1
|
Joldrichsen MR, Kim E, Steiner HE, Jeong YJ, Premanandan C, Hsueh W, Ziouzenkova O, Cormet-Boyaka E, Boyaka PN. Loss of Paneth cells dysregulates gut ILC subsets and enhances weight gain response to high fat diet in a mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587349. [PMID: 38617293 PMCID: PMC11014498 DOI: 10.1101/2024.03.29.587349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Obesity has been associated with dysbiosis, but innate mechanisms linking intestinal epithelial cell subsets and obesity remain poorly understood. Using mice lacking Paneth cells (Sox9 ΔIEC mice), small intestinal epithelial cells specialized in the production of antimicrobial products and cytokines, we show that dysbiosis alone does not induce obesity or metabolic disorders. Loss of Paneth cells reduced ILC3 and increased ILC2 numbers in the intestinal lamina propria. High-fat diet (HFD) induced higher weight gain and more severe metabolic disorders in Sox9 ΔIEC mice. Further, HFD enhances the number of ILC1 in the intestinal lamina propria of Sox9 ΔIEC mice and increases intestinal permeability and the accumulation of immune cells (inflammatory macrophages and T cells, and B cells) in abdominal fat tissues of obese Sox9 ΔIEC . Transplantation of fecal materials from Sox9 ΔIEC mice in germ-free mice before HFD further confirmed the regulatory role of Paneth cells for gut ILC subsets and the development of obesity.
Collapse
|
2
|
Villalobos-Labra R, Liu R, Spaans F, Sáez T, Semeria Maitret T, Quon A, Sawamura T, Cooke CLM, Davidge ST. Placenta-Derived Extracellular Vesicles From Preeclamptic Pregnancies Impair Vascular Endothelial Function via Lectin-Like Oxidized LDL Receptor-1. Hypertension 2023; 80:2226-2238. [PMID: 37615097 DOI: 10.1161/hypertensionaha.123.21205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Preeclampsia is a complex syndrome that includes maternal vascular dysfunction. Syncytiotrophoblast-derived extracellular vesicles from preeclampsia placentas (preeclampsia-STBEVs) were shown to induce endothelial dysfunction, but an endothelial transmembrane mediator is still unexplored. The LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) is a transmembrane scavenger receptor that can cause endothelial dysfunction, and its expression is increased in the endothelium of preeclampsia women. In this study, we hypothesized that LOX-1 mediates the effects of preeclampsia-STBEVs on endothelial function. METHODS Preeclampsia-STBEVs were collected by perfusion of placentas from women with preeclampsia and in vitro and ex vivo endothelial cell function were assessed. RESULTS In human umbilical vein endothelial cells, inhibition of LOX-1 with LOX-1 blocking antibody (TS20) reduced the uptake of preeclampsia-STBEVs (61.3±8.8%). TS20 prevented the activation of ERK (extracellular signal-regulated kinase, a kinase downstream of LOX-1) and reduced the activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells; 21.1±8.0%) and nitrative stress (23.2±10.3%) that was induced by preeclampsia-STBEVs. Vascular function was assessed by wire myography in isolated mesenteric arteries from pregnant rats that were incubated overnight with preeclampsia-STBEVs±TS20. TS20 prevented endothelium-dependent vasodilation impairment induced by preeclampsia-STBEVs. Nitric oxide contribution to the relaxation was reduced by preeclampsia-STBEVs, which was prevented by TS20. Superoxide dismutase or apocynin, an inhibitor of NOX (nicotinamide adenine dinucleotide phosphate oxidase), restored the impaired endothelium-dependent vasodilation in arteries exposed to preeclampsia-STBEVs. CONCLUSIONS Taken together, our findings demonstrate that LOX-1 mediates the endothelial dysfunction induced by preeclampsia-STBEVs. Our study further expands on the mechanisms that may lead to adverse outcomes in preeclampsia and proposes LOX-1 as a potential target for future interventions.
Collapse
Affiliation(s)
- Roberto Villalobos-Labra
- Department of Obstetrics and Gynecology (R.V.-L., R.L., F.S., T. Sáez, A.Q., C.-L.M.C., S.T.D.), University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute (R.V.-L., R.L., F.S., T. Sáez, A.Q., C.-L.M.C., S.T.D.), University of Alberta, Edmonton, Canada
- Escuela de Medicina sede San Felipe (R.V.-L.), Universidad de Valparaíso, Chile
| | - Ricky Liu
- Department of Obstetrics and Gynecology (R.V.-L., R.L., F.S., T. Sáez, A.Q., C.-L.M.C., S.T.D.), University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute (R.V.-L., R.L., F.S., T. Sáez, A.Q., C.-L.M.C., S.T.D.), University of Alberta, Edmonton, Canada
- Department of Physiology (R.L., S.T.D.), University of Alberta, Edmonton, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology (R.V.-L., R.L., F.S., T. Sáez, A.Q., C.-L.M.C., S.T.D.), University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute (R.V.-L., R.L., F.S., T. Sáez, A.Q., C.-L.M.C., S.T.D.), University of Alberta, Edmonton, Canada
| | - Tamara Sáez
- Department of Obstetrics and Gynecology (R.V.-L., R.L., F.S., T. Sáez, A.Q., C.-L.M.C., S.T.D.), University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute (R.V.-L., R.L., F.S., T. Sáez, A.Q., C.-L.M.C., S.T.D.), University of Alberta, Edmonton, Canada
- Departamento de Medicina Interna (T. Sáez), Universidad de Valparaíso, Chile
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de Medicina (T. Sáez), Universidad de Valparaíso, Chile
| | - Tamara Semeria Maitret
- Department of Laboratory Medicine and Pathology (T.S.M.), University of Alberta, Edmonton, Canada
| | - Anita Quon
- Department of Obstetrics and Gynecology (R.V.-L., R.L., F.S., T. Sáez, A.Q., C.-L.M.C., S.T.D.), University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute (R.V.-L., R.L., F.S., T. Sáez, A.Q., C.-L.M.C., S.T.D.), University of Alberta, Edmonton, Canada
| | - Tatsuya Sawamura
- Departments of Molecular Pathophysiology and Life Innovation, Shinshu University, Matsumoto, Japan (T. Sawamura)
| | - Christy-Lynn M Cooke
- Department of Obstetrics and Gynecology (R.V.-L., R.L., F.S., T. Sáez, A.Q., C.-L.M.C., S.T.D.), University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute (R.V.-L., R.L., F.S., T. Sáez, A.Q., C.-L.M.C., S.T.D.), University of Alberta, Edmonton, Canada
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology (R.V.-L., R.L., F.S., T. Sáez, A.Q., C.-L.M.C., S.T.D.), University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute (R.V.-L., R.L., F.S., T. Sáez, A.Q., C.-L.M.C., S.T.D.), University of Alberta, Edmonton, Canada
- Department of Physiology (R.L., S.T.D.), University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Sahin SB, Nalkiran I, Ayaz T, Irfan Guzel A, Eldes T, Calapoglu T, Sevim Nalkiran H. Genetic variations in OLR1 gene associated with PCOS and atherosclerotic risk factors. J Investig Med 2023; 71:113-123. [PMID: 36647317 DOI: 10.1177/10815589221141831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women of reproductive age. The aim of this study was to investigate the association of oxidized low-density lipoprotein receptor 1 (OLR1) gene variations with the susceptibility of PCOS and to examine the relationship between the frequencies of OLR1 gene variations and atherosclerotic risk factors. Genomic DNA was extracted from blood samples collected from 49 patients with PCOS and 43 healthy controls. The variants in the OLR1 gene were identified using next-generation sequencing (NGS). Heterozygous rs11053646 (K167N), rs11611438, rs11611453, and rs35688880 genotype frequencies were significantly higher in the PCOS group than that of control group. Single nucleotide polymorphism (SNP) rs34163097 minor A allele increased the PCOS risk by ∼10-fold (p = 0.03). SNPs rs11053646, rs11611438, rs11611453, rs34163097, and rs35688880 were positively correlated with body mass index (BMI). The logistic regression model (area under the curve: 0.770, p = 0.000) further revealed a combination of 2-h plasma glucose (PG-2 h), dehydroepiandrosterone sulfate (DHEAS), and rs11053646 as predictors of PCOS phenotype. This is the first study reporting the NGS data of OLR1 gene variants which might be associated with the pathogenesis of PCOS and several atherosclerotic risk factors, particularly higher BMI and DHEAS. To fully understand the genetic basis of PCOS and the contribution of OLR1 gene variants to PCOS pathogenesis, additional large-scale studies are warranted.
