1
|
Vrablik M, Corsini A, Tůmová E. Beta-blockers for Atherosclerosis Prevention: a Missed Opportunity? Curr Atheroscler Rep 2022; 24:161-169. [PMID: 35174437 DOI: 10.1007/s11883-022-00983-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Current guidelines for the management of arterial hypertension endorse β-adrenergic receptor blocking agents (beta-blockers, BBs) as being particularly useful for hypertension in specific situations such as symptomatic angina, tachycardia, post-myocardial infarction, heart failure with reduced ejection fraction (HFrEF), and as an alternative to angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs) in hypertensive women planning pregnancy or at least of child-bearing potential. One of the most common uses of BBs is in patients with a recent myocardial infarction, with or without hypertension. Although this one use is specifically in a setting of atherosclerotic cardiovascular disease (ASCVD), it is not primarily for atheroprevention, but rather for cases with impaired systolic function, and it is intended primarily to lessen adverse cardiac remodeling and worsening of congestive heart failure (CHF). The BB class consists of numerous agents which differ widely in pharmacologic properties and physiologic effects. These differences include selectivity for β-adrenergic receptors and their subtypes, hydro- or lipophilicity, effects on blood pressure and heart rate, influence on lipoprotein and glucose metabolism, and direct impact on the artery wall, including platelet reactivity, endothelial function, infiltration of inflammatory cells and on inflammation per se, and on smooth muscle cell proliferation. Importantly, BBs are not commonly used for prevention of atherosclerosis or ASCVD per se. Many studies of early-generation BBs showed adverse effects on lipoprotein levels and metabolism of glucose and insulin and thus discouraged their use in atheroprevention. Nevertheless, newer BBs often have neutral or favorable metabolic effects on these important factors in ASCVD pathophysiology, and recent scientific studies now document direct beneficial effects of BBs on the artery wall. This document reviews both types of newer data, not only to encourage consideration of BB treatment to reduce ASCVD in the present, but also to call for future research to better explore the clinical settings in which BBs may be proven to have additional benefit in preventing ASCVD when added to the better-established treatments for dyslipidemia and diabetes. RECENT FINDINGS Relatively recent publications have clarified the diversity among BBs regarding adverse, neutral, or favorable effects on lipoproteins (especially triglycerides (TG) and low-density lipoprotein (LDL)) and on glucose/insulin metabolism. Specifically, the newer BBs (metoprolol ER, carvedilol ER, bisoprolol, and nebivolol) are now documented to be metabolically beneficial. These new data are complex but instructive regarding potential mechanisms of the diverse effects of various BBs on metabolism. Further and more importantly, these new data refute the traditional, but now outmoded, concept that BBs are universally harmful metabolically and therefore must be used sparingly, if at all, for atheroprevention. Recent studies have also reported exciting new data regarding how certain BBs can reduce platelet adhesion and improve the function of the major cell types in the artery wall, including the endothelium, macrophages, and smooth muscle cells. Specifically, BBs can improve endothelial function by enhancing arterial vasodilation and by reducing monocyte adhesion and transmigration. Further, BBs can decrease numbers and activity of inflammatory cells, including decreasing proliferation of smooth muscle cells and their transformation into inflammatory cells. These data help with the crucial step of distinguishing among available BBs regarding their likely overall arterial effects, whether to accelerate or prevent the development of atherosclerosis. In this regard, there is even some limited published information beyond these intermediary steps, going directly to the clinically more important endpoints of atherosclerosis and ASCVD events. The negative metabolic effects observed with the use of traditional/earlier generations of BBs have discouraged use of any BBs to prevent ASCVD. These adverse effects are not seen, however, with newer BBs. Thus, BBs continue to be a useful component of combination regimens not only in the treatment of arterial hypertension, heart failure, and arrhythmia, but also potentially in the prevention of atherosclerosis and ASCVD. Despite this exciting potential, further research is greatly needed to better establish the possible benefits of the most promising BBs as they might work in combination with other better-established atheropreventive agents. Specifically, there is a need for randomized, prospective, cardiovascular outcome trials (CVOTs) in high-risk patients, adding a BB to background LDL-lowering (statins, etc.), TG-lowering (specifically icosapent ethyl, which reduces ASCVD in patients with high TG, although apparently not via TG-lowering), and/or anti-diabetic (sodium glucose transport-2 inhibitors, SGLT2i, and glucagon-like protein-1 receptor agonists, GLP1-RA) treatments, as indicated in a given subject population.
Collapse
Affiliation(s)
- Michal Vrablik
- First Faculty of Medicine, Charles University in Prague, Katerinska 32, 121 08, Prague, Czech Republic.,3Rd Department of Internal Medicine, General Teaching Hospital, U Nemocnice 1, 128 08, Prague 2, Czech Republic
| | - Alberto Corsini
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.,IRCCS Multimedica, Milan, Italy
| | - Eva Tůmová
- First Faculty of Medicine, Charles University in Prague, Katerinska 32, 121 08, Prague, Czech Republic. .,3Rd Department of Internal Medicine, General Teaching Hospital, U Nemocnice 1, 128 08, Prague 2, Czech Republic.
