; 95% CI: 3.476-18.857; P-value < 0.0001). Weak evidence indicated the connections of GLP1R, GPD2, and PRKAB1 with anal carcinoma, cardia cancer, ICC, and rectum cancer. In addition, the corresponding results were consistently validated in both the validation cohorts and the integrated outcomes. CONCLUSIONS Some glucose-lowering drugs were associated with gastrointestinal cancer risk, which might provide new ideas for gastrointestinal cancer treatment.
Collapse
Affiliation(s)
- Yi Yang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chongming Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Zeng
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junxi Zhou
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yaqing Chen
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qing Su
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jingxian Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Juejin Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | | | | | - Ruxue Jin
- Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Zhejiang, China.
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
12
|
Huang Y, Ji W, Zhang J, Huang Z, Ding A, Bai H, Peng B, Huang K, Du W, Zhao T, Li L. The involvement of the mitochondrial membrane in drug delivery. Acta Biomater 2024; 176:28-50. [PMID: 38280553 DOI: 10.1016/j.actbio.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Treatment effectiveness and biosafety are critical for disease therapy. Bio-membrane modification facilitates the homologous targeting of drugs in vivo by exploiting unique antibodies or antigens, thereby enhancing therapeutic efficacy while ensuring biosafety. To further enhance the precision of disease treatment, future research should shift focus from targeted cellular delivery to targeted subcellular delivery. As the cellular powerhouses, mitochondria play an indispensable role in cell growth and regulation and are closely involved in many diseases (e.g., cancer, cardiovascular, and neurodegenerative diseases). The double-layer membrane wrapped on the surface of mitochondria not only maintains the stability of their internal environment but also plays a crucial role in fundamental biological processes, such as energy generation, metabolite transport, and information communication. A growing body of evidence suggests that various diseases are tightly related to mitochondrial imbalance. Moreover, mitochondria-targeted strategies hold great potential to decrease therapeutic threshold dosage, minimize side effects, and promote the development of precision medicine. Herein, we introduce the structure and function of mitochondrial membranes, summarize and discuss the important role of mitochondrial membrane-targeting materials in disease diagnosis/treatment, and expound the advantages of mitochondrial membrane-assisted drug delivery for disease diagnosis, treatment, and biosafety. This review helps readers understand mitochondria-targeted therapies and promotes the application of mitochondrial membranes in drug delivery. STATEMENT OF SIGNIFICANCE: Bio-membrane modification facilitates the homologous targeting of drugs in vivo by exploiting unique antibodies or antigens, thereby enhancing therapeutic efficacy while ensuring biosafety. Compared to cell-targeted treatment, targeting of mitochondria for drug delivery offers higher efficiency and improved biosafety and will promote the development of precision medicine. As a natural material, the mitochondrial membrane exhibits excellent biocompatibility and can serve as a carrier for mitochondria-targeted delivery. This review provides an overview of the structure and function of mitochondrial membranes and explores the potential benefits of utilizing mitochondrial membrane-assisted drug delivery for disease treatment and biosafety. The aim of this review is to enhance readers' comprehension of mitochondrial targeted therapy and to advance the utilization of mitochondrial membrane in drug delivery.
Collapse
Affiliation(s)
- Yinghui Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Wenhui Ji
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China; Future Display Institute in Xiamen, Xiamen 361005, China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen 361005, China
| | - Wei Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Tingting Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China; Future Display Institute in Xiamen, Xiamen 361005, China.