Collapse
Affiliation(s)
- Serap Baydur Sahin
- Department of Endocrinology and Metabolism Disease, Medistate Hospital, Istanbul, Turkey
| | - Ihsan Nalkiran
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Teslime Ayaz
- Department of Internal Medicine, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ali Irfan Guzel
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tugba Eldes
- Department of Radiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tugba Calapoglu
- Department of Pediatrics, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hatice Sevim Nalkiran
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
4
|
Jamialahmadi T, Baratzadeh F, Reiner Ž, Mannarino MR, Cardenia V, Simental-Mendía LE, Pirro M, Watts GF, Sahebkar A. The Effects of Statin Therapy on Oxidized LDL and Its Antibodies: A Systematic Review and Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7850659. [PMID: 35958018 PMCID: PMC9359854 DOI: 10.1155/2022/7850659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023]
Abstract
Background Elevated serum low-density lipoproteins (LDL), the substrate for the formation of atherogenic oxidized LDLs (oxLDL), are a causal factor for atherosclerotic cardiovascular disease (ASCVD). Statins are well known to decrease LDL particle concentration and reduce ASCVD morbidity and mortality. Objective To perform a meta-analysis of the effects of statins (i.e., type, dose, and duration of treatment) on serum levels of oxLDL and on immunoglobulin M (IgM) and immunoglobulin G (IgG) antibody levels against oxLDL. Methods PubMed, Scopus, Embase, and Web of Science were searched up to February 5th, 2021, for randomized controlled trials (RCT) evaluating the effect of statins on oxLDL and anti-oxLDL antibody levels. Meta-analysis was performed using Comprehensive Meta-Analysis (CMA) V2 software. To evaluate the influence of each study on the overall effect size, a sensitivity analysis was performed using the leave-one-out method. Evaluation of the funnel plot, Begg's rank correlation, and Egger's weighted regression tests was used to assess the presence of publication bias in the meta-analysis. Results A total of 28 RCTs including 4019 subjects were finally included in the meta-analysis. The results indicated a significant decrease in circulating concentrations of oxLDL after treatment with statins (SMD: -2.150, 95% CI: -2.640, -1.697, p < 0.001). Subgroup analysis found no significant effect of the intensity of statin treatment or statin lipophilicity on the reduction of circulating concentrations of oxLDL. An additional meta-analysis of 3 trials showed that statins did not change the serum levels of IgM and IgG antibodies to oxLDL. Conclusion Statin therapy decreases serum oxLDL concentrations but does not affect circulating levels of anti-oxLDL antibodies.
Collapse
Affiliation(s)
- Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Baratzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Massimo R. Mannarino
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco 10095, Italy
| | | | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Gerald F. Watts
- Cardiometabolic Service, Department of Cardiology, Royal Perth Hospital, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Li M, Zhang R, Li J, Li J. The Role of C-Type Lectin Receptor Signaling in the Intestinal Microbiota-Inflammation-Cancer Axis. Front Immunol 2022; 13:894445. [PMID: 35619716 PMCID: PMC9127077 DOI: 10.3389/fimmu.2022.894445] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
As a subset of pattern recognition receptors (PRRs), C-type lectin-like receptors (CLRs) are mainly expressed by myeloid cells as both transmembrane and soluble forms. CLRs recognize not only pathogen associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs) to promote innate immune responses and affect adaptive immune responses. Upon engagement by PAMPs or DAMPs, CLR signaling initiates various biological activities in vivo, such as cytokine secretion and immune cell recruitment. Recently, several CLRs have been implicated as contributory to the pathogenesis of intestinal inflammation, which represents a prominent risk factor for colorectal cancer (CRC). CLRs function as an interface among microbiota, intestinal epithelial barrier and immune system, so we firstly discussed the relationship between dysbiosis caused by microbiota alteration and inflammatory bowel disease (IBD), then focused on the role of CLRs signaling in pathogenesis of IBD (including Mincle, Dectin-3, Dectin-1, DCIR, DC-SIGN, LOX-1 and their downstream CARD9). Given that CLRs mediate intricate inflammatory signals and inflammation plays a significant role in tumorigenesis, we finally highlight the specific effects of CLRs on CRC, especially colitis-associated cancer (CAC), hoping to open new horizons on pathogenesis and therapeutics of IBD and CAC.
Collapse
Affiliation(s)
- Muhan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runfeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Alston MC, Redman LM, Sones JL. An Overview of Obesity, Cholesterol, and Systemic Inflammation in Preeclampsia. Nutrients 2022; 14:2087. [PMID: 35631228 PMCID: PMC9143481 DOI: 10.3390/nu14102087] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia (PE), an inflammatory state during pregnancy, is a significant cause of maternal and fetal morbidity and mortality. Adverse outcomes associated with PE include hypertension, proteinuria, uterine/placental abnormalities, fetal growth restriction, and pre-term birth. Women with obesity have an increased risk of developing PE likely due to impaired placental development from altered metabolic homeostasis. Inflammatory cytokines from maternal adipose tissue and circulating cholesterol have been linked to systemic inflammation, hypertension, and other adverse outcomes associated with PE. This review will summarize the current knowledge on the role of nutrients, obesity, and cholesterol signaling in PE with an emphasis on findings from preclinical models.