| |
Collapse
|
2
|
Audigane L, Persello A, Piriou N, Ferron M, Trochu JN, Lauzier B, Gauthier C, Rozec B. Early nebivolol treatment is beneficial in myocardial infarction in rats partly through β3-adrenoceptor remodelling. Clin Exp Pharmacol Physiol 2021; 48:1007-1015. [PMID: 33314348 DOI: 10.1111/1440-1681.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/29/2020] [Indexed: 11/28/2022]
Abstract
It remains unknown whether β-blockers are useful and safe in acute myocardial infarction (MI). Owing to its pharmacological profile and vasodilating action, nebivolol (N) is useful in MI. The aim of the present study was to assess in rat whether early nebivolol treatment could be beneficial in MI. It remains unknown whether β-blockers are useful and safe in acute MI. On day (D) 0, male Sprague-Dawley rats underwent left coronary artery ligation (MI) or simple thoracotomy (SHAM). On D1 and D2, the rats were treated with either nebivolol (5 mg.kg-1 .day-1 , MI-N and Sham-N) or vehicle (V, MI-V and Sham-V). On D3, heart rate, left ventricle (LV) intrinsic contractility (PESmid) and arterial elastance were measured. Cardiac and aortic β-Adrenoceptor (AR) subtype mRNA were quantified using real time quantitative RT-qPCR. Catecholamine response was assessed on isolated heart and aortic rings with isoproterenol. PESmid was decreased in MI without worsening the decrease nebivolol. In LV, β1 - and β3 -AR mRNA were respectively decreased and increased in all MI. β3 -AR mRNA increase was partly limited by nebivolol. Ex vivo, basal contractility was less decreased in MI-N than in MI-V. Isoproterenol response was only altered in MI-V. In MI aorta, Nebi prevented β2 - and β3 -AR mRNA increases. In addition, Acetylcholine-induced relaxation was lowered in MI-V but preserved with nebivolol. We demonstrated an early modulation of cardiovascular β3 -AR transcription early MI. Despite its putative negative inotropic properties, nebivolol did not worsen cardiac function in basal conditions and preserved LV catecholamine response.
Collapse
Affiliation(s)
- Leslie Audigane
- L'institut du thorax, INSERM, CNRS, CHU Nantes Nantes, UNIV Nantes, Nantes, France
| | - Antoine Persello
- L'institut du thorax, INSERM, CNRS, CHU Nantes Nantes, UNIV Nantes, Nantes, France
- InFlectis BioScience, Nantes, France
| | - Nicolas Piriou
- L'institut du thorax, INSERM, CNRS, CHU Nantes Nantes, UNIV Nantes, Nantes, France
| | - Marine Ferron
- L'institut du thorax, INSERM, CNRS, CHU Nantes Nantes, UNIV Nantes, Nantes, France
| | - Jean-Noël Trochu
- L'institut du thorax, INSERM, CNRS, CHU Nantes Nantes, UNIV Nantes, Nantes, France
| | - Benjamin Lauzier
- L'institut du thorax, INSERM, CNRS, CHU Nantes Nantes, UNIV Nantes, Nantes, France
| | - Chantal Gauthier
- L'institut du thorax, INSERM, CNRS, CHU Nantes Nantes, UNIV Nantes, Nantes, France
| | - Bertrand Rozec
- L'institut du thorax, INSERM, CNRS, CHU Nantes Nantes, UNIV Nantes, Nantes, France
| |
Collapse
|
3
|
Saunders SL, Hutchinson DS, Britton FC, Liu L, Markus I, Sandow SL, Murphy TV. Effect of β 1 /β 2 -adrenoceptor blockade on β 3 -adrenoceptor activity in the rat cremaster muscle artery. Br J Pharmacol 2021; 178:1789-1804. [PMID: 33506492 DOI: 10.1111/bph.15398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The physiological role of vascular β3 -adrenoceptors is not fully understood. Recent evidence suggests cardiac β3 -adrenoceptors are functionally effective after down-regulation of β1 /β2 -adrenoceptors. The functional interaction between the β3 -adrenoceptor and other β-adrenoceptor subtypes in rat striated muscle arteries was investigated. EXPERIMENTAL APPROACH Studies were performed in cremaster muscle arteries isolated from male Sprague-Dawley rats. β-adrenoceptor expression was assessed through RT-PCR and immunofluorescence. Functional effects of β3 -adrenoceptor agonists and antagonists and other β-adrenoceptor ligands were measured using pressure myography. KEY RESULTS All three β-adrenoceptor subtypes were present in the endothelium of the cremaster muscle artery. The β3 -adrenoceptor agonists mirabegron and CL 316,243 had no effect on the diameter of pressurized (70 mmHg) cremaster muscle arterioles with myogenic tone, while the β3 -adrenoceptor agonist SR 58611A and the nonselective β-adrenoceptor agonist isoprenaline caused concentration-dependent dilation. In the presence of β1/2 -adrenoceptor antagonists nadolol (10 μM), atenolol (1 μM) and ICI 118,551 (0.1 μM) both mirabegron and CL 316,243 were effective in causing vasodilation and the potency of SR 58611A was enhanced, while responses to isoprenaline were inhibited. The β3 -adrenoceptor antagonist L 748,337 (1 μM) inhibited vasodilation caused by β3 -adrenoceptor agonists (in the presence of β1/2 -adrenoceptor blockade), but L 748,337 had no effect on isoprenaline-induced vasodilation. CONCLUSION AND IMPLICATIONS All three β-adrenoceptor subtypes were present in the endothelium of the rat cremaster muscle artery, but β3 -adrenoceptor mediated vasodilation was only evident after blockade of β1/2 -adrenoceptors. This suggests constitutive β1/2 -adrenoceptor activity inhibits β3 -adrenoceptor function in the endothelium of skeletal muscle resistance arteries.