| |
Collapse
|
13
|
Srilatha M, Malla R, Adem MP, Foote JB, Nagaraju GP. Obesity associated pancreatic ductal adenocarcinoma: Therapeutic challenges. Semin Cancer Biol 2023; 97:12-20. [PMID: 37926347 DOI: 10.1016/j.semcancer.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Obesity is a prominent health issue worldwide and directly impacts pancreatic health, with obese individuals exhibiting a significant risk for increasing pancreatic ductal adenocarcinoma (PDAC). Several factors potentially explain the increased risk for the development of PDAC, including obesity-induced chronic inflammation within and outside of the pancreas, development of insulin resistance and metabolic dysfunction, promotion of immune suppression within the pancreas during inflammation, pre- and malignant stages, variations in hormones levels (adiponectin, ghrelin, and leptin) produced from the adipose tissue, and acquisition of somatic mutations in tumor once- and suppressor proteins critical for pancreatic tumorigenesis. In this manuscript, we will explore the broad impact of these obesity-induced risk factors on the development and progression of PDAC, focusing on changes within the tumor microenvironment (TME) as they pertain to prevention, current therapeutic strategies, and future directions for targeting obesity management as they relate to the prevention of pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India
| | - Ramarao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| | - Megha Priya Adem
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, Andhra Pradesh 517502, India
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | |
Collapse
|
14
|
Hamdy Gad E. Introductory Chapter: Pancreatic Cancer – How to Prevent, Screen, and Detect? PANCREATIC CANCER- UPDATES IN PATHOGENESIS, DIAGNOSIS AND THERAPIES 2023. [DOI: 10.5772/intechopen.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
|
15
|
Halma MTJ, Tuszynski JA, Marik PE. Cancer Metabolism as a Therapeutic Target and Review of Interventions. Nutrients 2023; 15:4245. [PMID: 37836529 PMCID: PMC10574675 DOI: 10.3390/nu15194245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is amenable to low-cost treatments, given that it has a significant metabolic component, which can be affected through diet and lifestyle change at minimal cost. The Warburg hypothesis states that cancer cells have an altered cell metabolism towards anaerobic glycolysis. Given this metabolic reprogramming in cancer cells, it is possible to target cancers metabolically by depriving them of glucose. In addition to dietary and lifestyle modifications which work on tumors metabolically, there are a panoply of nutritional supplements and repurposed drugs associated with cancer prevention and better treatment outcomes. These interventions and their evidentiary basis are covered in the latter half of this review to guide future cancer treatment.
Collapse
Affiliation(s)
- Matthew T. J. Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- EbMC Squared CIC, Bath BA2 4BL, UK
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-1029 Turin, Italy
| | - Paul E. Marik
- Frontline COVID-19 Critical Care Alliance, Washington, DC 20036, USA
| |
Collapse
|
16
|
Teper Y, Ye L, Waldron RT, Lugea A, Sun X, Sinnett-Smith J, Hines OJ, Pandol SJ, Rozengurt E, Eibl G. Low dosage combination treatment with metformin and simvastatin inhibits obesity-promoted pancreatic cancer development in male KrasG12D mice. Sci Rep 2023; 13:16144. [PMID: 37752238 PMCID: PMC10522691 DOI: 10.1038/s41598-023-43498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a highly lethal disease with limited therapeutic options, may benefit from repurposing of FDA-approved drugs in preventive or interceptive strategies in high-risk populations. Previous animal studies demonstrated that the use of metformin and statins as single agents at relatively high doses restrained PDAC development. Here, four-week-old mice expressing KrasG12D in all pancreatic lineages (KC mice) and fed an obesogenic high fat, high calorie diet that promotes early PDAC development were randomized onto low dosage metformin, simvastatin, or both drugs in combination administered orally. Dual treatment attenuated weight gain, fibro-inflammation, and development of advanced PDAC precursor lesions (pancreatic intraepithelial neoplasia [PanIN]-3) in male KC mice, without significant effect in females or when administered individually. Dual-treated KC mice had reduced proliferation of PanIN cells and decreased transcriptional activity of the Hippo effectors, YAP and TAZ, which are important regulators of PDAC development. Metformin and simvastatin also synergistically inhibited colony formation of pancreatic cancer cells in vitro. Together, our data demonstrated that a combination of low doses of metformin and simvastatin inhibits PDAC development and imply that both drugs are promising agents for being tested in clinical trials for preventing pancreatic cancer progression.
