1
|
du J, Zhang T, Hao C, Xu H, Luan H, Cheng Z, Ding M. Impact of transesophageal echocardiography dynamic monitoring of left ventricular preload on postoperative gastrointestinal function in colorectal cancer patients undergoing radical surgery. Ann Med Surg (Lond) 2024; 86:1977-1982. [PMID: 38576914 PMCID: PMC10990396 DOI: 10.1097/ms9.0000000000001776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/22/2024] [Indexed: 04/06/2024] Open
Abstract
Background Patients undergoing intestinal tumour surgery are fasted preoperatively for a series of bowel preparations, which makes it difficult to assess the patients' volume, posing a challenge to intraoperative fluid replacement. Besides, inappropriate fluid therapy can cause organ damage and affect the prognosis of patients, and it increases the burden of patients and has a certain impact on patients and families. Material and methods The authors designed a single-centre, prospective, single-blinded, randomized, parallel-controlled trial. Fifty-four patients undergoing elective radical resection of colorectal cancer were selected and divided into two groups according to whether transesophageal echocardiography (TEE) was used or not during the operation, that is the goal-directed fluid therapy (GDFT) group (group T) guided by TEE and the restrictive fluid therapy group (group C). Fluid replacement was guided according to left ventricular end-diastolic volume index (LVEDVI) in group T and according to restrictive fluid replacement regimen in group C. Results The first postoperative exhaust time and defecation time in group T [(45±21), (53±24) h] were significantly shorter (P<0.05) than those in group C [(63±26), (77±30) h]. There were no significant differences (P>0.05) in liquid intake time and postoperative nausea and vomiting incidences between the two groups. The total intraoperative fluid volume in group T was significantly higher (P<0.05) than that in group C. There was no significant difference (P>0.05) in urine volume between the two groups. There were no significant differences (P>0.05) in lactate content, mean arterial pressure, and heart rate at various time points between the two groups. The length of hospital stay in group C [(18±4) days] was significantly longer (P<0.05) than that in group T [(15±4) days]. Conclusions For patients undergoing colorectal cancer surgery, fluid therapy by monitoring LVEDVI resulted in faster recovery of gastrointestinal function and shorter hospital stay.
Collapse
Affiliation(s)
| | | | | | - Hai Xu
- Jinzhou Medical University
| | - Hengfei Luan
- Department of anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, People’s Republic China
| | | | - Mengyao Ding
- Department of anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, People’s Republic China
| |
Collapse
|
2
|
Yan M, Zhao J, Kang Y, Liu L, He W, Xie Y, Wang R, Shan L, Li X, Ma K. Effect and mechanism of safranal on ISO-induced myocardial injury based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116103. [PMID: 36586525 DOI: 10.1016/j.jep.2022.116103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sympathetic hyperactivation is a significant risk factor in the development of cardiovascular disease. Safranal has shown good myocardial protection in recent studies, but the mechanism of its role in myocardial injury caused by sympathetic hyperactivation remains unclear. AIM OF THE STUDY The purpose of this study was to investigate whether safranal can effectively reduce isoproterenol (ISO)-induced myocardial injury in rats and H9c2 cells and to reveal its pharmacological action and target in inhibiting myocardial injury caused by sympathetic hyperactivation. MATERIALS AND METHODS This study was carried out using network pharmacology, molecular docking, and in vitro and in vivo experiments. An in vivo model of myocardial injury was established by subcutaneous injection of ISO, and an in vitro model of H9c2 cell injury was induced by ISO. RESULTS Safranal ameliorated myocardial injury caused by sympathetic hyperactivation by reducing the level of myocardial apoptosis. According to the results of network pharmacological analysis and molecular docking, the mechanism by which safranal alleviates myocardial injury may be closely related to the TNF signaling pathway, and safranal plays a role by regulating the core targets of the TNF signaling pathway. Safranal significantly inhibited the protein expression of TNF, PTGS2, MMP9 and pRELA. CONCLUSION Safranal plays a protective role in myocardial injury induced by sympathetic hyperactivation by downregulating the TNF signaling pathway.
Collapse
Affiliation(s)
- Meijuan Yan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Jichuan Zhao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Yingjie Kang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Luqian Liu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Wenjun He
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Yufang Xie
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Rui Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Liya Shan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China.
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China.