Collapse
Affiliation(s)
- Samantha L Saunders
- Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Fiona C Britton
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Lu Liu
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Irit Markus
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Shaun L Sandow
- Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.,Biomedical Science, School of Health and Sports Science, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Timothy V Murphy
- Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Kamiya M, Asai K, Maejima Y, Shirakabe A, Murai K, Noma S, Komiyama H, Sato N, Mizuno K, Shimizu W. β 3-Adrenergic Receptor Agonist Prevents Diastolic Dysfunction in an Angiotensin II-Induced Cardiomyopathy Mouse Model. J Pharmacol Exp Ther 2020; 376:473-481. [PMID: 33318077 DOI: 10.1124/jpet.120.000140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/11/2020] [Indexed: 01/01/2023] Open
Abstract
β3-Adrenergic receptor expression is enhanced in the failing heart, but its functional effects are unclear. We tested the hypothesis that a β3-agonist improves left ventricular (LV) performance in heart failure. We examined the chronic effects of a β3-agonist in the angiotensin II (Ang II)-induced cardiomyopathy mouse model. C57BL/6J mice were treated with Ang II alone or Ang II + BRL 37344 (β3-agonist, BRL) for 4 weeks. Systolic blood pressure in conscious mice was significantly elevated in Ang II and Ang II + BRL mice compared with control mice. Heart rate was not different among the three groups. Systolic performance parameters that were measured by echocardiography and an LV catheter were similar among the groups. LV end-diastolic pressure and end-diastolic pressure-volume relationships were higher in Ang II mice compared with control mice. However, the increase in these parameters was prevented in Ang II + BRL mice, which suggested improvement in myocardial stiffness by BRL. Pathologic analysis showed that LV hypertrophy was induced in Ang II mice and failed to be prevented by BRL. However, increased collagen I/III synthesis, cardiac fibrosis, and lung congestion observed in Ang II mice were inhibited by BRL treatment. The cardioprotective benefits of BRL were associated with downregulation of transforming growth factor-β1 expression and phosphorylated-Smad2/3. Chronic infusion of a β3-agonist has a beneficial effect on LV diastolic function independent of blood pressure in the Ang II-induced cardiomyopathy mouse model. SIGNIFICANCE STATEMENT: Chronic infusion of a β3-adrenergic receptor agonist attenuates cardiac fibrosis and improves diastolic dysfunction independently of blood pressure in an angiotensin II-induced hypertensive mouse model. This drug might be an effective treatment of heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Masataka Kamiya
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Kuniya Asai
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Yasuhiro Maejima
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Akihiro Shirakabe
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Koji Murai
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Satsuki Noma
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Hidenori Komiyama
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Naoki Sato
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Kyoichi Mizuno
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| |
Collapse
|
5
|
McCutcheon K, Manga P. Left ventricular remodelling in chronic primary mitral regurgitation: implications for medical therapy. Cardiovasc J Afr 2019; 29:51-65. [PMID: 29582880 PMCID: PMC6002796 DOI: 10.5830/cvja-2017-009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/12/2017] [Indexed: 01/07/2023] Open
Abstract
Surgical repair or replacement of the mitral valve is currently the only recommended therapy for severe primary mitral regurgitation. The chronic elevation of wall stress caused by the resulting volume overload leads to structural remodelling of the muscular, vascular and extracellular matrix components of the myocardium. These changes are initially compensatory but in the long term have detrimental effects, which ultimately result in heart failure. Understanding the changes that occur in the myocardium due to volume overload at the molecular and cellular level may lead to medical interventions, which potentially could delay or prevent the adverse left ventricular remodelling associated with primary mitral regurgitation. The pathophysiological changes involved in left ventricular remodelling in response to chronic primary mitral regurgitation and the evidence for potential medical therapy, in particular beta-adrenergic blockers, are the focus of this review.
Collapse
Affiliation(s)
- Keir McCutcheon
- Division of Cardiology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and University of the Witwatersrand, Johannesburg, South Africa.
| | - Pravin Manga
- Division of Cardiology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Wu QQ, Xiao Y, Duan MX, Yuan Y, Jiang XH, Yang Z, Liao HH, Deng W, Tang QZ. Aucubin protects against pressure overload-induced cardiac remodelling via the β 3 -adrenoceptor-neuronal NOS cascades. Br J Pharmacol 2018; 175:1548-1566. [PMID: 29447430 DOI: 10.1111/bph.14164] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/21/2018] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Aucubin, the predominant component of Eucommia ulmoides Oliv., has been shown to have profound effects on oxidative stress. As oxidative stress has previously been demonstrated to contribute to acute and chronic myocardial injury, we tested the effects of aucubin on cardiac remodelling and heart failure. EXPERIMENTAL APPROACH Initially, H9c2 cardiomyocytes and neonatal rat cardiomyocytes pretreated with aucubin (1, 3, 10, 25 and 50 μM) were challenged with phenylephrine. Secondly, the transverse aorta was constricted in C57/B6 and neuronal NOS (nNOS)-knockout mice, then aucubin (1 or 5 mg·kg-1 body weight day-1 ) was injected i.p. for 25 days. Hypertrophy was evaluated by assessing morphological changes, echocardiographic parameters, histological analyses and hypertrophic markers. Oxidative stress was evaluated by examining ROS generation, oxidase activity and NO generation. NOS expression was determined by Western blotting. KEY RESULTS Aucubin effectively suppressed cardiac remodelling; in mice, aucubin substantially inhibited pressure overload-induced cardiac hypertrophy, fibrosis and inflammation, whereas knocking out nNOS abolished these cardioprotective effects of aucubin. Blocking or knocking down the β3 -adrenoceptor abolished the protective effects of aucubin in vitro. Furthermore, aucubin enhanced the protective effects of a β3 -adrenoceptor agonist in vitro by increasing cellular cAMP levels, whereas treatment with an adenylate cyclase (AC) inhibitor abolished the cardioprotective effects of aucubin. CONCLUSIONS AND IMPLICATIONS Aucubin suppresses oxidative stress during cardiac remodelling by increasing the expression of nNOS in a process that requires activation of the β3 -adrenoceptor/AC/cAMP pathway. These findings suggest that aucubin could have potential as a treatment for cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yang Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ming-Xia Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiao-Han Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
7
|
Abstract
Cardiac diseases, such as heart failure, remain leading causes of morbidity and mortality worldwide, with myocardial infarction as the most common etiology. HF is characterized by β-adrenergic receptor (βAR) dysregulation that is primarily due to the upregulation of G protein–coupled receptor kinases that leads to overdesensitization of β1 and β2ARs, and this clinically manifests as a loss of inotropic reserve. Interestingly, the “minor” βAR isoform, the β3AR, found in the heart, lacks G protein–coupled receptor kinases recognition sites, and is not subject to desensitization, and as a consequence of this, in human failing myocardium, the levels of this receptor remain unchanged or are even increased. In different preclinical studies, it has been shown that β3ARs can activate different signaling pathways that can protect the heart. The clinical relevance of this is also supported by the effects of β-blockers which are well known for their proangiogenic and cardioprotective effects, and data are emerging showing that these are mediated, at least in part, by enhancement of β3AR activity. In this regard, targeting of β3ARs could represent a novel potential strategy to improve cardiac metabolism, function, and remodeling.