Collapse
Affiliation(s)
- Yaroslav Teper
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Linda Ye
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Richard T Waldron
- Pancreatic Research Group, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Aurelia Lugea
- Pancreatic Research Group, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Xiaoying Sun
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - James Sinnett-Smith
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Oscar J Hines
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Stephen J Pandol
- Pancreatic Research Group, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Huang W, Qian Z, Shi Y, Zhang Z, Hou R, Mei J, Xu J, Ding J. PSMC2 is a Novel Prognostic Biomarker and Predicts Immunotherapeutic Responses: From Pancreatic Cancer to Pan-Cancer. Pharmgenomics Pers Med 2023; 16:747-758. [PMID: 37581119 PMCID: PMC10423611 DOI: 10.2147/pgpm.s418533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
Background Proteasome 26S subunit ATPase 2 (PSMC2) is a part of the 19S regulatory complex, which catalyzes the unfolding and transport of substrates into the 20S proteasome. Our previous research demonstrated that PSMC2 participates in the tumorigenesis and progression of pancreatic cancer (PC). However, no systematic analysis has been conducted to conclude its expression pattern and correlation with tumor immunity. Aim To investigate the expression level of PSMC2 in PC, its prognostic value and its relationship with tumor immunity. Methods In numerous public and internal cohorts, the expression, prognostic significance, and immunological connections of PSMC2 in PC were investigated. Additionally, using data from The Cancer Genome Atlas (TCGA), a pan-cancer analysis was carried out to examine PSMC2's immunological assocaition, and the predictive power of PSMC2 for immunotherapy was also evaluated in numerous public cohorts. Results PSMC2 was overexpressed in tumor tissues and linked to unfavorable prognosis in PC. PSMC2 was not only positively correlated with TIICs, also positively correlated with immune checkpoints in PC. In addition to PC, PSMC2 was expected to be an indicator of high immunogenicity in most cancer types. Importantly, PSMC2 could predict the immunotherapeutic responses in various cancer types, including urothelial carcinoma and breast cancer. Conclusion From PC to pan-cancer analysis, we report that PSMC2 is a novel prognostic biomarker in multiple cancer types. PSMC2 is related to the immuno-hot phenotype and predicts the outcome of immunotherapy. Therefore, the current study emphasizes that cancer patients with high PMSC2 expression should actively receive immunotherapy to improve their prognosis.
Collapse
Affiliation(s)
- Wei Huang
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, 215500, People's Republic of China
| | - Yuxin Shi
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
- Wuxi School of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Zheming Zhang
- Wuxi School of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Rui Hou
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
- Wuxi School of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Jie Mei
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
- Wuxi School of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Junying Xu
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Junli Ding
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
| |
Collapse
|
18
|
Zhao Z, He X, Sun Y. Hypoglycemic agents and incidence of pancreatic cancer in diabetic patients: a meta-analysis. Front Pharmacol 2023; 14:1193610. [PMID: 37497113 PMCID: PMC10366383 DOI: 10.3389/fphar.2023.1193610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
Background and aims: Hypoglycemic agents are the primary therapeutic approach for the treatment of diabetes and have been postulated to impact pancreatic cancer (PC) incidence in diabetic patients. We conducted a meta-analysis to further evaluate and establish the associations between four common types of hypoglycemic agents [metformin, sulfonylureas, thiazolidinediones (TZDs), and insulin] and PC incidence in individuals with diabetes mellitus (DM). Methods: A comprehensive literature search of PubMed, Web of Science, Embase, and the Cochrane Library identified studies that analyzed the relationship between hypoglycemic agents and PC published between January 2012 and September 2022. Randomized control trials (RCTs), cohorts, and case-control studies were included if there was clear and evaluated defined exposure to the involved hypoglycemic agents and reported PC outcomes in patients with DM. Furthermore, reported relative risks or odds ratios (ORs) or other provided data were required for the calculation of odds ratios. Summary odds ratio estimates with a 95% confidence interval (CI) were estimated using the random-effects model. Additionally, subgroup analysis was performed to figure out the source of heterogeneity. Sensitivity analysis and publication bias detection were also performed. Results: A total of 11 studies were identified that evaluated one or more of the hypoglycemic agents, including three case-control studies and eight cohort studies. Among these, nine focused on metformin, six on sulfonylureas, seven on TZDs, and seven on insulin. Meta-analysis of the 11 observational studies reported no significant association between metformin (OR = 1.04, 95% CI 0.73-1.46) or TZDs (OR = 1.13, 95% CI 0.73-1.75) and PC incidence, while the risk of PC increased by 79% and 185% with sulfonylureas (OR = 1.79, 95% CI 1.29-2.49) and insulin (OR = 2.85, 95% CI 1.75-4.64), respectively. Considerable heterogeneity was observed among the studies and could not be fully accounted for by study design, region, or adjustment for other hypoglycemic agents. Conclusion: Sulfonylureas and insulin may increase the incidence of pancreatic cancer in diabetic patients, with varying effects observed among different ethnicities (Asian and Western). Due to significant heterogeneity across studies, further interpretation of the relationship between hypoglycemic agents and pancreatic cancer incidence in diabetic patients requires well-adjusted data and better-organized clinical trials.