Collapse
Affiliation(s)
- Morgan C. Alston
- Departments of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Reproductive Endocrinology and Women’s Health Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| | - Leanne M. Redman
- Reproductive Endocrinology and Women’s Health Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| | - Jennifer L. Sones
- Departments of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Reproductive Endocrinology and Women’s Health Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| |
Collapse
|
7
|
Taskin HE, Kocael A, Kocael P, Zengin K, Al M, Sozer V, Buchwald JN, McGlennon TW, Uzun H. Original contribution: sleeve gastrectomy reduces soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) levels in patients with morbid obesity. Surg Endosc 2022; 36:2643-2652. [PMID: 35044516 DOI: 10.1007/s00464-021-08989-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Early diagnosis of subclinical cardiovascular disease (CVD) in patients with morbid obesity is important. We investigated the effects of sleeve gastrectomy (SG) on serum soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1), oxidized LDL (oxLDL), and other metabolic and inflammatory parameters associated with atherosclerosis in patients with morbid obesity. METHODS Body mass index (BMI) measurements and assays of metabolic and inflammatory markers were taken in patients in an SG surgery group and a healthy control group and compared at baseline and 12 months after SG. Correlations with changes in these parameters and variations in sLOX-1 were analyzed. RESULTS Metabolic and inflammatory marker values in the surgery (n = 20) and control (n = 20) groups were significantly different at baseline (p < 0.001). The majority of surgery group biomarker levels significantly decreased with mean BMI loss (- 11.8 ± 9.0, p < 0.001) at 12 months, trending toward control group values. Baseline albumin level as well as percentage reductions in oxLDL and the cholesterol retention fraction (CRF) were found to be significantly correlated with percentage reduction in sLOX-1 at 12 months following SG. CONCLUSION Metabolic and inflammatory biomarkers elevated at baseline significantly decreased after SG weight loss. Weight loss induced by SG may limit endothelial damage by reducing levels of oxLDL and LOX-1 as assessed by sLOX-1. These findings suggest that sLOX-1 may function as a marker of atherosclerotic disease states in patients with morbid obesity and that metabolic/bariatric surgery can play a meaningful role in CVD prevention.
Collapse
Affiliation(s)
- Halit Eren Taskin
- Department of Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Ahmet Kocael
- Department of Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Pinar Kocael
- Department of Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kagan Zengin
- Department of Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Muzaffer Al
- Department of Surgery, Faculty of Medicine, Near East University, Nicosia, Turkey
| | - Volkan Sozer
- Department of Biochemistry, Yildiz Technical University, Istanbul, Turkey
| | - J N Buchwald
- Division of Scientific Research Writing, Medwrite Medical Communications, Maiden Rock, WI, USA
| | - T W McGlennon
- Statistical Analysis Division, McGlennon MotiMetrics, Maiden Rock, WI, USA
| | - Hafize Uzun
- Department of Medical Biochemistry, Faculty of Medicine, İstanbul Atlas University, Istanbul, Turkey
| |
Collapse
|
8
|
A dry immersion model of microgravity modulates platelet phenotype, miRNA signature, and circulating plasma protein biomarker profile. Sci Rep 2021; 11:21906. [PMID: 34753989 PMCID: PMC8578674 DOI: 10.1038/s41598-021-01335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/26/2021] [Indexed: 11/08/2022] Open
Abstract
Ground based research modalities of microgravity have been proposed as innovative methods to investigate the aetiology of chronic age-related conditions such as cardiovascular disease. Dry Immersion (DI), has been effectively used to interrogate the sequelae of physical inactivity (PI) and microgravity on multiple physiological systems. Herein we look at the causa et effectus of 3-day DI on platelet phenotype, and correlate with both miRomic and circulating biomarker expression. The miRomic profile of platelets is reflective of phenotype, which itself is sensitive and malleable to the exposome, undergoing responsive transitions in order to fulfil platelets role in thrombosis and haemostasis. Heterogeneous platelet subpopulations circulate at any given time, with varying degrees of sensitivity to activation. Employing a DI model, we investigate the effect of acute PI on platelet function in 12 healthy males. 3-day DI resulted in a significant increase in platelet count, plateletcrit, platelet adhesion, aggregation, and a modest elevation of platelet reactivity index (PRI). We identified 15 protein biomarkers and 22 miRNA whose expression levels were altered after DI. A 3-day DI model of microgravity/physical inactivity induced a prothrombotic platelet phenotype with an unique platelet miRNA signature, increased platelet count and plateletcrit. This correlated with a unique circulating protein biomarker signature. Taken together, these findings highlight platelets as sensitive adaptive sentinels and functional biomarkers of epigenetic drift within the cardiovascular compartment.
Collapse
|
9
|
Gwon MH, Yun JM. Phenethyl Isothiocyanate Improves Lipid Metabolism and Inflammation via mTOR/PPARγ/AMPK Signaling in the Adipose Tissue of Obese Mice. J Med Food 2021; 24:666-669. [PMID: 34077672 DOI: 10.1089/jmf.2020.4881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity is defined as excess adipose mass that causes serious health problems. Phenethyl isothiocyanate (PEITC) is a major and relatively nontoxic compound of the isothiocyanates. Although many studies have demonstrated that PEITC is a potent substance with physiological activities, such as anticancer activity, the precise mechanism for the effects of PEITC on inflammation and lipid metabolism in adipose tissue is not clear. Our study aimed to clarify the effects of PEITC supplements on the adipose tissue in obesity induced with a high-fat/cholesterol diet, and the underlying mechanisms. We induced obesity by feeding the mice with high fat with 1% cholesterol diet (HFCD) for 13 weeks. Mice were divided into five groups: normal diet (CON), HFCD, HFCD with 3 mg/(kg·d) gallic acid (HFCD+G), and HFCD with 30 and 75 mg/(kg·d) PEITC (HFCD+P30 and HFCD+P75, respectively). Using western blotting and quantitative polymerase chain reaction (qPCR) analysis of the adipose tissue, we determined the expression of lipid metabolism-related genes and inflammation-related genes. In the HFCD, the expression level of nuclear factor-κB (NF-κB), lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1), and cyclooxygenase-2 (COX-2), was higher compared with that in the CON. Moreover, in the HFCD, the expression of p-mechanical targets of the rapamycin (mTOR) was increased, whereas that of p-AMP-activated protein kinase (AMPK) was decreased compared with that in the CON. Nevertheless, these decreased expression levels of p-AMPK and increased levels of LOX-1, p-mTOR, peroxisome proliferator-activated receptor gamma (PPARγ), NF-κB, and COX-2, were alleviated by PEITC supplementation. Therefore, we suggest that PEITC might be a potential preventive agent for ameliorating obesity-induced inflammation and adipogenesis by modulating the mTOR/AMPK/PPARγ pathway.