Collapse
|
8
|
Zhang R, Kang X, Wang Y, Wang F, Yu P, Shen J, Fu L. Effects of carvedilol on ventricular remodeling and the expression of β3-adrenergic receptor in a diabetic rat model subjected myocardial infarction. Int J Cardiol 2016; 222:178-184. [PMID: 27497092 DOI: 10.1016/j.ijcard.2016.07.188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND This study was to assess effects of carvedilol on ventricular remodeling and expression of β3-adrenergic receptor (β3-AR) and Gi protein in a rat model of diabetes subjected to myocardial infarction (MI). METHODS Rat model of type II diabetes was established by injection of streptozotion. MI was then induced by ligating the left anterior descending coronary artery. Rats were then randomly divided into two groups treated with either placebo (PL) or carvedilol (CA - 10mg·kg(-1)·d(-)(1)). Additional controls consisted of sham-operated rats with diabetes (DS) and rats fed a normal diet subjected to myocardial infarction (NM). Echocardiographic and hemodynamic studies were performed to assess the structural and functional changes. β3-AR and Gi mRNA in the myocardium distal from the infarction region were measured, and β3-AR and Gi protein were measured with western blot. RESULTS There were no significant differences in MI size among the three MI groups. In the PL group, LVEDd, LVWI, E/A and CVF were significantly increased, while LVEF and PW% significantly decreased as compared with the DS and NM groups. Compared with the DS group, the expression of β3-AR and Gi mRNA and protein in the PL group was significantly increased, however, in the CA group, β3-AR and Gi mRNA and protein were decreased. CONCLUSIONS The expression of β3-AR and Gi mRNA and protein was increased in diabetic rats subjected to MI as compared with rats subject to either condition alone. Carvedilol treatment prevented many of these deleterious effects.
Collapse
Affiliation(s)
- Ruiying Zhang
- Cardiovascular Department, The First Affliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Xiaoning Kang
- Cardiovascular Department, The First Affliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yumei Wang
- Cardiovascular Department, The First Affliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Fei Wang
- Cardiovascular Department, The First Affliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ping Yu
- Cardiovascular Department, The First Affliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jingxia Shen
- Cardiovascular Department, The First Affliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lu Fu
- Cardiovascular Department, The First Affliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
9
|
Abstract
It is well established that cardiac remodeling plays a pivotal role in the development of heart failure, a leading cause of death worldwide. Meanwhile, sympathetic hyperactivity is an important factor in inducing cardiac remodeling. Therefore, an in-depth understanding of beta-adrenoceptor signaling pathways would help to find better ways to reverse the adverse remodeling. Here, we reviewed five pathways, namely mitogen-activated protein kinase signaling, Gs-AC-cAMP signaling, Ca(2+)-calcineurin-NFAT/CaMKII-HDACs signaling, PI3K signaling and beta-3 adrenergic signaling, in cardiac remodeling. Furthermore, we constructed a cardiac-remodeling-specific regulatory network including miRNA, transcription factors and target genes within the five pathways. Both experimental and clinical studies have documented beneficial effects of beta blockers in cardiac remodeling; nevertheless, different blockers show different extent of therapeutic effect. Exploration of the underlying mechanisms could help developing more effective drugs. Current evidence of treatment effect of beta blockers in remodeling was also reviewed based upon information from experimental data and clinical trials. We further discussed the mechanism of how beta blockers work and why some beta blockers are more potent than others in treating cardiac remodeling within the framework of cardiac remodeling network.
Collapse
|
10
|
Yu B, Cao Y, Xiong YK. Pharmacokinetics of aconitine-type alkaloids after oral administration of Fuzi (Aconiti Lateralis Radix Praeparata) in rats with chronic heart failure by microdialysis and ultra-high performance liquid chromatography-tandem mass spectrometry. JOURNAL OF ETHNOPHARMACOLOGY 2015; 165:173-179. [PMID: 25708163 DOI: 10.1016/j.jep.2015.01.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/03/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzi [the lateral root of Aconitum carmichaeli Debx (Ranunculaceae)] is a well-known traditional medicinal herb used to treat chronic heart failure (CHF). Aconitine-type alkaloids are major alkaloids that are responsible for the pharmacological activity and toxicity of this herb.To investigate therapeutic effects and pharmacokinetic profiles of aconitine-type alkaloids in CHF rats. MATERIALS AND METHODS The plasma pharmacokinetic profiles of aconitine, mesaconitine, and hypaconitine were investigated after once treatment of Fuzi extract (containing aconitine 0.086 mg/g, mesaconitine 0.84 mg/g, and hypaconitine 1.97 mg/g) using a rapid and sensitive combinative method of ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and microdialysis (MD). The cardiac function and antioxidant enzyme activities were also evaluated. RESULTS Recoveries of MD sampling ranged from 35.06% to 45.74% with RSD below 6.05%. Fuzi extract improved the myocardial function and antioxidant enzymatic activities of rats with CHF. Aconitine, mesaconitine, and hypaconitine exhibited slower absorption into the bloodstream, and yielded 11-fold less values of area under concentration-time curve (AUC) in the CHF rats than those in normal rats. The plasma AUC showed that the maximum blood concentration (Cmax) was 5.561 ng/mL for aconitine, 17.30 ng/mL for mesaconitine, and 17.78 ng/mL for hypaconitine in normal rats, while these were 0.6059 ng/mL, 2.430, and 0.7461 ng/mL in CHF rats, respectively. CONCLUSION Aconitine-type alkaloids associated with Fuzi׳s efficacy have lower intake and slower elimination in the CHF rats, indicating a non-interdependent relationship between its efficacy and toxicity. It may contribute to the depth understanding of the toxicological and pharmacological profiles of Fuzi and further benefit the herbal drug development with safety and efficacy for CHF treatment.