Collapse
Affiliation(s)
- Zimo Zhao
- First Clinical Medical College, China Medical University, Shenyang, China
| | - Xinyi He
- Clinical Department I, China Medical University, Shenyang, China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Hua Y, Zheng Y, Yao Y, Jia R, Ge S, Zhuang A. Metformin and cancer hallmarks: shedding new lights on therapeutic repurposing. J Transl Med 2023; 21:403. [PMID: 37344841 DOI: 10.1186/s12967-023-04263-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Metformin is a well-known anti-diabetic drug that has been repurposed for several emerging applications, including as an anti-cancer agent. It boasts the distinct advantages of an excellent safety and tolerability profile and high cost-effectiveness at less than one US dollar per daily dose. Epidemiological evidence reveals that metformin reduces the risk of cancer and decreases cancer-related mortality in patients with diabetes; however, the exact mechanisms are not well understood. Energy metabolism may be central to the mechanism of action. Based on altering whole-body energy metabolism or cellular state, metformin's modes of action can be divided into two broad, non-mutually exclusive categories: "direct effects", which induce a direct effect on cancer cells, independent of blood glucose and insulin levels, and "indirect effects" that arise from systemic metabolic changes depending on blood glucose and insulin levels. In this review, we summarize an updated account of the current knowledge on metformin antitumor action, elaborate on the underlying mechanisms in terms of the hallmarks of cancer, and propose potential applications for repurposing metformin for cancer therapeutics.
Collapse
Affiliation(s)
- Yu Hua
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
20
|
Zhou Y, Zou J, Xu J, Zhou Y, Cen X, Zhao Y. Recent advances of mitochondrial complex I inhibitors for cancer therapy: Current status and future perspectives. Eur J Med Chem 2023; 251:115219. [PMID: 36893622 DOI: 10.1016/j.ejmech.2023.115219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Mitochondrial complex I (CI) as a critical multifunctional respiratory complex of electron transport chain (ETC) in mitochondrial oxidative phosphorylation has been identified as vital and essence in ATP production, biosynthesis and redox balance. Recent progress in targeting CI has provided both insight and inspiration for oncotherapy, highlighting that the development of CI-targeting inhibitors is a promising therapeutic approach to fight cancer. Natural products possessing of ample scaffold diversity and structural complexity are the majority source of CI inhibitors, although low specificity and safety hinder their extensive application. Along with the gradual deepening in understanding of CI structure and function, significant progress has been achieved in exploiting novel and selective small molecules targeting CI. Among them, IACS-010759 had been approved by FDA for phase I trial in advanced cancers. Moreover, drug repurposing represents an effective and prospective strategy for CI inhibitor discovery. In this review, we mainly elaborate the biological function of CI in tumor progression, summarize the CI inhibitors reported in recent years and discuss the further perspectives for CI inhibitor application, expecting this work may provide insights into innovative discovery of CI-targeting drugs for cancer treatment.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| | - Jiao Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China; National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Beutel AK, Halbrook CJ. Barriers and opportunities for gemcitabine in pancreatic cancer therapy. Am J Physiol Cell Physiol 2023; 324:C540-C552. [PMID: 36571444 PMCID: PMC9925166 DOI: 10.1152/ajpcell.00331.2022] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has become one of the leading causes of cancer-related deaths across the world. A lack of durable responses to standard-of-care chemotherapies renders its treatment particularly challenging and largely contributes to the devastating outcome. Gemcitabine, a pyrimidine antimetabolite, is a cornerstone in PDA treatment. Given the importance of gemcitabine in PDA therapy, extensive efforts are focusing on exploring mechanisms by which cancer cells evade gemcitabine cytotoxicity, but strategies to overcome them have not been translated into patient care. Here, we will introduce the standard treatment paradigm for patients with PDA, highlight mechanisms of gemcitabine action, elucidate gemcitabine resistance mechanisms, and discuss promising strategies to circumvent them.