Collapse
Affiliation(s)
- Min-Hee Gwon
- Nutrition Education Major, Graduate School of Education, Chonnam National University, Gwangju, South Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
10
|
Akhmedov A, Sawamura T, Chen CH, Kraler S, Vdovenko D, Lüscher TF. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1): a crucial driver of atherosclerotic cardiovascular disease. Eur Heart J 2021; 42:1797-1807. [PMID: 36282110 DOI: 10.1093/eurheartj/ehaa770] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVDs), specifically lipid-driven atherosclerotic CVDs, remain the number one cause of death worldwide. The lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1), a scavenger receptor that promotes endothelial dysfunction by inducing pro-atherogenic signalling and plaque formation via the endothelial uptake of oxidized LDL (oxLDL) and electronegative LDL, contributes to the initiation, progression, and destabilization of atheromatous plaques, eventually leading to the development of myocardial infarction and certain forms of stroke. In addition to its expression in endothelial cells, LOX-1 is expressed in macrophages, cardiomyocytes, fibroblasts, dendritic cells, lymphocytes, and neutrophils, further implicating this receptor in multiple aspects of atherosclerotic plaque formation. LOX-1 holds promise as a novel diagnostic and therapeutic target for certain CVDs; therefore, understanding the molecular structure and function of LOX-1 is of critical importance. In this review, we highlight the latest scientific findings related to LOX-1, its ligands, and their roles in the broad spectrum of CVDs. We describe recent findings from basic research, delineate their translational value, and discuss the potential of LOX-1 as a novel target for the prevention, diagnosis, and treatment of related CVDs.
Collapse
Affiliation(s)
- Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Shinshu University 3-1-1, Asahi, Matsumoto 390-8621, Japan
| | - Chu-Huang Chen
- Vascular and Medical Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland
| | - Daria Vdovenko
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland.,Royal Brompton and Harefield Hospitals, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College, Dovehause Street, London SW3 6LY, UK
| |
Collapse
|
11
|
Zhang CJ, Zhu N, Wang YX, Liu LP, Zhao TJ, Wu HT, Liao DF, Qin L. Celastrol Attenuates Lipid Accumulation and Stemness of Clear Cell Renal Cell Carcinoma via CAV-1/LOX-1 Pathway. Front Pharmacol 2021; 12:658092. [PMID: 33935779 PMCID: PMC8085775 DOI: 10.3389/fphar.2021.658092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/26/2021] [Indexed: 01/22/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by abnormal lipid accumulation. Celastrol is a pentacyclic triterpene extracted from Tripterygium wilfordii Hook F with anti-cancer activity. In the present study, the anticancer effects of celastrol on ccRCC and the underlying mechanisms were studied. Patients with reduced high density lipoprotein (HDL) and elevated levels of triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL) was found to have higher risk of ccRCC. In ccRCC clinical samples and cell lines, caveolin-1 (CAV-1) was highly expressed. CAV-1 was identified as a potential prognostic biomarker for ccRCC. Celastrol inhibited tumor growth and decreased lipid deposition promoted by high-fat diet in vivo. Celastrol reduced lipid accumulation and caveolae abundance, inhibited the binding of CAV-1 and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in ccRCC cells. Furthermore, celastrol attenuated stemness through blocking Wnt/β-catenin pathway after knockdown of CAV-1 and LOX-1. Therefore, the findings suggest that celastrol may be a promising active ingredient from traditional Chinese medicine for anti-cancer therapy.
Collapse
Affiliation(s)
- Chan-Juan Zhang
- Division of Stem Cell Regulation and Application, Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Xiang Wang
- Division of Stem Cell Regulation and Application, Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Le-Ping Liu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Tan-Jun Zhao
- Division of Stem Cell Regulation and Application, Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Tao Wu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- Division of Stem Cell Regulation and Application, Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Colchicine's effects on metabolic and inflammatory molecules in adults with obesity and metabolic syndrome: results from a pilot randomized controlled trial. Int J Obes (Lond) 2020; 44:1793-1799. [PMID: 32461554 PMCID: PMC7253147 DOI: 10.1038/s41366-020-0598-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Objective Recent clinical trials have demonstrated that colchicine may have metabolic and cardiovascular and benefits in at-risk patients; however, the mechanisms through which colchicine may improve outcomes are still unclear. We sought to examine colchicine’s effects on circulating inflammatory and metabolic molecules in adults with obesity and metabolic syndrome (MetS). Methods Blood samples were collected pre- and post-intervention during a double-blind randomized controlled trial in which 40 adults with obesity and MetS were randomized to colchicine 0.6 mg or placebo twice-daily for 3 months. Serum samples were analyzed for 1305 circulating factors using the SomaScan Platform. The Benjamini–Hochberg procedure was used to adjust the false discovery rate (FDR) for multiple testing. Results At baseline, age (48.0 ± 13.8 vs. 44.7 ± 10.3 years) and BMI (39.8 ± 6.4 vs. 41.8 ± 8.2 kg/m2) were not different between groups. After controlling for the FDR, 34 molecules were significantly changed by colchicine. Colchicine decreased concentrations of multiple inflammatory molecules, including C-reactive protein, interleukin 6, and resistin, in addition to vascular-related proteins (e.g., oxidized low-density lipoprotein receptor, phosphodiesterase 5A). Conversely, relative to placebo, colchicine significantly increased concentrations of eight molecules including secreted factors associated with metabolism and anti-thrombosis. Conclusions In adults with obesity, colchicine significantly affected concentrations of proteins involved in the innate immune system, endothelial function and atherosclerosis, uncovering new mechanisms behind its cardiometabolic effects. Further research is warranted to investigate whether colchicine’s IL-6 suppressive effects may be beneficial in COVID-19.
Collapse
|
13
|
Jamatia E, Lali P, Koner BC, Dhanwal DK, Masroor M, Krishnamurthy K, Singh A. OLR1 Gene Polymorphism and Oxidized LDL Levels in Metabolic Syndrome in Indian Population. Indian J Endocrinol Metab 2018; 22:530-534. [PMID: 30148103 PMCID: PMC6085951 DOI: 10.4103/ijem.ijem_112_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Metabolic syndrome (MetS) is associated with abnormal lipid profile and high cardiovascular risk. There is an increased prevalence of coronary artery disease and Type 2 Diabetes Mellitus in India. Oxidized Low Density Lipoprotein Receptor 1(OLR1), a cell surface endocytosis receptor recognize, internalize and degrade oxidized LDL (oxLDL) in vascular endothelium and plays a role in the pathogenesis of atherosclerosis. The aim was to explore the association of OLR1 gene polymorphism and measure the serum levels of ox-LDL in patients with MetS in Indian population. MATERIALS AND METHODS Forty cases fulfilling the IDF diagnostic criteria for MetS and 40 healthy controls having similar age and sex ratio were genotyped for OLR1 gene (SNP: IVS4-73C>T , rs3736234) by RFLP-PCR. Serum ox-LDL was estimated by ELISA.Their BP, BMI and waist circumference were measured. Fasting Plasma glucose, Serum Triglyceride and HDL-C were measured. RESULTS Serum oxLDL was significantly higher in MetS cases as compared to controls (p < 0.0001). Odds ratio of T allele of above OLR1 SNP among subjects with MetS was 14.79 (95%CI: 1.80-121.2, p < 0.05). But no association was found between the SNP and serum ox-LDL levels. People having TT allele had higher BMI compared to those having CC allele. CONCLUSION Ox LDL, being more atherogenic might contribute in the pathogenesis of MetS. The intronic SNP: IVS4-73 C>T of OLR1 gene increases the risk of developing MetS by a yet unknown mechanism that is independent of rise in ox-LDL. This OLR1 SNP probably influences BMI.