Collapse
Affiliation(s)
- Bing Yu
- Zhejiang Chinese Medical University, Binjiang 310053, China
| | - Yi Cao
- Zhejiang Provincial Hospital of TCM, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yao-Kang Xiong
- Zhejiang Chinese Medical University, Binjiang 310053, China.
| |
Collapse
|
11
|
Chronic β1-adrenergic blockade enhances myocardial β3-adrenergic coupling with nitric oxide-cGMP signaling in a canine model of chronic volume overload: new insight into mechanisms of cardiac benefit with selective β1-blocker therapy. Basic Res Cardiol 2014; 110:456. [PMID: 25480109 DOI: 10.1007/s00395-014-0456-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 11/27/2022]
Abstract
The β1-adrenergic antagonist metoprolol improves cardiac function in animals and patients with chronic heart failure, isolated mitral regurgitation (MR), and ischemic heart disease, though the molecular mechanisms remain incompletely understood. Metoprolol has been reported to upregulate cardiac expression of β3-adrenergic receptors (β3AR) in animal models. Myocardial β3AR signaling via neuronal nitric oxide synthase (nNOS) activation has recently emerged as a cardioprotective pathway. We tested whether chronic β1-adrenergic blockade with metoprolol enhances myocardial β3AR coupling with nitric oxide-stimulated cyclic guanosine monophosphate (β3AR/NO-cGMP) signaling in the MR-induced, volume-overloaded heart. We compared the expression, distribution, and inducible activation of β3AR/NO-cGMP signaling proteins within myocardial membrane microdomains in dogs (canines) with surgically induced MR, those also treated with metoprolol succinate (MR+βB), and unoperated controls. β3AR mRNA transcripts, normalized to housekeeping gene RPLP1, increased 4.4 × 10(3)- and 3.2 × 10(2)-fold in MR and MR+βB hearts, respectively, compared to Control. Cardiac β3AR expression was increased 1.4- and nearly twofold in MR and MR+βB, respectively, compared to Control. β3AR was detected within caveolae-enriched lipid rafts (Cav3(+)LR) and heavy density, non-lipid raft membrane (NLR) across all groups. However, in vitro selective β3AR stimulation with BRL37344 (BRL) triggered cGMP production within only NLR of MR+βB. BRL induced Ser (1412) phosphorylation of nNOS within NLR of MR+βB, but not Control or MR, consistent with detection of NLR-specific β3AR/NO-cGMP coupling. Treatment with metoprolol prevented MR-associated oxidation of NO biosensor soluble guanylyl cyclase (sGC) within NLR. Metoprolol therapy also prevented MR-induced relocalization of sGCβ1 subunit away from caveolae, suggesting preserved NO-sGC-cGMP signaling, albeit without coupling to β3AR, within MR+βB caveolae. Chronic β1-blockade is associated with myocardial β3AR/NO-cGMP coupling in a microdomain-specific fashion. Our canine study suggests that microdomain-targeted enhancement of myocardial β3AR/NO-cGMP signaling may explain, in part, β1-adrenergic antagonist-mediated preservation of cardiac function in the volume-overloaded heart.
Collapse
|
12
|
Wang J, Li M, Ma X, Bai K, Wang L, Yan Z, Lv T, Zhao Z, Zhao R, Liu H. Autoantibodies against the β3-adrenoceptor protect from cardiac dysfunction in a rat model of pressure overload. PLoS One 2013; 8:e78207. [PMID: 24147120 PMCID: PMC3795652 DOI: 10.1371/journal.pone.0078207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 09/17/2013] [Indexed: 11/29/2022] Open
Abstract
β3-adrenoceptors (β3-ARs) mediate a negative inotropic effect in human ventricular cardiomyocytes, which is opposite to that of β1- and β2-ARs. It has been previously demonstrated that autoantibodies against the β1/β2-AR exist in the sera of some patients with heart failure (HF) and these autoantibodies display agonist-like effects. Our aim in this study was to observe whether autoantibodies against the β3-AR (β3-AR Abs) exist in the sera of patients with HF and to assess the effects of β3-AR Abs on rat model of pressure overload cardiomyopthy. In the present study, the level of β3-AR Abs in the sera of HF patients was screened by ELISA. β3-AR Abs from HF patients were administrated to male adult rats with abdominal aortic banding (AAB), and the cardiac function was measured by echocardiographic examination and hemodynamic studies. The biological effects of this autoantibody on cardiomyocytes were evaluated using a motion-edge detection system, intracellular calcium transient assay, and patch clamp techniques. Compared to healthy subjects, the frequency of occurrence and titer of β3-AR Abs in the sera of HF patients were greatly increased, and β3-AR Abs could prevent LV dilation and improve the cardiac function of rats with AAB. β3-AR Abs exhibited negative chronotropic and inotropic effects and were accompanied by a decreased intracellular Ca2+ transient and membrane L-type Ca2+ current in cardiomyocytes. Our results demonstrated the existence of β3-AR Abs in the sera of patients with HF and found that this autoantibody could alleviate the cardiac dysfunction induced by pressure-overload in AAB rats.