Collapse
Affiliation(s)
- Alica K Beutel
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
- Department of Internal Medicine, University Hospital Ulm, Ulm, Germany
| | - Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, Orange, California
| |
Collapse
|
22
|
Du Y, Zhu YJ, Zhou YX, Ding J, Liu JY. Metformin in therapeutic applications in human diseases: its mechanism of action and clinical study. MOLECULAR BIOMEDICINE 2022; 3:41. [PMID: 36484892 PMCID: PMC9733765 DOI: 10.1186/s43556-022-00108-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a biguanide drug, is the most commonly used first-line medication for type 2 diabetes mellites due to its outstanding glucose-lowering ability. After oral administration of 1 g, metformin peaked plasma concentration of approximately 20-30 μM in 3 h, and then it mainly accumulated in the gastrointestinal tract, liver and kidney. Substantial studies have indicated that metformin exerts its beneficial or deleterious effect by multiple mechanisms, apart from AMPK-dependent mechanism, also including several AMPK-independent mechanisms, such as restoring of redox balance, affecting mitochondrial function, modulating gut microbiome and regulating several other signals, such as FBP1, PP2A, FGF21, SIRT1 and mTOR. On the basis of these multiple mechanisms, researchers tried to repurpose this old drug and further explored the possible indications and adverse effects of metformin. Through investigating with clinical studies, researchers concluded that in addition to decreasing cardiovascular events and anti-obesity, metformin is also beneficial for neurodegenerative disease, polycystic ovary syndrome, aging, cancer and COVID-19, however, it also induces some adverse effects, such as gastrointestinal complaints, lactic acidosis, vitamin B12 deficiency, neurodegenerative disease and offspring impairment. Of note, the dose of metformin used in most studies is much higher than its clinically relevant dose, which may cast doubt on the actual effects of metformin on these disease in the clinic. This review summarizes these research developments on the mechanism of action and clinical evidence of metformin and discusses its therapeutic potential and clinical safety.