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China.
| |
Collapse
|
3
|
Emran T, Chowdhury NI, Sarker M, Bepari AK, Hossain M, Rahman GMS, Reza HM. L-carnitine protects cardiac damage by reducing oxidative stress and inflammatory response via inhibition of tumor necrosis factor-alpha and interleukin-1beta against isoproterenol-induced myocardial infarction. Biomed Pharmacother 2021; 143:112139. [PMID: 34507121 DOI: 10.1016/j.biopha.2021.112139] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
BRIEF INTRODUCTION Myocardial infarction (MI) is a common manifestation of certain cardiac diseases where oxidative stress and fibrosis aggravate the condition markedly. MAIN OBJECTIVE OF THE STUDY Investigation of L-carnitine's cardioprotective roles and mechanism of action in a rat model of MI. METHODS To develop a MI animal model, Isoproterenol (ISO) was administered in male Long Evans rats where animals were divided into five groups (six rats/group). The oxidative stress and antioxidant enzyme activities were determined by different biochemical tests. The real-time PCR was performed to determine the expression of TNF-α and Il-1β. Histopathological observations by hematoxylin-eosin and Masson trichrome were made to observe the tissue damage and fibrosis in heart and kidney. SIGNIFICANT FINDINGS FROM THE STUDY The ISO-treated rats showed increased levels of troponin I and lipid peroxidation and lower antioxidant enzyme activity in heart and kidney tissues. The levels of TNF-α and IL-1β were also increased in ISO-rats. Co-administration of L-carnitine with ISO reversed all these parameters. The elevated levels of uric acid and creatinine kinase and ALP, AST and ALT activities in ISO-rats were also significantly reduced by L-carnitine administration. L-carnitine markedly decreased the infiltration of inflammatory cells and improved the tissue architecture in heart and kidney. Control animals did not show any appreciable response upon L-carnitine administration. RELEVANT CONTRIBUTION TO KNOWLEDGE These results suggest that L-carnitine plays a defensive role against cardiac and renal damage in ISO-treated MI rat model via suppressing oxidative stress and increasing antioxidant enzyme functions through inhibition of TNF-α and IL-1β.
Collapse
Affiliation(s)
- Tushar Emran
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Nowreen Islam Chowdhury
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Manoneeta Sarker
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Murad Hossain
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - G M Sayedur Rahman
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh.
| |
Collapse
|
4
|
The osmo-metabolic approach: a novel and tantalizing glucose-sparing strategy in peritoneal dialysis. J Nephrol 2020; 34:503-519. [PMID: 32767274 PMCID: PMC8036224 DOI: 10.1007/s40620-020-00804-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Peritoneal dialysis (PD) is a viable but under-prescribed treatment for uremic patients. Concerns about its use include the bio-incompatibility of PD fluids, due to their potential for altering the functional and anatomical integrity of the peritoneal membrane. Many of these effects are thought to be due to the high glucose content of these solutions, with attendant issues of products generated during heat treatment of glucose-containing solutions. Moreover, excessive intraperitoneal absorption of glucose from the dialysate has many potential systemic metabolic effects. This article reviews the efforts to develop alternative PD solutions that obviate some of these side effects, through the replacement of part of their glucose content with other osmolytes which are at least as efficient in removing fluids as glucose, but less impactful on patient metabolism. In particular, we will summarize clinical studies on the use of alternative osmotic ingredients that are commercially available (icodextrin and amino acids) and preclinical studies on alternative solutions under development (taurine, polyglycerol, carnitine and xylitol). In addition to the expected benefit of a glucose-sparing approach, we describe an ‘osmo-metabolic’ approach in formulating novel PD solutions, in which there is the possibility of exploiting the pharmaco-metabolic properties of some of the osmolytes to attenuate the systemic side effects due to glucose. This approach has the potential to ameliorate pre-existing co-morbidities, including insulin resistance and type-2 diabetes, which have a high prevalence in the dialysis population, including in PD patients.