Collapse
Affiliation(s)
- Jin Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Meixia Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing, P. R. China
| | - Xiurui Ma
- Shanxi Cardiovascular Diseases Hospital, Taiyuan, Shanxi, P. R. China
| | - Kehua Bai
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Li Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Zi Yan
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Tingting Lv
- School of Basic Medical Sciences, Cardiovascular Research Institute, Capital Medical University, Beijing, P. R. China
| | - Zhiqing Zhao
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
- Department of Basic Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, United States of America
| | - Rongrui Zhao
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Huirong Liu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
- School of Basic Medical Sciences, Cardiovascular Research Institute, Capital Medical University, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
13
|
Effect of β3-adrenergic receptor on atrial L-type Ca(2+) current in rats with chronic heart failure. Heart Lung Circ 2013; 23:369-77. [PMID: 24055266 DOI: 10.1016/j.hlc.2013.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To investigate the effect of selective β3-adrenoreceptor agonist BRL-37344 on L-type Ca(2+) current (Ica,L) and mRNA expression of L-type Ca(2+) channel α2δ-2 (Cacna2d2) in rats with chronic heart failure (CHF). METHODS Twenty-four male Wistar rats were divided into normal control (n=6) and CHF group (n=18), which were further divided into CHF control and BRL group (0.4nmol/kg, IV, twice weekly for four weeks). Echocardiography was performed to assess the structure and function of the left atrium (LA). RESULTS The LA in the BRL group (4.4 ± 0.2mm) was larger than in the normal control (3.5 ± 0.3mm, P<0.01) or CHF control (4.0 ± 0.2mm, P<0.05) group. The LA ejection fraction in the BRL group (36.2 ± 4.2%) was lower than in the normal control (58.0 ± 3.1%, P<0.01) or CHF control group (42.3 ± 4.8%, P<0.05). There was no difference in Ica,L density between the BRL group and CHF control group (8.3 ± 1.7 vs. 8.2 ± 2.6 pA/pF, P>0.05), which was higher than in the normal control group (6.0 ± 1.8 pA/pF, P<0.01). There was no difference in the mRNA expression of α2δ-2 (Cacna2d2) between the BRL group and CHF control group (0.264 ± 0.005 vs. 0.243 ± 0.017, P>0.05), which was also higher than in the normal control group (0.137 ± 0.013, P<0.01). CONCLUSION β3-Adrenoreceptor stimulation with BRL-37344 was associated with an increase in LA diameter and a decrease in LA function in chronic heart failure. These structural and function changes were not related to Ica,L or L-type Ca(2+) channel α2δ-2 (Cacna2d2) subunit in the LA myocytes.
Collapse
|
14
|
Masutani S, Cheng HJ, Morimoto A, Hasegawa H, Han QH, Little WC, Cheng CP. β3-Adrenergic receptor antagonist improves exercise performance in pacing-induced heart failure. Am J Physiol Heart Circ Physiol 2013; 305:H923-30. [PMID: 23873794 PMCID: PMC3761346 DOI: 10.1152/ajpheart.00371.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/13/2013] [Indexed: 11/22/2022]
Abstract
In heart failure (HF), the impaired left ventricular (LV) arterial coupling and diastolic dysfunction present at rest are exacerbated during exercise. We have previously shown that in HF at rest stimulation of β3-adrenergic receptors by endogenous catecholamine depresses LV contraction and relaxation. β3-Adrenergic receptors are activated at higher concentrations of catecholamine. Thus exercise may cause increased stimulation of cardiac β3-adrenergic receptors and contribute to this abnormal response. We assessed the effect of L-748,337 (50 μg/kg iv), a selective β3-adrenergic receptor antagonist (β3-ANT), on LV dynamics during exercise in 12 chronically instrumented dogs with pacing-induced HF. Compared with HF at rest, exercise increased LV end-systolic pressure (PES), minimum LV pressure (LVPmin), and the time constant of LV relaxation (τ) with an upward shift of early diastolic portion of LV pressure-volume loop. LV contractility decreased and arterial elastance (EA) increased. LV arterial coupling (EES/EA) (0.40 vs. 0.51) was impaired. Compared with exercise in HF preparation, exercise after β3-ANT caused similar increases in heart rate and PES but significantly decreased τ (34.9 vs. 38.3 ms) and LVPmin with a downward shift of the early diastolic portion of LV pressure-volume loop and further augmented dV/dtmax. Both EES and EES/EA (0.68 vs. 0.40) were increased. LV mechanical efficiency improved from 0.39 to 0.53. In conclusion, after HF, β3-ANT improves LV diastolic filling; increases LV contractility, LV arterial coupling, and mechanical efficiency; and improves exercise performance.
Collapse
Affiliation(s)
- Satoshi Masutani
- Cardiology Section, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | | | | | |
Collapse
|
15
|
Miao G, Chen Z, Fang X, Liu M, Hao G, An H, Zhang Z, Lu L, Zhang J, Zhang L. Relationship between the autoantibody and expression of β3-adrenoceptor in lung and heart. PLoS One 2013; 8:e68747. [PMID: 23861938 PMCID: PMC3702604 DOI: 10.1371/journal.pone.0068747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 06/03/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Evidences suggest that β3 -adrenoceptor (β3-AR) plays an important role in heart failure (HF), although no data is reported indicating how these effects may change with the increasing age. Pulmonary congestion and edema are the major life-threatening complications associated with HF. The purpose of this study is to explore the relationship between the anti-β3-AR autoantibody and the expression of β3-AR in the lungs and heart for both aged patients and rats with HF. METHODS Synthetic β3-AR peptides served as the target antigens in ELISA were used to screen the anti-β3-AR autoantibody in aged patients and rats. Two aged rat models were constructed based on aortic banding and sham-operation. The expression of β3-AR mRNA and protein in the lung and heart was measured in intervention and non-intervention groups by Western blot analysis at the baseline, 5(th), 7(th), 9(th) and 11(th) week, respectively. RESULTS The frequency and titer of anti-β3-AR autoantibody in aged patients and rats with HF were higher than those in the control group (p<0.05). The expression of β3-AR mRNA and protein in pulmonary tissues decreased continually from the 7(th) week (p<0.05), followed by HF observed during the 9(th) week. The expression of β3-AR in myocardial tissues continued to increase after the 9(th) week (p<0.05), and the expression of both β3-AR mRNA and protein in the BRL group [HF group with BRL37344 (4-[-[2-hydroxy-(3-chlorophenyl)ethyl-amino] phenoxyacetic acid) (a β3-AR agonist) injection] was positively correlated with BRL37344 when compared with non-BRL group (HF group without BRL37344 injection) (p<0.05). CONCLUSION Anti-β3-AR autoantibody was detected in aged patients and rats with HF. The expression of β3-AR mRNA and protein in pulmonary tissues decreased continually, and began earlier than in the heart, but its expression in myocardial tissues increased continually and could be further promoted by β3-AR agonist.