Collapse
Affiliation(s)
- Elvia Jamatia
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | - Pramod Lali
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | - B. C. Koner
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | - D. K. Dhanwal
- Department of Medicine, Maulana Azad Medical College, New Delhi, India
| | - Mirza Masroor
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | | | - Aditi Singh
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
14
|
Le Clanche S, Bonnefont-Rousselot D, Sari-Ali E, Rannou F, Borderie D. Inter-relations between osteoarthritis and metabolic syndrome: A common link? Biochimie 2015; 121:238-52. [PMID: 26700146 DOI: 10.1016/j.biochi.2015.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 12/05/2015] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a degenerative disorder of the joint, principally occurring during aging, and characterized by a focal degradation of cartilage. It is the most prevalent rheumatic disease in industrialized countries and represents the second cause of disability in France. However, the etiology of OA remains unclear. There is only one cell type found in cartilage, chondrocyte, which is responsible for its repair and the synthesis of the elements of the extra-cellular matrix. A dysfunction of these cells results in an imbalance between repair and degradation in cartilage, leading to its destruction. Recently, a link between OA and metabolic syndrome (MetS) has been suggested, introducing a notion of metabolic OA, and a new vision of the disease. MetS is characterized by a cluster of factors (insulin resistance, hypertension, dyslipidemia, visceral obesity), although there is still no clear definition of it. During the 20th century, MetS dramatically increased with changes in population lifestyle, becoming a major health issue in industrialized countries. MetS concerns 10-30% of the worldwide population, but is prevalent in 59% of OA patients. Patients with both OA and MetS have more severe symptoms, occurring sooner than in the general population. Indeed, OA is generally a disease concerning the population over 65 years old, but with an associated MetS the target population is around 50 years old. In this review, we will focus on common factors in OA and MetS, such as hypertension, obesity, dyslipidemia, mitochondrial dysfunction and hyperglycemia, linking one disease to the other.
Collapse
Affiliation(s)
- S Le Clanche
- UMR-S 1124 INSERM Toxicologie, Pharmacologie et Signalisation Cellulaire, CUSP, Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France; Unité pédagogique de Biochimie, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France.
| | - D Bonnefont-Rousselot
- Unité pédagogique de Biochimie, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France; UMR-S 1166 INSERM ICAN, Université Pierre et Marie Curie, Paris 6, 75013 Paris, France; Service de Biochimie Métabolique, Groupe hospitalier Pitié-Salpêtrière-Charles Foix, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris Cedex 13, France.
| | - E Sari-Ali
- Groupe de Recherche En Orthopédie de la Pitié-Salpêtrière (GREOPS), Hôpital de la Pitié-Salpêtrière, 47-83 boulevard de l'hôpital, 75013 Paris, France.
| | - F Rannou
- UMR-S 1124 INSERM Toxicologie, Pharmacologie et Signalisation Cellulaire, CUSP, Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France; Service de rééducation, Hôpital Cochin (AP-HP), Université Paris Descartes, 27 rue du faubourg Saint Jacques, 75679 Paris Cedex 14, France.
| | - D Borderie
- UMR-S 1124 INSERM Toxicologie, Pharmacologie et Signalisation Cellulaire, CUSP, Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France; Unité pédagogique de Biochimie, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France; Service de Diagnostic Biologique Automatisé, Hôpital Cochin (AP-HP), 27 rue du faubourg Saint Jacques, 75679 Paris Cedex 14, France.
| |
Collapse
|
15
|
Montoya-Rodríguez A, de Mejía EG. Pure peptides from amaranth (Amaranthus hypochondriacus) proteins inhibit LOX-1 receptor and cellular markers associated with atherosclerosis development in vitro. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.06.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Ozturk O, Colak Y, Senates E, Yilmaz Y, Ulasoglu C, Doganay L, Ozkanli S, Oltulu YM, Coskunpinar E, Tuncer I. Increased serum soluble lectin-like oxidized low-density lipoprotein receptor-1 levels in patients with biopsy-proven nonalcoholic fatty liver disease. World J Gastroenterol 2015; 21:8096-8102. [PMID: 26185381 PMCID: PMC4499352 DOI: 10.3748/wjg.v21.i26.8096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/02/2015] [Accepted: 05/07/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the relationship between the serum lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) levels and clinical and histopathological features of biopsy-confirmed nonalcoholic fatty liver disease (NAFLD) patients.
METHODS: Fifty-three consecutive, biopsy-proven NAFLD patients (31 males and 22 females, mean age 42.5 ± 9.6 years) and 26 age- and gender-matched, healthy controls (14 males and 12 females, mean age 39 ± 10.7 years) were included. The patients with NAFLD were consecutive patients who had been admitted to the hepatology outpatient clinic within the last year and had been diagnosed with NAFLD as the result of liver biopsy. The healthy controls were individuals who attended the outpatient clinic for routine health control and had no known chronic illnesses. The histological evaluation was conducted according to the NAFLD activity scoring system recommended by The National Institute of Diabetes and Digestive and Kidney Diseases Nonalcoholic Steatohepatitis Clinical Research Network. The serum LOX-1 levels were measured using an ELISA kit (Life Science Inc. USCN. Wuhan, Catalog No. E1859Hu) in both patients and healthy controls. A receiver operating characteristic (ROC) curve analysis was used to identify the optimal cutoff value of LOX-1 and thereby distinguish between patients with nonalcoholic steatohepatitis (NASH) and healthy controls. A P-value < 0.05 was considered statistically significant.
RESULTS: NAFLD and healthy control groups were similar in terms of age and sex. NAFLD patients consisted of 8 patients with simple steatosis (15%), 27 with borderline NASH (51%) and 18 with definitive NASH (34%). Metabolic syndrome was found in 62.2% of the patients with NAFLD. The mean serum LOX-1 level in biopsy-proven NAFLD patients was 8.49 ± 6.43 ng/mL compared to 4.08 ± 4.32 ng/mL in healthy controls (P = 0.001). The LOX-1 levels were significantly different between controls, simple steatosis and NASH (borderline+definite) cases (4.08 ± 4.32 ng/mL, 6.1 ± 6.16 ng/mL, 8.92 ± 6.45 ng/mL, respectively, P = 0.004). When the cut-off value for the serum LOX-1 level was set at 5.35 ng/mL, and a ROC curve analysis was performed to distinguish between steatohepatitis patients and controls; the sensitivity and specificity of the serum LOX-1 level were 69.8% and 69.2%, respectively.