Collapse
|
5
|
Almannai M, Alfadhel M, El-Hattab AW. Carnitine Inborn Errors of Metabolism. Molecules 2019; 24:molecules24183251. [PMID: 31500110 PMCID: PMC6766900 DOI: 10.3390/molecules24183251] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022] Open
Abstract
Carnitine plays essential roles in intermediary metabolism. In non-vegetarians, most of carnitine sources (~75%) are obtained from diet whereas endogenous synthesis accounts for around 25%. Renal carnitine reabsorption along with dietary intake and endogenous production maintain carnitine homeostasis. The precursors for carnitine biosynthesis are lysine and methionine. The biosynthetic pathway involves four enzymes: 6-N-trimethyllysine dioxygenase (TMLD), 3-hydroxy-6-N-trimethyllysine aldolase (HTMLA), 4-N-trimethylaminobutyraldehyde dehydrogenase (TMABADH), and γ-butyrobetaine dioxygenase (BBD). OCTN2 (organic cation/carnitine transporter novel type 2) transports carnitine into the cells. One of the major functions of carnitine is shuttling long-chain fatty acids across the mitochondrial membrane from the cytosol into the mitochondrial matrix for β-oxidation. This transport is achieved by mitochondrial carnitine–acylcarnitine cycle, which consists of three enzymes: carnitine palmitoyltransferase I (CPT I), carnitine-acylcarnitine translocase (CACT), and carnitine palmitoyltransferase II (CPT II). Carnitine inborn errors of metabolism could result from defects in carnitine biosynthesis, carnitine transport, or mitochondrial carnitine–acylcarnitine cycle. The presentation of these disorders is variable but common findings include hypoketotic hypoglycemia, cardio(myopathy), and liver disease. In this review, the metabolism and homeostasis of carnitine are discussed. Then we present details of different inborn errors of carnitine metabolism, including clinical presentation, diagnosis, and treatment options. At the end, we discuss some of the causes of secondary carnitine deficiency.
Collapse
Affiliation(s)
- Mohammed Almannai
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh 11525, Saudi Arabia.
| | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia.
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11426, Saudi Arabia.
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia.
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE.
| |
Collapse
|
6
|
Zhong W, Sun B, Gao W, Qin Y, Zhang H, Huai L, Tang Y, Liang Y, He L, Zhang X, Tao H, Chen S, Yang W, Yang L, Liu Y, Liu H, Zhou H, Sun T, Yang C. Salvianolic acid A targeting the transgelin-actin complex to enhance vasoconstriction. EBioMedicine 2018; 37:246-258. [PMID: 30361065 PMCID: PMC6286650 DOI: 10.1016/j.ebiom.2018.10.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Salvia miltiorrhiza is used extensively to treat cardiovascular diseases. SAA is a major bioactive component in Salvia miltiorrhiza and mediates myocardial ischemia (MI). However, the industrial production of SAA is limited due to low yields. In addition, the direct targets of SAA are unknown. Here we explore cardioprotective mechanisms and targets of SAA in the cardiovascular system. METHODS Transgelin and actin were identified as targets of SAA using a chemical biology method and were validated by Biacore analysis, microscale thermophoresis and single-molecule imaging. Studies of transgelin (-/-) knockout mice further verify the target. Cardioprotective mechanisms and targets of SAA were studied in cultured vascular smooth muscle cells and transgenic mice. FINDINGS In WT mice, SAA targeted transgelin and had a protective effect on myocardium but did not have the same protective effect on transgelin (-/-) mice. SAA stabilizes the transgelin-actin complex, modulates the reorganization of the actin cytoskeleton, facilitates F-actin bundling, further enhances the contractility and blood flows of coronary arteries, and improves outcomes of myocardial ischemia. Based on the target, a more active SAA derivative offering myocardial protection, SAA-30, was obtained. INTERPRETATION We report on the direct targets of SAA and mechanisms of myocardial ischemia treatment. We also find that transgelin may act as a novel therapeutic target of myocardial ischemia. Furthermore, a more effective derivative of SAA provides the basis for further clinical translational research.
Collapse
Affiliation(s)
- Weilong Zhong
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Bo Sun
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Wenqing Gao
- Heart Center, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Yuan Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Longcong Huai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Yuanhao Tang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Yuan Liang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Lingfei He
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Xiaoyun Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Honglian Tao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Wei Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Lan Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Yanrong Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China.
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China.