Collapse
Affiliation(s)
- Guobin Miao
- Department of Internal Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhe Chen
- Department of Internal Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiangyang Fang
- Department of Internal Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Miaobing Liu
- Department of Internal Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Gang Hao
- Department of Pathophysiology, Capital Medical University, Beijing, China
| | - Huiling An
- Department of Internal Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhiyong Zhang
- Heart Failure Center, Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lingqiao Lu
- Department of Pathophysiology, Capital Medical University, Beijing, China
| | - Jian Zhang
- Medical and Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- * E-mail: (JZ); (LZ)
| | - Lin Zhang
- Heart Failure Center, Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- * E-mail: (JZ); (LZ)
| |
Collapse
|
16
|
Beta blockers, nitric oxide, and cardiovascular disease. Curr Opin Pharmacol 2013; 13:265-73. [DOI: 10.1016/j.coph.2012.12.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/23/2012] [Accepted: 12/16/2012] [Indexed: 12/13/2022]
|
17
|
Total beta-adrenoceptor knockout slows conduction and reduces inducible arrhythmias in the mouse heart. PLoS One 2012; 7:e49203. [PMID: 23133676 PMCID: PMC3486811 DOI: 10.1371/journal.pone.0049203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/05/2012] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Beta-adrenoceptors (β-AR) play an important role in the neurohumoral regulation of cardiac function. Three β-AR subtypes (β(1), β(2), β(3)) have been described so far. Total deficiency of these adrenoceptors (TKO) results in cardiac hypotrophy and negative inotropy. TKO represents a unique mouse model mimicking total unselective medical β-blocker therapy in men. Electrophysiological characteristics of TKO have not yet been investigated in an animal model. METHODS In vivo electrophysiological studies using right heart catheterisation were performed in 10 TKO mice and 10 129SV wild type control mice (WT) at the age of 15 weeks. Standard surface ECG, intracardiac and electrophysiological parameters, and arrhythmia inducibility were analyzed. RESULTS The surface ECG of TKO mice revealed a reduced heart rate (359.2±20.9 bpm vs. 461.1±33.3 bpm; p<0.001), prolonged P wave (17.5±3.0 ms vs. 15.1±1.2 ms; p = 0.019) and PQ time (40.8±2.4 ms vs. 37.3±3.0 ms; p = 0.013) compared to WT. Intracardiac ECG showed a significantly prolonged infra-Hisian conductance (HV-interval: 12.9±1.4 ms vs. 6.8±1.0 ms; p<0.001). Functional testing showed prolonged atrial and ventricular refractory periods in TKO (40.5±15.5 ms vs. 21.3±5.8 ms; p = 0.004; and 41.0±9.7 ms vs. 28.3±6.6 ms; p = 0.004, respectively). In TKO both the probability of induction of atrial fibrillation (12% vs. 24%; p<0.001) and of ventricular tachycardias (0% vs. 26%; p<0.001) were significantly reduced. CONCLUSION TKO results in significant prolongations of cardiac conduction times and refractory periods. This was accompanied by a highly significant reduction of atrial and ventricular arrhythmias. Our finding confirms the importance of β-AR in arrhythmogenesis and the potential role of unspecific beta-receptor-blockade as therapeutic target.
Collapse
|
18
|
Zhao Q, Zeng F, Liu JB, He Y, Li B, Jiang ZF, Wu TG, Wang LX. Upregulation of β3-adrenergic receptor expression in the atrium of rats with chronic heart failure. J Cardiovasc Pharmacol Ther 2012; 18:133-7. [PMID: 23008154 DOI: 10.1177/1074248412460123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To investigate the expression of β(3)-adrenergic receptor (β(3)-AR) in the atrium of rats with chronic heart failure (CHF). METHODS The heart failure rat model was established by aortic constriction. Thirty-six male Wistar rats were divided into Sham group (n = 10) and heart failure model group (n = 26), which were further divided into CHF control (CHF group) and BRL group. The rats in the BRL group were treated with a selective β(3)-AR agonist, BRL-37344 (4.0 nmol/kg, twice weekly) for 4 weeks. RESULTS In the BRL group, the left ventricular end-systolic pressure (83.21 ± 13.0 vs 101.50 ± 12.12 mm Hg) and the absolute values of the maximal rate of rise and fall of left ventricular pressure ([±dP/dtmax] 2.81 ± 0.04 vs 0.35 ± 0.04 and -2.72 ± 0.06 vs -3.33 ± 0.06) were lower than in the CHF group (P < .01). The left atrial mass index (LAMI) in the BRL group (0.4132 ± 0.0306) was higher than that in the CHF (0.3212 ± 0.0136) or Sham group (0.2683 ± 0.0145; P < .01). The levels of the left atrial β(3)-AR messenger RNA (mRNA) expression in the BRL group (0.932 ± 0.055) was higher than that in the CHF (0.706 ± 0.043) or Sham group (0.310 ± 0.020; P < .01). In all animals, there was a positive correlation between the level of β(3)-AR mRNA expression and the left or right atrial mass index (correlation coefficient ranged from 0.744 to 0.937). CONCLUSION There is a significant increase in the β(3)-AR mRNA expression in the atrium of rats with heart failure. The level of β(3)-AR mRNA expression was associated with the AMI and was enhanced by a selective β(3)-AR agonist, BRL-37344.
