1
|
Hong Y, Li X, Li J, He Q, Huang M, Tang Y, Chen X, Chen J, Tang KJ, Wei C. H3K27ac acts as a molecular switch for doxorubicin-induced activation of cardiotoxic genes. Clin Epigenetics 2024; 16:91. [PMID: 39014511 PMCID: PMC11251309 DOI: 10.1186/s13148-024-01709-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Doxorubicin (Dox) is an effective chemotherapeutic drug for various cancers, but its clinical application is limited by severe cardiotoxicity. Dox treatment can transcriptionally activate multiple cardiotoxicity-associated genes in cardiomyocytes, the mechanisms underlying this global gene activation remain poorly understood. METHODS AND RESULTS Herein, we integrated data from animal models, CUT&Tag and RNA-seq after Dox treatment, and discovered that the level of H3K27ac (a histone modification associated with gene activation) significantly increased in cardiomyocytes following Dox treatment. C646, an inhibitor of histone acetyltransferase, reversed Dox-induced H3K27ac accumulation in cardiomyocytes, which subsequently prevented the increase of Dox-induced DNA damage and apoptosis. Furthermore, C646 alleviated cardiac dysfunction in Dox-treated mice by restoring ejection fraction and reversing fractional shortening percentages. Additionally, Dox treatment increased H3K27ac deposition at the promoters of multiple cardiotoxic genes including Bax, Fas and Bnip3, resulting in their up-regulation. Moreover, the deposition of H3K27ac at cardiotoxicity-related genes exhibited a broad feature across the genome. Based on the deposition of H3K27ac and mRNA expression levels, several potential genes that might contribute to Dox-induced cardiotoxicity were predicted. Finally, the up-regulation of H3K27ac-regulated cardiotoxic genes upon Dox treatment is conservative across species. CONCLUSIONS Taken together, Dox-induced epigenetic modification, specifically H3K27ac, acts as a molecular switch for the activation of robust cardiotoxicity-related genes, leading to cardiomyocyte death and cardiac dysfunction. These findings provide new insights into the relationship between Dox-induced cardiotoxicity and epigenetic regulation, and identify H3K27ac as a potential target for the prevention and treatment of Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yu Hong
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinlan Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jia Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiuyi He
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Manbing Huang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ke-Jing Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Rd.2, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Wang Z, Li F, Feng C, Zheng D, Pang Z, Ma Y, Xu Y, Yang C, Li X, Peng S, Liu Z, Mu X. 1-Naphthaleneacetic Acid Improved the In Vitro Cell Culturing by Inhibiting Apoptosis. Adv Biol (Weinh) 2024; 8:e2300593. [PMID: 38221687 DOI: 10.1002/adbi.202300593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/12/2023] [Indexed: 01/16/2024]
Abstract
In vitro cell culturing witnessed its applications in scientific research and industrial activities. Attempts to shorten the doubling time of cultured cells have never ceased. In plants, auxin is applied to promote plant growth, the synthetic derivative 1-Naphthaleneacetic acid (NAA) is a good example. Despite the auxin's naturally occurring receptors are not present in mammalian cells, studies suggested they may affect cell culturing. Yet the effects and mechanisms are still unclear. Here, an up to 2-fold increase in the yield of in vitro cultured human cells is observed. Different types of human cell lines and primary cells are tested and found that NAA is effective in all the cells tested. The PI staining followed by FACS suggested that NAA do not affect the cell cycling. Apoptosis-specific dye staining analysis implicated that NAA rescued cell death. Further bulk RNA sequencing is done and it is identified that the lipid metabolism-engaging and anti-apoptosis gene, ANGPTL4, is enhanced in expression upon NAA treatment. Studies on ANGPTL4 knockout cells indicated that ANGPTL4 is required for NAA-mediated response. Thus, the data identified a beneficial role of NAA in human cell culturing and highlighted its potency in in vitro cell culturing.
