1
|
Camunas-Alberca SM, Moran-Garrido M, Sáiz J, Gil-de-la-Fuente A, Barbas C, Gradillas A. Integrating the potential of ion mobility spectrometry-mass spectrometry in the separation and structural characterisation of lipid isomers. Front Mol Biosci 2023; 10:1112521. [PMID: 37006618 PMCID: PMC10060977 DOI: 10.3389/fmolb.2023.1112521] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
It is increasingly evident that a more detailed molecular structure analysis of isomeric lipids is critical to better understand their roles in biological processes. The occurrence of isomeric interference complicates conventional tandem mass spectrometry (MS/MS)-based determination, necessitating the development of more specialised methodologies to separate lipid isomers. The present review examines and discusses recent lipidomic studies based on ion mobility spectrometry combined with mass spectrometry (IMS-MS). Selected examples of the separation and elucidation of structural and stereoisomers of lipids are described based on their ion mobility behaviour. These include fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. Recent approaches for specific applications to improve isomeric lipid structural information using direct infusion, coupling imaging, or liquid chromatographic separation workflows prior to IMS-MS are also discussed, including: 1) strategies to improve ion mobility shifts; 2) advanced tandem MS methods based on activation of lipid ions with electrons or photons, or gas-phase ion-molecule reactions; and 3) the use of chemical derivatisation techniques for lipid characterisation.
Collapse
Affiliation(s)
- Sandra M. Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Alberto Gil-de-la-Fuente
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- *Correspondence: Ana Gradillas,
| |
Collapse
|
2
|
Küster A, Croyal M, Moyon T, Darmaun D, Ouguerram K, Ferchaud-Roucher V. Characterization of lipoproteins and associated lipidome in very preterm infants: a pilot study. Pediatr Res 2023; 93:938-947. [PMID: 35739258 DOI: 10.1038/s41390-022-02159-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Preterm birth is associated with higher risks of suboptimal neurodevelopment and cardiometabolic disease later in life. Altered maternal-fetal lipid supply could play a role in such risks. Our hypothesis was that very preterm infants born with very low birth weight (VLBW) have altered lipidome and apolipoprotein profiles, compared with term infants. METHODS Seven mothers of VLBW infants born at <32 GA and 8 full-term mother-infant dyads were included. Cholesterol and triglycerides in lipoproteins were determined in maternal plasma and in the two blood vessels of the umbilical cord (vein (UV) and artery (UA)) following FPLC isolation. Apolipoprotein concentrations in lipoproteins and plasma lipidomic analysis were performed by LC-MS/MS. RESULTS We found higher cholesterol and VLDL-cholesterol in UV and UA and lower apolipoprotein A-I in HDL2 in UV in preterm neonates. Phosphatidylcholine (PC) containing saturated and monounsaturated fatty acids and specific sphingomyelin species were increased in UV and UA, whereas PC containing docosahexaenoic acid (DHA) was reduced in UV of VLBW neonates. CONCLUSIONS Lower DHA-PC suggests a lower DHA bioavailability and may contribute to the impaired neurodevelopment. Altered HDL-2, VLDL, and sphingomyelin profile reflect an atherogenic risk and increased metabolic risk at adulthood in infants born prematurely. IMPACT Lower ApoA-I in HDL2, and increased specific sphingomyelin and phosphatidylcholine containing saturated and monounsaturated fatty acid could explain the accumulation of cholesterol in umbilical vein in VLBW preterm neonates. Decreased phosphatidylcholine containing DHA suggest a reduced DHA availability for brain development in VLBW preterm infants. Characterization of alterations in fetal lipid plasma and lipoprotein profiles may help to explain at least in part the causes of the elevated cardiovascular risk known in people born prematurely and may suggest that a targeted nutritional strategy based on the composition of fatty acids carried by phosphatidylcholine may be promising in infants born very early.