Collapse
Affiliation(s)
- Yang Du
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ya-Juan Zhu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yi-Xin Zhou
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Ding
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Ji-Yan Liu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Sukumar A, Patil M, Renu K, Dey A, Vellingiri B, George A, Ganesan R. Implications of cancer stem cells in diabetes and pancreatic cancer. Life Sci 2022; 312:121211. [PMID: 36414089 DOI: 10.1016/j.lfs.2022.121211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
This review provides a detailed study of pancreatic cancer (PC) and the implication of different types of cancers concerning diabetes. The combination of anti-diabetic drugs with other anti-cancer drugs and phytochemicals can help prevent and treat this disease. PC cancer stem cells (CSCs) and how they migrate and develop into malignant tumors are discussed. A detailed explanation of the different mechanisms of diabetes development, which can enhance the pancreatic CSCs' proliferation by increasing the IGF factor levels, epigenetic modifications, DNA damage, and the influence of lifestyle factors like obesity, and inflammation, has been discussed. It also explains how cancer due to diabetes is associated with high mortality rates. One of the well-known diabetic drugs, metformin, can be combined with other anti-cancer drugs and prevent the development of PC and has been taken as one of the prime focus in this review. Overall, this paper provides insight into the relationship between diabetes and PC and the methods that can be employed to diagnose this disease at an earlier stage successfully.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Aarthi Sukumar
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Megha Patil
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda - 151401, Punjab, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, 680005, Kerala, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| |
Collapse
|
24
|
The NAMPT Inhibitor FK866 Increases Metformin Sensitivity in Pancreatic Cancer Cells. Cancers (Basel) 2022; 14:cancers14225597. [PMID: 36428689 PMCID: PMC9688551 DOI: 10.3390/cancers14225597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer (pancreatic ductal adenocarcinoma: PDAC) is one of the most aggressive neoplastic diseases. Metformin use has been associated with reduced pancreatic cancer incidence and better survival in diabetics. Metformin has been shown to inhibit PDAC cells growth and survival, both in vitro and in vivo. However, clinical trials using metformin have failed to reduce pancreatic cancer progression in patients, raising important questions about molecular mechanisms that protect tumor cells from the antineoplastic activities of metformin. We confirmed that metformin acts through inhibition of mitochondrial complex I, decreasing the NAD+/NADH ratio, and that NAD+/NADH homeostasis determines metformin sensitivity in several cancer cell lines. Metabolites that can restore the NAD+/NADH ratio caused PDAC cells to be resistant to metformin. In addition, metformin treatment of PDAC cell lines induced a compensatory NAMPT expression, increasing the pool of cellular NAD+. The NAMPT inhibitor FK866 sensitized PDAC cells to the antiproliferative effects of metformin in vitro and decreased the cellular NAD+ pool. Intriguingly, FK866 combined with metformin increased survival in mice bearing KP4 cell line xenografts, but not in mice with PANC-1 cell line xenografts. Transcriptome analysis revealed that the drug combination reactivated genes in the p53 pathway and oxidative stress, providing new insights about the mechanisms leading to cancer cell death.
Collapse
|
25
|
Wu H, Huang D, Zhou H, Sima X, Wu Z, Sun Y, Wang L, Ruan Y, Wu Q, Wu F, She T, Chu Y, Huang Q, Ning Z, Zhang H. Metformin: A promising drug for human cancers. Oncol Lett 2022; 24:204. [PMID: 35720480 PMCID: PMC9178677 DOI: 10.3892/ol.2022.13325] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Small-molecule chemical drugs are of great significance for tumor-targeted and individualized therapies. However, the development of new small-molecule drugs, from basic experimental research and clinical trials to final application in clinical practice, is a long process that has a high cost. It takes at least 5 years for most drugs to be developed in the laboratory to prove their effectiveness and safety. Compared with the development of new drugs, repurposing traditional non-tumor drugs can be a shortcut. Metformin is a good model for a new use of an old drug. In recent years, the antitumor efficacy of metformin has attracted much attention. Epidemiological data and in vivo, and in vitro experiments have shown that metformin can reduce the incidence of cancer in patients with diabetes and has a strong antagonistic effect on metabolism-related tumors. Recent studies have shown that metformin can induce autophagy in esophageal cancer cells, mainly by inhibiting inflammatory signaling pathways. In recent years, studies have shown that the antitumor functions and mechanisms of metformin are multifaceted. The present study aims to review the application of metformin in tumor prevention and treatment.