Collapse
Affiliation(s)
- Zhongyi Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Fengqi Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Chunjing Feng
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Health-Biotech Group Stem Cell Research Institute, Tianjin, 301799, China
| | - Dongpeng Zheng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Zhaojun Pang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yue Ma
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Health-Biotech Group Stem Cell Research Institute, Tianjin, 301799, China
| | - Ying Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ce Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xueren Li
- Jinnan Hospital, Tianjin University, (Tianjin Jinnan Hospital), Tianjin, 300350, China
| | - Shouchun Peng
- Jinnan Hospital, Tianjin University, (Tianjin Jinnan Hospital), Tianjin, 300350, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Zichuan Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
3
|
Zhai C, Yin L, Shen J, Dong J, Zheng Y, Pan H, Han W. Association of frailty with mortality in cancer survivors: results from NHANES 1999-2018. Sci Rep 2024; 14:1619. [PMID: 38238362 PMCID: PMC10796930 DOI: 10.1038/s41598-023-50019-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Cancer survivors are vulnerable to frailty. While few studies have focused on the association of frailty with mortality risk among cancer survivors, the current study aimed to reveal this association. In this cohort study, 4723 cancer survivors were enrolled from the National Health and Nutrition Examination Surveys (NHANES, 1999-2018). Frailty status was quantified using the 53-item frailty index. Death outcomes were linked to National Death Index mortality data (as of December 31, 2019). Cox proportional hazard models were used to estimate HRs (95% CIs). The median (IQR) frailty score was 0.190 (0.132, 0.277). During the median follow-up of 6.7 years, 1775 all-cause deaths (including 581 cancer deaths and 385 cardiac deaths) were documented. Compared to the lowest tertile of frailty scores, the adjusted HRs (95% CIs) for the highest tertile were 2.698 (2.224, 3.272) for all-cause mortality (P trend < 0.001), 2.145 (1.547, 2.973) for cancer mortality (P trend < 0.001), and 3.735 (2.231, 6.251) for cardiac mortality (P trend < 0.001). Moreover, a positive dose‒response association between the frailty score and mortality risk was determined. Each per-unit increase in the frailty score (natural logarithm transformed) was found to increase all-cause mortality by 159% (P < 0.001), cancer mortality by 103% (P < 0.001), and cardiac mortality by 256% (P < 0.001). A consistent result was shown when stratifying by age, sex, race, body mass index, and type of cancer. This study suggested that the frailty index was positively associated with all-cause mortality and cause-specific mortality (including cancer and cardiac deaths) among cancer survivors.
Collapse
Affiliation(s)
- Chongya Zhai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Luxi Yin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Jiaying Shen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Jie Dong
- Department of Medical Oncology, Shaoxing Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Shaoxing, China
| | - Yu Zheng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310000, Zhejiang, People's Republic of China.
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310000, Zhejiang, People's Republic of China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310000, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Shi B, Li H, He X. Advancing lifelong precision medicine for cardiovascular diseases through gut microbiota modulation. Gut Microbes 2024; 16:2323237. [PMID: 38411391 PMCID: PMC10900281 DOI: 10.1080/19490976.2024.2323237] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
The gut microbiome is known as the tenth system of the human body that plays a vital role in the intersection between health and disease. The considerable inter-individual variability in gut microbiota poses both challenges and great prospects in promoting precision medicine in cardiovascular diseases (CVDs). In this review, based on the development, evolution, and influencing factors of gut microbiota in a full life circle, we summarized the recent advances on the characteristic alteration in gut microbiota in CVDs throughout different life stages, and depicted their pathological links in mechanism, as well as the highlight achievements of targeting gut microbiota in CVDs prevention, diagnosis and treatment. Personalized strategies could be tailored according to gut microbiota characteristics in different life stages, including gut microbiota-blood metabolites combined prediction and diagnosis, dietary interventions, lifestyle improvements, probiotic or prebiotic supplements. However, to fulfill the promise of a lifelong cardiovascular health, more mechanism studies should progress from correlation to causality and decipher novel mechanisms linking specific microbes and CVDs. It is also promising to use the burgeoning artificial intelligence and machine learning to target gut microbiota for developing diagnosis system and screening for new therapeutic interventions.