Collapse
Affiliation(s)
- Alice Küster
- Nantes University INRAe, UMR 1280 PhAN, CHU Nantes, CRNH Ouest, IMAD, 44000, Nantes, France
- Division of Inborn Errors of Metabolism and Neurometabolism, CHU Nantes, INSERM, Centre d'Investigation Clinique, 44000, Nantes, France
| | - Mikael Croyal
- Nantes Université, CNRS, INSERM, l'institut du Thorax, 44000, Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
| | - Thomas Moyon
- Nantes University INRAe, UMR 1280 PhAN, CHU Nantes, CRNH Ouest, IMAD, 44000, Nantes, France
| | - Dominique Darmaun
- Nantes University INRAe, UMR 1280 PhAN, CHU Nantes, CRNH Ouest, IMAD, 44000, Nantes, France
| | - Khadija Ouguerram
- Nantes University INRAe, UMR 1280 PhAN, CHU Nantes, CRNH Ouest, IMAD, 44000, Nantes, France
| | | |
Collapse
|
3
|
Dubland JA. Lipid analysis by ion mobility spectrometry combined with mass spectrometry: A brief update with a perspective on applications in the clinical laboratory. J Mass Spectrom Adv Clin Lab 2022; 23:7-13. [PMID: 34988541 PMCID: PMC8703053 DOI: 10.1016/j.jmsacl.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/15/2022] Open
Abstract
Ion mobility spectrometry (IMS) is an analytical technique where ions are separated in the gas phase based on their mobility through a buffer gas in the presence of an electric field. An ion passing through an IMS device has a characteristic collisional cross section (CCS) value that depends on the buffer gas used. IMS can be coupled with mass spectrometry (MS), which characterizes an ion based on a mass-to-charge ratio (m/z), to increase analytical specificity and provide further physicochemical information. In particular, IMS-MS is of ever-increasing interest for the analysis of lipids, which can be problematic to accurately identify and quantify in bodily fluids by liquid chromatography (LC) with MS alone due to the presence of isomers, isobars, and structurally similar analogs. IMS provides an additional layer of separation when combined with front-end LC approaches, thereby, enhancing peak capacity and analytical specificity. CCS (and also ion mobility drift time) can be plotted against m/z ion intensity and/or LC retention time in order to generate in-depth molecular profiles of a sample. Utilization of IMS-MS for routine clinical laboratory testing remains relatively unexplored, but areas do exist for potential implementation. A brief update is provided here on lipid analysis using IMS-MS with a perspective on some applications in the clinical laboratory.
Collapse
Key Words
- CCS, collisional cross section
- CV, compensation voltage
- CVD, cardiovascular disease
- Clinical analysis
- DG, diacylglycerol
- DMS, differential mobility spectrometry
- DTIMS, drift tube ion mobility spectrometry
- EV, elution voltage
- FAIMS, field asymmetric waveform ion mobility spectrometry
- FIA, flow injection analysis
- FTICR, fourier-transform ion cyclotron resonance
- HDL, high-density-lipoprotein
- HRMS, high-resolution mass spectrometry
- IMS, ion mobility spectrometry
- IMS-MS, ion mobility spectrometry-mass spectrometry
- Ion mobility spectrometry
- LC, liquid chromatography
- LDL, low-density-lipoprotein
- LPC, lysophosphatidylcholine
- Lipids
- MALDI, matrix-assisted laser desorption/ionization
- MS, mass spectrometry
- Mass spectrometry
- NBS, newborn screening
- PC, glycerophosphocholine
- PE, phosphatidylethanolamine
- PG, phosphatidylglycerol
- RF, radio frequency
- SLIM, structures for loss less ion manipulations
- SM, sphingomyelin
- SV, separation voltage
- TG, triglyceride
- TIMS, trapped ion mobility spectrometry
- TOF, time-of-flight
- TWIMS, traveling wave ion mobility spectrometry
- VLDL, very-low-density lipoprotein
- m/z, mass-to-charge ratio
Collapse
Affiliation(s)
- Joshua A. Dubland
- Department of Pathology and Laboratory Medicine, BC Children’s Hospital, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Moderate High Caloric Maternal Diet Impacts Dam Breast Milk Metabotype and Offspring Lipidome in a Sex-Specific Manner. Int J Mol Sci 2020; 21:ijms21155428. [PMID: 32751478 PMCID: PMC7432416 DOI: 10.3390/ijms21155428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 01/29/2023] Open
Abstract
Lactation is a critical period during which maternal sub- or over-nutrition affect milk composition and offspring development that can have lasting health effects. The consequences of moderate high-fat, high-simple carbohydrate diet (WD) consumption by rat dams, during gestation and lactation, on milk composition and offspring blood lipidome and its growth, at weaning, were investigated by using a comprehensive lipidomic study on mass-spectrometric platform combined to targeted fatty- and free amino-acids analysis. This holistic approach allowed clear-cut differences in mature milk-lipidomic signature according to maternal diet with a similar content of protein, lactose and leptin. The lower WD-milk content in total fat and triglycerides (TGs), particularly in TGs-with saturated medium-chain, and higher levels in both sphingolipid (SL) and TG species with unsaturated long-chain were associated to a specific offspring blood-lipidome with decreased levels in TGs-containing saturated fatty acid (FA). The sexual-dimorphism in the FA-distribution in TG (higher TGs-rich in oleic and linoleic acids, specifically in males) and SL species (increased levels in very long-chain ceramides, specifically in females) could be associated with some differences that we observed between males and females like a higher total body weight gain in females and an increased preference for fatty taste in males upon weaning.