Collapse
Affiliation(s)
- Hongnian Wu
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dan Huang
- Department of Burn and Plastic Surgery, Enshi State Central Hospital, Enshi, Hubei 445099, P.R. China
| | - Hong Zhou
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xueqin Sima
- Department of Histology and Embryology, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhe Wu
- Department of Histology and Embryology, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yanling Sun
- Department of Histology and Embryology, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Long Wang
- Department of Microbiology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ying Ruan
- Department of Dermatology, Clinical Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Qian Wu
- Nursing School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Feng Wu
- Stomatology and Optometry School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Tonghui She
- Department of Pathology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ying Chu
- Department of Burn and Plastic Surgery, Enshi State Central Hospital, Enshi, Hubei 445099, P.R. China
| | - Qizhi Huang
- Department of Clinical Lab, Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhifeng Ning
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Department of Pathology, Jinan University Medical College, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
26
|
Badowska-Kozakiewicz A, Fudalej M, Kwaśniewska D, Durlik M, Nasierowska-Guttmejer A, Mormul A, Włoszek E, Czerw A, Banaś T, Deptała A. Diabetes Mellitus and Pancreatic Ductal Adenocarcinoma-Prevalence, Clinicopathological Variables, and Clinical Outcomes. Cancers (Basel) 2022; 14:cancers14122840. [PMID: 35740504 PMCID: PMC9221523 DOI: 10.3390/cancers14122840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 06/05/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The aim of this study is to describe the prevalence of diabetes mellitus (DM) among patients with the diagnosis of pancreatic ductal adenocarcinoma (PDAC), analyse the association between the occurrence of DM and clinicopathological factors, and detect variables influencing overall survival. Diabetes mellitus is prevalent among patients with pancreatic cancer. In our study, patients with diabetes mellitus receiving palliative chemotherapy had significantly higher median OS than those without. Among variables influencing survival, TNM stage, nodal involvement, tumour site, levels of CEA and CRP were confirmed. Abstract Background: pancreatic ductal adenocarcinoma (PDAC) is the seventh leading cause of cancer-related deaths with increasing incidence and link to the onset of diabetes mellitus (DM). The aim of this study is to describe the prevalence of DM among patients with the diagnosis of PDAC, analyse the association between the occurrence of DM and clinicopathological factors, and detect variables influencing overall survival. Methods: a retrospective analysis of medical records was performed. The patients were divided into non-DM (n = 101) and DM (n = 74) groups. Statistical analysis with the usage of appropriate tests was conducted. Results: Patients in the groups of DM and NODM had significantly longer median OS than the non-DM group. Nodal involvement, tumour location, level of CEA, CRP and CRP/lymphocytes ratio were significantly associated with OS among patients with any type of DM. Neutropenia was less frequently observed in the DM group. Conclusions: DM is prevalent among patients with pancreatic cancer. In our study, patients with DM receiving palliative chemotherapy had significantly higher median OS than those without DM. The increased comprehension of the mechanisms of the relationship between DM and pancreatic cancer needs further research, which might provide avenues for the development of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Anna Badowska-Kozakiewicz
- Department of Cancer Prevention, Medical University of Warsaw, 01-445 Warsaw, Poland; (A.B.-K.); (M.F.)
| | - Marta Fudalej
- Department of Cancer Prevention, Medical University of Warsaw, 01-445 Warsaw, Poland; (A.B.-K.); (M.F.)
- Department of Oncology and Haematology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland;
| | - Daria Kwaśniewska
- Department of Oncology and Haematology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland;
| | - Marek Durlik
- Department of Gastroenterological Surgery and Transplantation, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland;
| | - Anna Nasierowska-Guttmejer
- Department of Pathology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland;
| | - Agata Mormul
- Students’ Scientific Organization of Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw, 01-445 Warsaw, Poland; (A.M.); (E.W.)
| | - Emilia Włoszek
- Students’ Scientific Organization of Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw, 01-445 Warsaw, Poland; (A.M.); (E.W.)
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Tomasz Banaś
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 31-501 Cracow, Poland;
- Department of Radiotherapy, Maria Sklodowska-Curie Institute–Oncology Centre, 31-115 Cracow, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention, Medical University of Warsaw, 01-445 Warsaw, Poland; (A.B.-K.); (M.F.)