Collapse
Affiliation(s)
- Bozhong Shi
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Li
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Jin J, Huangfu B, Xing F, Xu W, He X. Combined exposure to deoxynivalenol facilitates lipid metabolism disorder in high-fat-diet-induced obesity mice. ENVIRONMENT INTERNATIONAL 2023; 182:108345. [PMID: 38008010 DOI: 10.1016/j.envint.2023.108345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Deoxynivalenol (DON) is a trichothecene toxin that mainly produced by strains of Fusarium spp. DON contamination is widely distributed and is a global food safety threat. Existing studies have expounded its harmful effects on growth inhibition, endocrine disruption, immune function impairment, and reproductive toxicity. In energy metabolism, DON suppresses appetite, reduces body weight, triggers lipid oxidation, and negatively affects cholesterol and fatty acid homeostasis. In this study, high-fat diet (HFD) induced obese C57BL/6J mice were orally treated with 0.1 mg/kg bw/d and 1.0 mg/kg bw/d DON for 4 weeks. The lipid metabolism of mice and the molecular mechanisms were explored. The data showed that although DON reduced body weight and fat mass in HFD mice, it significantly increased their serum triglyceride concentrations, disturbance of serum lipid metabolites, impaired glucose, and resulted in insulin intolerance in mice. In addition, the transcriptional and expression changes of lipid metabolism genes in the liver and epididymis (EP) adipose indicate that the DON-mediated increase in serum triglycerides is caused by lipoprotein lipase (LPL) inhibition in EP adipose. Furthermore, DON down-regulates the expression of LPL through the PPARγ signaling pathway in EP adipose. These results are further confirmed by the serum lipidomics analysis. In conclusion, DON acts on the PPARγ pathway of white adipose to inhibit the expression of LPL, mediate the increase of serum triglyceride in obese mice, disturb the homeostasis of lipid metabolism, and increase the risk of cardiovascular disease. This study reveals the interference mechanism of DON on lipid metabolism in obese mice and provides a theoretical basis for its toxic effect in obese individuals.
Collapse
Affiliation(s)
- Jing Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of P.R. China, Beijing 100193, PR China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, Department of Nutrition and Health, China Agricultural University, Beijing 100083, PR China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of P.R. China, Beijing 100193, PR China.
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, Department of Nutrition and Health, China Agricultural University, Beijing 100083, PR China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, Department of Nutrition and Health, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
6
|
Wang L, Western D, Timsina J, Repaci C, Song WM, Norton J, Kohlfeld P, Budde J, Climer S, Butt OH, Jacobson D, Garvin M, Templeton AR, Campagna S, O’Halloran J, Presti R, Goss CW, Mudd PA, Ances BM, Zhang B, Sung YJ, Cruchaga C. Plasma proteomics of SARS-CoV-2 infection and severity reveals impact on Alzheimer's and coronary disease pathways. iScience 2023; 26:106408. [PMID: 36974157 PMCID: PMC10010831 DOI: 10.1016/j.isci.2023.106408] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/21/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Identification of proteins dysregulated by COVID-19 infection is critically important for better understanding of its pathophysiology, building prognostic models, and identifying new targets. Plasma proteomic profiling of 4,301 proteins was performed in two independent datasets and tested for the association for three COVID-19 outcomes (infection, ventilation, and death). We identified 1,449 proteins consistently associated in both datasets with any of these three outcomes. We subsequently created highly accurate models that distinctively predict infection, ventilation, and death. These proteins were enriched in specific biological processes including cytokine signaling, Alzheimer's disease, and coronary artery disease. Mendelian randomization and gene network analyses identified eight causal proteins and 141 highly connected hub proteins including 35 with known drug targets. Our findings provide distinctive prognostic biomarkers for two severe COVID-19 outcomes, reveal their relationship to Alzheimer's disease and coronary artery disease, and identify potential therapeutic targets for COVID-19 outcomes.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Charlie Repaci
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Pat Kohlfeld
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Sharlee Climer
- Department of Computer Science, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Omar H. Butt
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Michael Garvin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Alan R. Templeton
- Department of Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Shawn Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Jane O’Halloran
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel Presti
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA
| | - Charles W. Goss
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip A. Mudd
- Department of Emergency Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Beau M. Ances
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
7
|
Zhao X, Huang HS, Shi SR. Effects of Peroxisome Proliferator-Activated Receptor γ on Modulating Angiopoietin-Like Protein 4 Synthesis in Caco-2 Cells Exposed to Clostridium butyricum. Mol Biol 2023. [DOI: 10.1134/s0026893323030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Vliora M, Ravelli C, Grillo E, Corsini M, Flouris AD, Mitola S. The impact of adipokines on vascular networks in adipose tissue. Cytokine Growth Factor Rev 2023; 69:61-72. [PMID: 35953434 DOI: 10.1016/j.cytogfr.2022.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
Adipose tissue (AT) is a highly active and plastic endocrine organ. It secretes numerous soluble molecules known as adipokines, which act locally to AT control the remodel and homeostasis or exert pleiotropic functions in different peripheral organs. Aberrant production or loss of certain adipokines contributes to AT dysfunction associated with metabolic disorders, including obesity. The AT plasticity is strictly related to tissue vascularization. Angiogenesis supports the AT expansion, while regression of blood vessels is associated with AT hypoxia, which in turn mediates tissue inflammation, fibrosis and metabolic dysfunction. Several adipokines can regulate endothelial cell functions and are endowed with either pro- or anti-angiogenic properties. Here we address the role of adipokines in the regulation of angiogenesis. A better understanding of the link between adipokines and angiogenesis will open the way for novel therapeutic approaches to treat obesity and metabolic diseases.