| |
Collapse
|
7
|
Vasiljevski ER, Summers MA, Little DG, Schindeler A. Lipid storage myopathies: Current treatments and future directions. Prog Lipid Res 2018; 72:1-17. [PMID: 30099045 DOI: 10.1016/j.plipres.2018.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/20/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
Abstract
Lipid storage myopathies (LSMs) are a heterogeneous group of genetic disorders that present with abnormal lipid storage in multiple body organs, typically muscle. Patients can clinically present with cardiomyopathy, skeletal muscle weakness, myalgia, and extreme fatigue. An early diagnosis is crucial, as some LSMs can be managed by simple nutraceutical supplementation. For example, high dosage l-carnitine is an effective intervention for patients with Primary Carnitine Deficiency (PCD). This review discusses the clinical features and management practices of PCD as well as Neutral Lipid Storage Disease (NLSD) and Multiple Acyl-CoA Dehydrogenase Deficiency (MADD). We provide a detailed summary of current clinical management strategies, highlighting issues of high-risk contraindicated treatments with case study examples not previously reviewed. Additionally, we outline current preclinical studies providing disease mechanistic insight. Lastly, we propose that a number of other conditions involving lipid metabolic dysfunction that are not classified as LSMs may share common features. These include Neurofibromatosis Type 1 (NF1) and autoimmune myopathies, including Polymyositis (PM), Dermatomyositis (DM), and Inclusion Body Myositis (IBM).
Collapse
Affiliation(s)
- Emily R Vasiljevski
- Orthopaedic Research & Biotechnology, The Children's Hospital at Westmead, Westmead, NSW, Australia.; Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Matthew A Summers
- Bone Biology Division, The Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Faculty of Medicine, Sydney, NSW, Australia
| | - David G Little
- Orthopaedic Research & Biotechnology, The Children's Hospital at Westmead, Westmead, NSW, Australia.; Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology, The Children's Hospital at Westmead, Westmead, NSW, Australia.; Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
8
|
Wang ZY, Liu YY, Liu GH, Lu HB, Mao CY. l-Carnitine and heart disease. Life Sci 2017; 194:88-97. [PMID: 29241711 DOI: 10.1016/j.lfs.2017.12.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/03/2017] [Accepted: 12/09/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is a key cause of deaths worldwide, comprising 15-17% of healthcare expenditure in developed countries. Current records estimate an annual global average of 30 million cardiac dysfunction cases, with a predicted escalation by two-three folds for the next 20-30years. Although β-blockers and angiotensin-converting-enzymes are commonly prescribed to control CVD risk, hepatotoxicity and hematological changes are frequent adverse events associated with these drugs. Search for alternatives identified endogenous cofactor l-carnitine, which is capable of promoting mitochondrial β-oxidation towards a balanced cardiac energy metabolism. l-Carnitine facilitates transport of long-chain fatty acids into the mitochondrial matrix, triggering cardioprotective effects through reduced oxidative stress, inflammation and necrosis of cardiac myocytes. Additionally, l-carnitine regulates calcium influx, endothelial integrity, intracellular enzyme release and membrane phospholipid content for sustained cellular homeostasis. Carnitine depletion, characterized by reduced expression of "organic cation transporter-2" gene, is a metabolic and autosomal recessive disorder that also frequently associates with CVD. Hence, exogenous carnitine administration through dietary and intravenous routes serves as a suitable protective strategy against ventricular dysfunction, ischemia-reperfusion injury, cardiac arrhythmia and toxic myocardial injury that prominently mark CVD. Additionally, carnitine reduces hypertension, hyperlipidemia, diabetic ketoacidosis, hyperglycemia, insulin-dependent diabetes mellitus, insulin resistance, obesity, etc. that enhance cardiovascular pathology. These favorable effects of l-carnitine have been evident in infants, juvenile, young, adult and aged patients of sudden and chronic heart failure as well. This review describes the mechanism of action, metabolism and pharmacokinetics of l-carnitine. It specifically emphasizes upon the beneficial role of l-carnitine in cardiomyopathy.
Collapse
Affiliation(s)
- Zhong-Yu Wang
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Ying-Yi Liu
- Department of Anesthesia, China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Guo-Hui Liu
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Hai-Bin Lu
- College of Pharmacy, Jilin University, Changchun, PR China
| | - Cui-Ying Mao
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, PR China.