Collapse
|
5
|
Zandkarimi F, Brown LM. Application of Ion Mobility Mass Spectrometry in Lipidomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:317-326. [DOI: 10.1007/978-3-030-15950-4_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Chouinard CD, Nagy G, Smith RD, Baker ES. Ion Mobility-Mass Spectrometry in Metabolomic, Lipidomic, and Proteomic Analyses. ADVANCES IN ION MOBILITY-MASS SPECTROMETRY: FUNDAMENTALS, INSTRUMENTATION AND APPLICATIONS 2019. [DOI: 10.1016/bs.coac.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Maternal obesity leads to long-term altered levels of plasma ceramides in the offspring as revealed by a longitudinal lipidomic study in children. Int J Obes (Lond) 2018; 43:1231-1243. [PMID: 30568270 DOI: 10.1038/s41366-018-0291-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVES Maternal obesity is associated with increased risk of obesity and other symptoms of the metabolic syndrome in the offspring. Nevertheless, the molecular mechanisms and cellular factors underlying this enhanced disease susceptibility remain to be determined. Here, we aimed at identifying changes in plasma lipids in offspring of obese mothers that might underpin, and serve as early biomarkers of, their enhanced metabolic disease risk. SUBJECTS/METHODS We performed a longitudinal lipidomic profiling in plasma samples from normal weight, overweight, and obese pregnant women and their children that participated in the Prenatal Omega-3 Fatty Acid Supplementation, Growth, and Development trial conducted in Mexico. At recruitment women were aged between 18 and 35 years and in week 18-22 of pregnancy. Blood samples were collected at term delivery by venipuncture from mothers and from the umbilical cord of their newborns and from the same infants at 4 years old under non-fasting conditions. Lipidomic profiling was done using ultra-performance liquid chromatography high-resolution mass spectrometry. RESULTS Analysis of the lipidomic data showed that overweight and obese mothers exhibited a significant reduction in the total abundance of ceramides (Cer) in plasma, mainly of Cer (d18:1/20:0), Cer (d18:1/22:0), Cer (d18:1/23:0), and Cer (d18:1/24:0), compared with mothers of normal body weight. This reduction was confirmed by the direct quantification of these and other ceramide species. Similar quantitative differences in the plasma concentration of Cer (d18:1/22:0), Cer (d18:1/23:0), and Cer (d18:1/24:0), were also found between 4-year-old children of overweight and obese mothers compared with children of mothers of normal body weight. Noteworthy, children exhibited equal daily amounts of energy and food intake independently of the BMI of their mothers. CONCLUSIONS Maternal obesity results in long-lasting changes in plasma ceramides in the offspring suggesting that these lipids might be used as early predictors of metabolic disease risk due to maternal obesity.
Collapse
|
8
|
Rustam YH, Reid GE. Analytical Challenges and Recent Advances in Mass Spectrometry Based Lipidomics. Anal Chem 2017; 90:374-397. [PMID: 29166560 DOI: 10.1021/acs.analchem.7b04836] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yepy H Rustam
- Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Gavin E Reid
- Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Victoria 3010, Australia.,School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|