CONCLUSION: The serum LOX-1 levels were significantly higher in NAFLD patients than in healthy controls. Additionally, the serum LOX-1 levels could differentiate between steatohepatitis patients and healthy controls.
Collapse
|
17
|
Lubrano C, Valacchi G, Specchia P, Gnessi L, Rubanenko EP, Shuginina EA, Trukhanov AI, Korkina LG, De Luca C. Integrated Haematological Profiles of Redox Status, Lipid, and Inflammatory Protein Biomarkers in Benign Obesity and Unhealthy Obesity with Metabolic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:490613. [PMID: 26090072 PMCID: PMC4451994 DOI: 10.1155/2015/490613] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/11/2015] [Accepted: 04/20/2015] [Indexed: 12/24/2022]
Abstract
The pathogenesis of obesity (OB) and metabolic syndrome (MetS) implies free radical-, oxidized lipid- (LOOH-), and inflammatory cytokine-mediated altered pathways in target organs. Key elements of the transition from benign OB to unhealthy OB+MetS remain unclear. Here, we measured a panel of redox, antioxidant, and inflammation markers in the groups of OB patients (67 with, 45 without MetS) and 90 controls. Both OB groups displayed elevated levels of adipokines and heavy oxidative stress (OS) evidenced by reduced levels of glutathione, downregulated glutathione-S-transferase, increased 4-hydroxynonenal-protein adducts, reactive oxygen species, and membrane-bound monounsaturated fatty acids (MUFA). Exclusively in OB+MetS, higher-than-normal glutathione peroxidase activity, tumor necrosis factor-α, and other proinflammatory cytokines/chemokines/growth factors were observed; a combination of high adipokine plasminogen activator inhibitor-1 and MUFA was consistent with increased cardiovascular risk. The uncomplicated OB group showed features of adaptation to OS such as decreased levels of vitamin E, activated superoxide dismutase, and inhibited catalase, suggesting H2O2 hyperproduction. Proinflammatory cytokine pattern was normal, except few markers like RANTES, a suitable candidate for therapeutic approaches to prevent a setting of MetS by inhibition of LOOH-primed leukocyte chemotaxis/recruitment to target tissues.
Collapse
Affiliation(s)
- Carla Lubrano
- Section of Medical Pathophysiology, Endocrinology and Food Science, Department of Experimental Medicine, “Sapienza” University, “Umberto I” Polyclinic, Viale Regina Elena 324, 00161 Rome, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Palma Specchia
- Section of Medical Pathophysiology, Endocrinology and Food Science, Department of Experimental Medicine, “Sapienza” University, “Umberto I” Polyclinic, Viale Regina Elena 324, 00161 Rome, Italy
| | - Lucio Gnessi
- Section of Medical Pathophysiology, Endocrinology and Food Science, Department of Experimental Medicine, “Sapienza” University, “Umberto I” Polyclinic, Viale Regina Elena 324, 00161 Rome, Italy
| | - Elizaveta P. Rubanenko
- Active Longevity Clinic “Institut Krasoty na Arbate”, 8 Maly Nikolopeskovsky Lane, Moscow 119002, Russia
| | - Elena A. Shuginina
- Active Longevity Clinic “Institut Krasoty na Arbate”, 8 Maly Nikolopeskovsky Lane, Moscow 119002, Russia
| | - Arseny I. Trukhanov
- Active Longevity Clinic “Institut Krasoty na Arbate”, 8 Maly Nikolopeskovsky Lane, Moscow 119002, Russia
| | - Liudmila G. Korkina
- Active Longevity Clinic “Institut Krasoty na Arbate”, 8 Maly Nikolopeskovsky Lane, Moscow 119002, Russia
- Centre of Innovative Biotechnological Investigations (Cibi-NanoLab), 197 Vernadskogo Prospekt, Moscow 119571, Russia
| | - Chiara De Luca
- Centre of Innovative Biotechnological Investigations (Cibi-NanoLab), 197 Vernadskogo Prospekt, Moscow 119571, Russia
| |
Collapse
|
18
|
High-Density Lipoprotein Prevents Endoplasmic Reticulum Stress-Induced Downregulation of Liver LOX-1 Expression. PLoS One 2015; 10:e0124285. [PMID: 25923692 PMCID: PMC4414515 DOI: 10.1371/journal.pone.0124285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 03/12/2015] [Indexed: 01/08/2023] Open
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a specific cell-surface receptor for oxidized-low-density lipoprotein (ox-LDL). The impact of high-density lipoprotein (HDL) on endoplasmic reticulum (ER) stress-mediated alteration of the LOX-1 level in hepatocytes remains unclear. We aimed to investigate the impact on LOX-1 expression by tunicamycin (TM)-induced ER stress and to determine the effect of HDL on TM-affected LOX-1 expression in hepatic L02 cells. Overexpression or silencing of related cellular genes was conducted in TM-treated cells. mRNA expression was evaluated using real-time polymerase chain reaction (PCR). Protein expression was analyzed by western blot and immunocytochemistry. Lipid uptake was examined by DiI-ox-LDL, followed by flow cytometric analysis. The results showed that TM induced the upregulation of ER chaperone GRP78, downregulation of LOX-1 expression, and lipid uptake. Knock down of IRE1 or XBP-1 effectively restored LOX-1 expression and improved lipid uptake in TM-treated cells. HDL treatment prevented the negative impact on LOX-1 expression and lipid uptake induced by TM. Additionally, 1–10 μg/mL HDL significantly reduced the GRP78, IRE1, and XBP-1 expression levels in TM-treated cells. Our findings reveal that HDL could prevent the TM-induced reduction of LOX-1 expression via inhibiting the IRE1/XBP-1 pathway, suggesting a new mechanism for beneficial roles of HDL in improving lipid metabolism.
Collapse
|
19
|
Berstein LM, Vasilyev DA, Iyevleva AG, Boyarkina MP, Poroshina TE, Khadzhimba AS, Imyanitov EN. Potential and real 'antineoplastic' and metabolic effect of metformin in diabetic and nondiabetic postmenopausal females. Future Oncol 2015; 11:759-70. [PMID: 25757680 DOI: 10.2217/fon.14.317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIM The goal of this study was to determine if the single nucleotide polymorphisms marking potential sensitivity to metformin (MF) correlate with hormone-metabolic status as well as with actual response to MF in postmenopausal cancer patients with or without Type 2 diabetes mellitus and in diabetics without cancer. PATIENTS & METHODS The carriage of ten different SNPs was evaluated in all patients by PCR, and hormone-metabolic status was estimated by anthropometry, ELISA and enzyme colorimetric assays. The response to daily 1-1.7 g of MF was studied based on hormone-metabolic parameters and indirect end points (endometrium thickness, mammographic breast density). RESULTS & CONCLUSION The changes in evaluated 'antineoplastic' and metabolic response marker values were seen in 33.3 and 61.8% of the cases, respectively. Several genetic markers were found that showed an inclination to less frequent 'antineoplastic' or more frequent metabolic response to MF which may be helpful in further studies of this drug in cancer patients.