Collapse
Affiliation(s)
- Qiang Zhao
- Department of Cardiology, the Red Cross Hospital of Guangzhou City, the Fourth Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Niu X, Watts VL, Cingolani OH, Sivakumaran V, Leyton-Mange JS, Ellis CL, Miller KL, Vandegaer K, Bedja D, Gabrielson KL, Paolocci N, Kass DA, Barouch LA. Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. J Am Coll Cardiol 2012; 59:1979-87. [PMID: 22624839 DOI: 10.1016/j.jacc.2011.12.046] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/07/2011] [Accepted: 12/01/2011] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The aim of this study was to determine whether activation of β3-adrenergic receptor (AR) and downstream signaling of nitric oxide synthase (NOS) isoforms protects the heart from failure and hypertrophy induced by pressure overload. BACKGROUND β3-AR and its downstream signaling pathways are recognized as novel modulators of heart function. Unlike β1- and β2-ARs, β3-ARs are stimulated at high catecholamine concentrations and induce negative inotropic effects, serving as a "brake" to protect the heart from catecholamine overstimulation. METHODS C57BL/6J and neuronal NOS (nNOS) knockout mice were assigned to receive transverse aortic constriction (TAC), BRL37344 (β3 agonist, BRL 0.1 mg/kg/h), or both. RESULTS Three weeks of BRL treatment in wild-type mice attenuated left ventricular dilation and systolic dysfunction, and partially reduced cardiac hypertrophy induced by TAC. This effect was associated with increased nitric oxide production and superoxide suppression. TAC decreased endothelial NOS (eNOS) dimerization, indicating eNOS uncoupling, which was not reversed by BRL treatment. However, nNOS protein expression was up-regulated 2-fold by BRL, and the suppressive effect of BRL on superoxide generation was abrogated by acute nNOS inhibition. Furthermore, BRL cardioprotective effects were actually detrimental in nNOS(-/-) mice. CONCLUSIONS These results are the first to show in vivo cardioprotective effects of β3-AR-specific agonism in pressure overload hypertrophy and heart failure, and support nNOS as the primary downstream NOS isoform in maintaining NO and reactive oxygen species balance in the failing heart.
Collapse
Affiliation(s)
- Xiaolin Niu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xinsi Road, Xi'an, China. [corrected]
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Moens AL, Yang R, Watts VL, Barouch LA. Beta 3-adrenoreceptor regulation of nitric oxide in the cardiovascular system. J Mol Cell Cardiol 2010; 48:1088-95. [PMID: 20184889 DOI: 10.1016/j.yjmcc.2010.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 12/08/2009] [Accepted: 02/12/2010] [Indexed: 11/18/2022]
Abstract
The presence of a third beta-adrenergic receptor (beta 3-AR) in the cardiovascular system has challenged the classical paradigm of sympathetic regulation by beta1- and beta2-adrenergic receptors. While beta 3-AR's role in the cardiovascular system remains controversial, increasing evidence suggests that it serves as a "brake" in sympathetic overstimulation - it is activated at high catecholamine concentrations, producing a negative inotropic effect that antagonizes beta1- and beta2-AR activity. The anti-adrenergic effects induced by beta 3-AR were initially linked to nitric oxide (NO) release via endothelial NO synthase (eNOS), although more recently it has been shown under some conditions to increase NO production in the cardiovascular system via the other two NOS isoforms, namely inducible NOS (iNOS) and neuronal NOS (nNOS). We summarize recent findings regarding beta 3-AR effects on the cardiovascular system and explore its prospective as a therapeutic target, particularly focusing on its emerging role as an important mediator of NO signaling in the pathogenesis of cardiovascular disorders.
Collapse
Affiliation(s)
- An L Moens
- Johns Hopkins University School of Medicine, Division of Cardiology, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
22
|
Rozec B, Erfanian M, Laurent K, Trochu JN, Gauthier C. Nebivolol, a vasodilating selective beta(1)-blocker, is a beta(3)-adrenoceptor agonist in the nonfailing transplanted human heart. J Am Coll Cardiol 2009; 53:1532-8. [PMID: 19389564 DOI: 10.1016/j.jacc.2008.11.057] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 11/20/2008] [Accepted: 11/24/2008] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The present study was to assess whether nebivolol could activate beta(3)-adrenergic receptors (ARs) in the human heart. BACKGROUND Nebivolol is a third-generation beta-blocker used in the treatment of heart failure. It associates selective beta(1)-adrenergic antagonist properties with endothelial and nitric oxide (NO)-dependent vasodilation. Several studies reported that this vasodilation could result from an activation of beta(3)-ARs, but no data are available in the heart. METHODS The effect of nebivolol (0.1 nmol/l to 10 micromol/l) upon the developed peak tension was tested in endomyocardial biopsies from human nonrejecting transplanted hearts. Tension was recorded at steady state using a mechanoelectric force transducer. RESULTS Nebivolol induced a concentration-dependent decrease in peak tension (maximum effect obtained at 10 micromol/l: -55 +/- 4%, n = 6), which was similar to that obtained with a preferential beta(3)-AR agonist, BRL 37344 (maximum effect obtained at 1 micromol/l: -45 +/- 2%, n = 12). The nebivolol effect was not modified by 10 micromol/l nadolol, a beta(1,2)-AR antagonist, but was significantly reduced in the presence of 1 micromol/l L-748,337, a selective beta(3)-AR antagonist, and after pre-treatment with 100 micromol/l N(G)-monomethyl-L-arginine, an NOS inhibitor. CONCLUSIONS Our study demonstrated that nebivolol activated beta(3)-AR in the human ventricle. The NO-dependent negative inotropic effect of nebivolol associated with its vasodilating properties previously described in human microcoronary arteries could improve the energetic balance in heart. Those effects could explain the improvement of hemodynamic parameters obtained in patients with heart failure after nebivolol administration as previously described in clinical trials.
Collapse
|