- Department of Oncology and Haematology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-5720702
| |
Collapse
|
27
|
He K, Li Z, Ye K, Zhou Y, Yan M, Qi H, Hu H, Dai Y, Tang Y. Novel sequential therapy with metformin enhances the effects of cisplatin in testicular germ cell tumours via YAP1 signalling. Cancer Cell Int 2022; 22:113. [PMID: 35264157 PMCID: PMC8905836 DOI: 10.1186/s12935-022-02534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background Testicular germ cell tumours (TGCTs) are the most commonly diagnosed malignancy in young men. Although cisplatin has been shown to be effective to treat TGCT patients, long-term follow-up has shown that TGCT survivors who accepted cisplatin treatment suffered from a greater number of adverse reactions than patients who underwent orchiectomy alone. As metformin has shown an anticancer effect in various cancers, we investigated whether metformin could enhance the effects of cisplatin to treat TGCTs. Methods The anticancer effects of different treatment strategies consisting of metformin and cisplatin in TCam-2 and NTERA-2 cells were assessed in vitro and in vivo. First, we used a colony formation assay, CCK-8 and MTT assays to explore the viability of TGCT cells. Flow cytometry was used to assess the cell cycle and apoptosis of TGCTs. Then, Western blotting was used to detect the protein expression of TGCTs cells after different treatments. In addition, a xenograft model was used to investigate the effects of the different treatments on the proliferation of TGCT cells. Immunohistochemistry assays were performed to analyse the expression of related proteins in the tissues from the xenograft model. Results Metformin inhibited the proliferation of TCam-2 and NTERA-2 cells by arresting them in G1 phase, while metformin did not induce apoptosis in TGCT cells. Compared with cisplatin monotherapy, the CCK-8, MTT assay and colony formation assay showed that sequential treatment with metformin and cisplatin produced enhanced anticancer effects. Further study showed that metformin blocked the cells in G1 phase by inducing phosphorylated YAP1 and reducing the expression of cyclin D1, CDK6, CDK4 and RB, which enhanced the chemosensitivity of cisplatin and activated the expression of cleaved caspase 3 in TGCTs. Conclusions Our study discovers the important role of YAP1 in TGCTs and reports a new treatment strategy that employs the sequential administration of metformin and cisplatin, which can reduce the required cisplatin dose and enhance the sensitivity of TGCT cells to cisplatin. Therefore, this sequential treatment strategy may facilitate the development of basic and clinical research for anticancer therapies to treat TGCTs.
Collapse
Affiliation(s)
- Kancheng He
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zitaiyu Li
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Kun Ye
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Yihong Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Minbo Yan
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Hao Qi
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Huating Hu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China. .,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China. .,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
28
|
Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers (Basel) 2021; 13:cancers13205067. [PMID: 34680216 PMCID: PMC8534007 DOI: 10.3390/cancers13205067] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Obesity is recognized as a chronic progressive disease and risk factor for many human diseases. The high and increasing number of obese people may underlie the expected increase in pancreatic cancer cases in the United States. There are several pathways discussed that link obesity with pancreatic cancer. Adipose tissue and adipose tissue-released factors may thereby play an important role. This review discusses selected mechanisms that may accelerate pancreatic cancer development in obesity. Abstract The prevalence of obesity in adults and children has dramatically increased over the past decades. Obesity has been declared a chronic progressive disease and is a risk factor for a number of metabolic, inflammatory, and neoplastic diseases. There is clear epidemiologic and preclinical evidence that obesity is a risk factor for pancreatic cancer. Among various potential mechanisms linking obesity with pancreatic cancer, the adipose tissue and obesity-associated adipose tissue inflammation play a central role. The current review discusses selected topics and mechanisms that attracted recent interest and that may underlie the promoting effects of obesity in pancreatic cancer. These topics include the impact of obesity on KRAS activity, the role of visceral adipose tissue, intrapancreatic fat, adipose tissue inflammation, and adipokines on pancreatic cancer development. Current research on lipocalin-2, fibroblast growth factor 21, and Wnt5a is discussed. Furthermore, the significance of obesity-associated insulin resistance with hyperinsulinemia and obesity-induced gut dysbiosis with metabolic endotoxemia is reviewed. Given the central role that is occupied by the adipose tissue in obesity-promoted pancreatic cancer development, preventive and interceptive strategies should be aimed at attenuating obesity-associated adipose tissue inflammation and/or at targeting specific molecules that mechanistically link adipose tissue with pancreatic cancer in obese patients.
Collapse
|