| |
Collapse
|
9
|
Ogundele OM, Rosa FA, Dharmakumar R, Lee CC, Francis J. Systemic Sympathoexcitation Was Associated with Paraventricular Hypothalamic Phosphorylation of Synaptic CaMKIIα and MAPK/ErK. Front Neurosci 2017; 11:447. [PMID: 28824368 PMCID: PMC5541931 DOI: 10.3389/fnins.2017.00447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/21/2017] [Indexed: 01/16/2023] Open
Abstract
Systemic administration of adrenergic agonist (Isoproterenol; ISOP) is known to facilitate cardiovascular changes associated with heart failure through an upregulation of cardiac toll-like receptor 4 (TLR4). Furthermore, previous studies have shown that cardiac tissue-specific deletion of TLR4 protects the heart against such damage. Since the autonomic regulation of systemic cardiovascular function originates from pre-autonomic sympathetic centers in the brain, it is unclear how a systemically driven sympathetic change may affect the pre-autonomic paraventricular hypothalamic nuclei (PVN) TLR4 expression. Here, we examined how change in PVN TLR4 was associated with alterations in the neurochemical cytoarchitecture of the PVN in systemic adrenergic activation. After 48 h of intraperitoneal 150 mg/kg ISOP treatment, there was a change in PVN CaMKIIα and MAPK/ErK expression, and an increase in TLR4 in expression. This was seen as an increase in p-MAPK/ErK, and a decrease in synaptic CaMKIIα expression in the PVN (p < 0.01) of ISOP treated mice. Furthermore, there was an upregulation of vesicular glutamate transporter (VGLUT 2; p < 0.01) and a decreased expression of GABA in the PVN of Isoproterenol (ISOP) treated WT mice (p < 0.01). However, after a PVN-specific knockdown of TLR4, the effect of systemic administration of ISOP was attenuated, as indicated by a decrease in p-MAPK/ErK (p < 0.01) and upregulation of CaMKIIα (p < 0.05). Additionally, loss of inhibitory function was averted while VGLUT2 expression decreased when compared with the ISOP treated wild type mice and the control. Taken together, the outcome of this study showed that systemic adrenergic activation may alter the expression, and phosphorylation of preautonomic MAPK/ErK and CaMKIIα downstream of TLR4. As such, by outlining the roles of these kinases in synaptic function, we have identified the significance of neural TLR4 in the progression, and attenuation of synaptic changes in the pre-autonomic sympathetic centers.
Collapse
Affiliation(s)
- Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary MedicineBaton Rouge, LA, United States
| | - Fernando A Rosa
- Departamento de Clínica, Cirurgia e Reprodução Animal, Faculdade de Medicina Veterinária, Universidade Estadual PaulistaAraçatuba, Brazil
| | - Rohan Dharmakumar
- Department of Biomedical Sciences, Cedars-Sinai Medical Center Biomedical Imaging Research InstituteLos Angeles, CA, United States
| | - Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary MedicineBaton Rouge, LA, United States
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary MedicineBaton Rouge, LA, United States
| |
Collapse
|
10
|
Xu YZ, Chen CF, Chen B, Gao XF, Hua W, Cha YM, Dzeja PP. The Modulating Effects of Cardiac Resynchronization Therapy on Myocardial Metabolism in Heart Failure. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2016; 39:1404-1409. [PMID: 27807872 DOI: 10.1111/pace.12971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
Heart failure (HF) is associated with changes in cardiac substrate utilization and energy metabolism, including a decline in high-energy phosphate content, mitochondrial dysfunction, and phosphotransfer enzyme deficiency. A shift toward glucose metabolism was noted in the end stage of HF in animals, although HF in humans may not be associated with a shift toward predominant glucose utilization. Deficiencies of micronutrients are well-established causes of cardiomyopathy. Correction of these deficits can improve heart function. The genes governing the energy metabolism were predominantly underexpressed in nonischemic cardiomyopathy and hypertrophic cardiomyopathy but were overexpressed in ischemic cardiomyopathy. Cardiac resynchronization therapy (CRT) has been proven to increase cardiac efficiency without increasing myocardial oxygen consumption. Altered myocardial metabolism is normalized by CRT to improve ventricular function.
Collapse
Affiliation(s)
- Yi-Zhou Xu
- Department of Cardiology, Hangzhou First People's Hospital and Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
| | - Chao-Feng Chen
- Department of Cardiology, Hangzhou First People's Hospital and Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
| | - Bin Chen
- Department of Cardiology, Hangzhou First People's Hospital and Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
| | - Xiao-Fei Gao
- Department of Cardiology, Hangzhou First People's Hospital and Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
| | - Wei Hua
- The Cardiac Arrhythmia Center, Fu Wai Hospital of the Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Mei Cha
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Petras P Dzeja
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Arduini A, Zammit VA. A tennis lesson: sharp practice in the science behind the Sharapova case. Postgrad Med J 2016; 92:429-30. [PMID: 27252310 PMCID: PMC4975811 DOI: 10.1136/postgradmedj-2016-134124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 12/30/2022]
Affiliation(s)
| | - Victor A Zammit
- Translational and Experimental Medicine, Warwick Medical School, Coventry, UK
| |
Collapse
|