Collapse
Affiliation(s)
- Lev M Berstein
- Laboratory of Oncoendocrinology, NN Petrov Research Institute of Oncology, St Petersburg, Russia 197758
| | | | | | | | | | | | | |
Collapse
|
20
|
Wang C, Shi C, Yang X, Yang M, Sun H, Wang C. Celastrol suppresses obesity process via increasing antioxidant capacity and improving lipid metabolism. Eur J Pharmacol 2014; 744:52-8. [PMID: 25300680 DOI: 10.1016/j.ejphar.2014.09.043] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
High fat diet, as an important risk factor, plays a pivotal role in atherosclerotic process. Celastrol is one of the active triterpenoid compounds with antioxidative and anti-inflammatory characters. The aims of this study were to evaluate the effect of celastrol on weight, blood lipid and oxidative injury induced by high fat emulsion, and investigate its potential pharmacological mechanisms. Male Sprague-Dawley rats were fed with high fat emulsion for 6 wk to mimic high fat mediated oxidative injury. The effects of celastrol on weight and blood lipid were evaluated, and its mechanisms were disclosed by applying western blot, ELISA and assay kits. Long-term consumption of high fat emulsion could significantly increase weight by enhancing total cholesterol (TC), triacylglycerol (TG), apolipoprotein B (Apo B), low-density lipoprotein cholesterol (LDL-c) levels, attenuating ATP-binding cassette transporter A1 (ABCA1) expression, and decreasing the levels of high-density lipoprotein cholesterol (HDL-c) and apolipoprotein A-I (Apo A-I), and inhibit antioxidant enzymes activities, improve nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. Comparing with model group, celastrol was able to effectively suppress weight and attenuate high fat mediated oxidative injury by improving ABCA1 expression, reducing the levels of TC, TG, LDL-c and Apo B in plasma, and increasing antioxidant enzymes activities and inhibiting NADPH oxidase activity, and decreasing the serum levels of Malondialdehyde (MDA) and reactive oxygen species in dose-dependent way. These data demonstrated that celastrol was able to effectively suppress weight and alleviate high-fat mediated cardiovascular injury via mitigating oxidative stress and improving lipid metabolism.
Collapse
Affiliation(s)
- Chaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Chunfeng Shi
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiaoping Yang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Ming Yang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Chunhua Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
21
|
Natsuaki C, Inoguchi T, Maeda Y, Yamada T, Sasaki S, Sonoda N, Shimabukuro M, Nawata H, Takayanagi R. Association of borderline ankle-brachial index with mortality and the incidence of peripheral artery disease in diabetic patients. Atherosclerosis 2014; 234:360-5. [DOI: 10.1016/j.atherosclerosis.2014.03.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 11/17/2022]
|
22
|
Montoya-Rodríguez A, Milán-Carrillo J, Dia VP, Reyes-Moreno C, González de Mejía E. Pepsin-pancreatin protein hydrolysates from extruded amaranth inhibit markers of atherosclerosis in LPS-induced THP-1 macrophages-like human cells by reducing expression of proteins in LOX-1 signaling pathway. Proteome Sci 2014; 12:30. [PMID: 24891839 PMCID: PMC4041052 DOI: 10.1186/1477-5956-12-30] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/08/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Atherosclerosis is considered a progressive disease that affects arteries that bring blood to the heart, to the brain and to the lower end. It derives from endothelial dysfunction and inflammation, which play an important role in the thrombotic complications of atherosclerosis. Cardiovascular disease is the leading cause of death around the world and one factor that can contribute to its progression and prevention is diet. Our previous study found that amaranth hydrolysates inhibited LPS-induced inflammation in human and mouse macrophages by preventing activation of NF-κB signaling. Furthermore, extrusion improved the anti-inflammatory effect of amaranth protein hydrolysates in both cell lines, probably attributed to the production of bioactive peptides during processing. Therefore, the objective of this study was to compare the anti-atherosclerotic potential of pepsin-pancreatin hydrolysates from unprocessed and extruded amaranth in THP-1 lipopolysaccharide-induced human macrophages and suggest the mechanism of action. RESULTS Unprocessed amaranth hydrolysate (UAH) and extruded amaranth hydrolysate (EAH) showed a significant reduction in the expression of interleukin-4 (IL-4) (69% and 100%, respectively), interleukin-6 (IL-6) (64% and 52%, respectively), interleukin-22 (IL-22) (55% and 70%, respectively). Likewise, UAH and EAH showed a reduction in the expression of monocyte-chemo attractant protein-1 (MCP-1) (35% and 42%, respectively), transferrin receptor-1 (TfR-1) (48% and 61%, respectively), granulocyte-macrophage colony-stimulating factor (GM-CSF) (59% and 63%, respectively), and tumor necrosis factor-α (TNF-α) (60% and 63%, respectively). Also, EAH reduced the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) (27%), intracellular adhesion molecule-1 (ICAM-1) (28%) and matrix metalloproteinase-9 (MMP-9) (19%), important molecular markers in the atherosclerosis pathway. EAH, led to a reduction of 58, 52 and 79% for LOX-1, ICAM-1 and MMP-9, respectively, by confocal microscopy. CONCLUSIONS Extruded amaranth hydrolysate showed potential anti-atherosclerotic effect in LPS-induced THP-1 human macrophage-like cells by reducing the expression of proteins associated with LOX-1 signaling pathway.
Collapse
Affiliation(s)
- Alvaro Montoya-Rodríguez
- Programa Regional del Noroeste para el Doctorado en Biotecnología, FCQB-UAS, Ciudad Universitaria, AP 1354, Culiacán, Sinaloa CP 80000, México
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 228 ERML, MC-051, 1201 West, Gregory Drive, Urbana, IL 61801, USA
| | - Jorge Milán-Carrillo
- Programa Regional del Noroeste para el Doctorado en Biotecnología, FCQB-UAS, Ciudad Universitaria, AP 1354, Culiacán, Sinaloa CP 80000, México
| | - Vermont P Dia
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 228 ERML, MC-051, 1201 West, Gregory Drive, Urbana, IL 61801, USA
| | - Cuauhtémoc Reyes-Moreno
- Programa Regional del Noroeste para el Doctorado en Biotecnología, FCQB-UAS, Ciudad Universitaria, AP 1354, Culiacán, Sinaloa CP 80000, México
| | - Elvira González de Mejía
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 228 ERML, MC-051, 1201 West, Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
23
|
Berstein LM, Iyevleva AG, Vasilyev D, Poroshina TE, Imyanitov EN. Genetic polymorphisms potentially associated with response to metformin in postmenopausal diabetics suffering and not suffering with cancer. Cell Cycle 2013; 12:3681-8. [PMID: 24145224 DOI: 10.4161/cc.26868] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metformin is a well-known antidiabetic medication, which, besides diabetes, may be involved into modulation of other age-related pathologies, including cancer. The study concerns 12 gene polymorphisms divided into 2 groups consisting of 6 genes each. The first group was composed from so-called "standard" (S) polymorphisms, for which the connection with metabolic response to metformin is already established. The second group included polymorphisms of genes encoding proteins possibly connected with diabetes mellitus type 2 (DM2), impaired glucose tolerance or cancer and entitled here as "associated" (A). A total of 156 postmenopausal women (average age 60.7 ± 0.7) were included, 37 of them healthy, 64 with type DM2 and concurrent treatment-naïve cancer (mostly breast, endometrial or colorectal cancer), 32 with DM2 without cancer, and 23 with treatment-naïve cancer and normal glucose tolerance. The leading metformin response S-marker in combined group of DM2 patients was the CC variant of OCT1-R61C polymorphism of organic cation transporter protein 1 gene. In cancer patients without DM2, this position belonged to AC and AA genotypes of OCT1_rs622342 polymorphism. Among the A-polymorphisms, GA variant of sex hormone-binding globulin gene SHBG_D356N was less frequently observed in DM2 patients with or without cancer. Besides, in diabetics, the same polymorphic variant of SHBG as well as GC genotype of oxidized lipoprotein receptor OLR1_G501C and GG genotype of locus rs11065987 near BRAP gene were carried rather often in combination with "metformin-positive" variant of OCT1_R61C. In addition, carriers of OCT1_R61C and OCT1_rs622342 polymorphisms with potentially positive reaction to metformin had higher insulin resistance score (HOMA-IR) values. Received data lead to the conclusion that postmenopausal diabetics, both with and without cancer, differ in genetic stigmata of potential response to metformin less than they differ from cancer patients without DM2. As genetic polymorphisms associated with metabolic and anticancer metformin (and, possibly, phenformin) effects may be different, this subject requires further investigation.
Collapse
Affiliation(s)
- Lev M Berstein
- Laboratory of Oncoendocrinology; N.N.Petrov Research Institute of Oncology; St.Petersburg, Russia
| | | | | | | | | |
Collapse
|
24
|
Oñate B, Vilahur G, Camino-López S, Díez-Caballero A, Ballesta-López C, Ybarra J, Moscatiello F, Herrero J, Badimon L. Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype. BMC Genomics 2013; 14:625. [PMID: 24040759 PMCID: PMC3848661 DOI: 10.1186/1471-2164-14-625] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The adipose tissue is an endocrine regulator and a risk factor for atherosclerosis and cardiovascular disease when by excessive accumulation induces obesity. Although the adipose tissue is also a reservoir for stem cells (ASC) their function and "stemcellness" has been questioned. Our aim was to investigate the mechanisms by which obesity affects subcutaneous white adipose tissue (WAT) stem cells. RESULTS Transcriptomics, in silico analysis, real-time polymerase chain reaction (PCR) and western blots were performed on isolated stem cells from subcutaneous abdominal WAT of morbidly obese patients (ASCmo) and of non-obese individuals (ASCn). ASCmo and ASCn gene expression clustered separately from each other. ASCmo showed downregulation of "stemness" genes and upregulation of adipogenic and inflammatory genes with respect to ASCn. Moreover, the application of bioinformatics and Ingenuity Pathway Analysis (IPA) showed that the transcription factor Smad3 was tentatively affected in obese ASCmo. Validation of this target confirmed a significantly reduced Smad3 nuclear translocation in the isolated ASCmo. CONCLUSIONS The transcriptomic profile of the stem cells reservoir in obese subcutaneous WAT is highly modified with significant changes in genes regulating stemcellness, lineage commitment and inflammation. In addition to body mass index, cardiovascular risk factor clustering further affect the ASC transcriptomic profile inducing loss of multipotency and, hence, capacity for tissue repair. In summary, the stem cells in the subcutaneous WAT niche of obese patients are already committed to adipocyte differentiation and show an upregulated inflammatory gene expression associated to their loss of stemcellness.
Collapse
Affiliation(s)
- Blanca Oñate
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Taye A, El-Sheikh AAK. Lectin-like oxidized low-density lipoprotein receptor 1 pathways. Eur J Clin Invest 2013; 43:740-5. [PMID: 23594336 DOI: 10.1111/eci.12092] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/15/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND The role of lectin-like oxidized low-density lipoprotein receptor (LOX)-1 has been implicated in the pathogenesis of different diseases, including atherosclerosis, hypertension, obesity, diabetes mellitus and metabolic syndrome. To date, several studies aimed at partially investigating the mechanistic role of LOX-1 in these various pathologies. Still, so far, the precise signal transduction pathways involving LOX-1 have not yet been elucidated. MATERIALS AND METHODS The most recent data published by the authors as well as others concerning different pathways involving LOX-1 are collected to formulate the presented updated review. RESULTS One of the most prominent pathways highlighted in the present review is the relationship of LOX-1 to NADPH oxidase that acts as a major source of harmful free radicals causing oxidative stress in blood vessels. Other pathways involve lipid and glucose metabolism-mediated signal transduction. DISCUSSION The modulatory role of LOX-1 on nitric oxide and renin/angiotensin systems as well as on fibrosis, apoptosis and inflammatory pathways is discussed. CONCLUSION The current review revisits LOX-1 and its related pathways, implicating LOX-1 as a target for ameliorating various pathological conditions.
Collapse
Affiliation(s)
- Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | |
Collapse
|
26
|
Bryan S, Baregzay B, Spicer D, Singal PK, Khaper N. Redox-inflammatory synergy in the metabolic syndrome. Can J Physiol Pharmacol 2013; 91:22-30. [PMID: 23368637 DOI: 10.1139/cjpp-2012-0295] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic syndrome (MetS) comprises interrelated disease states including obesity, insulin resistance and type 2 diabetes (T2DM), dyslipidemia, and hypertension. Essential to normal physiological function, and yet massively damaging in excess, oxidative stress and inflammation are pivotal common threads among the pathologies of MetS. Increasing evidence indicates that redox and inflammatory dysregulation parallels the syndrome's physiological, biochemical, and anthropometric features, leading many to consider the pro-oxidative, pro-inflammatory milieu an unofficial criterion in itself. Left unchecked, cross-promotion of oxidative stress and inflammation creates a feed-forward cycle that can initiate and advance disease progression. Such redox-inflammatory integration is evident in the pathogenesis of obesity, insulin resistance and T2DM, atherogenic dyslipidemia, and hypertension, and is thus hypothesized to be the "common soil" from which they develop. The present review highlights the synergistic contributions of redox-inflammatory processes to each of the components of the MetS.
Collapse
Affiliation(s)
- Sean Bryan
- Medical Sciences Division, Northern Ontario School of Medicine, 955 Oliver Road, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | | | | | | | | |
Collapse
|