Collapse
Affiliation(s)
- Maria Vliora
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy.
| |
Collapse
|
9
|
Jiang Q, Miao R, Wang Y, Wang W, Zhao D, Niu Y, Ding Q, Li Y, Leung PCK, Wei D, Chen ZJ. ANGPTL4 inhibits granulosa cell proliferation in polycystic ovary syndrome by EGFR/JAK1/STAT3-mediated induction of p21. FASEB J 2023; 37:e22693. [PMID: 36607250 DOI: 10.1096/fj.202201246rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 01/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common, heterogenous endocrine disorders and is the leading cause of ovulatory obstacle associated with abnormal folliculogenesis. Dysfunction of ovarian granulosa cells (GCs) is recognized as a major factor that underlies abnormal follicle maturation. Angiopoietin-like 4 (ANGPTL4) expression in GCs differs between patients with and without PCOS. However, the role and mechanism of ANGPTL4 in impaired follicular development are still poorly understood. Here, the case-control study was designed to investigate the predictive value of ANGPTL4 in PCOS while cell experiments in vitro were set for mechanism research. Results found that ANGPTL4 levels in serum and in follicular fluid, and its expression in GCs, were upregulated in patients with PCOS. In KGN and SVOG cells, upregulation of ANGPTL4 inhibited the proliferation of GCs by blocking G1/S cell cycle progression, as well as the molecular activation of the EGFR/JAK1/STAT3 cascade. Moreover, the STAT3-dependent CDKN1A(p21) promoter increased CDKN1A transcription, resulting in remarkable suppression effect on GCs. Together, our results demonstrated that overexpression of ANGPTL4 inhibited the proliferation of GCs through EGFR/JAK1/STAT3-mediated induction of p21, thus providing a novel epigenetic mechanism for the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Qi Jiang
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Ruolan Miao
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yuhuan Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Wenqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Dingying Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yue Niu
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Qiaoqiao Ding
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| |
Collapse
|
10
|
Fang Y, Li X, Cheng H, Zhang L, Hao J. ANGPTL4 Regulates Lung Adenocarcinoma Pyroptosis and Apoptosis via NLRP3\ASC\Caspase 8 Signaling Pathway to Promote Resistance to Gefitinib. JOURNAL OF ONCOLOGY 2022; 2022:3623570. [PMID: 36467503 PMCID: PMC9718625 DOI: 10.1155/2022/3623570] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 10/13/2023]
Abstract
BACKGROUND Prior research has identified ANGPTL4 as a key player in the control of the body's lipid and glucose metabolism and a contributor to the onset of numerous cardiovascular conditions. Recently, it has been shown that ANGPTL4 also plays a critical role in tumor growth and progression. Nowadays, the number of EGFR-TKI resistant patients is increasing, and it is important to investigate the role of ANGPTL4 in regulating gefitinib resistance in PC9/GR non-small-cell lung cancer (NSCLC). METHODS The expression of ANGPTL4 in A549, PC9, H1975, BEAS-2B and PC9/GR cells was verified by Western blot and qRT-PCR assays, and the effect of gefitinib on the proliferative ability of each cell was probed by CCK-8 assay. By using shRNA to inhibit ANGPTL4 expression in cells, the effect of ANGPTL4 on cell migratory ability was examined and the effect of ANGPTL4 on cellular gefitinib sensitivity was confirmed using the CCK-8 assay and the edu proliferation test. Mouse transplantation tumors were constructed, and the effect of ANGPTL4 on cellular gefitinib sensitivity was investigated in vivo by flow cytometry, Tunel staining assay, immunohistochemical staining, and ROS fluorescence staining assay. ANGPTL4 expression in homoRNA overexpression cells was constructed, and the changes in the expression levels of ASC\NLRP3\Caspase 8 pathway and focal and apoptotic proteins were investigated in vitro, in vivo, afterknockdown and overexpression of ANGPTL4 expression by Westen blot assay. RESULTS ANGPTL4 was highly expressed in PC9/GR cells. Interfering with ANGPTL4 expression resulted in decreased proliferation and migration ability, decreased resistance to gefitinib, and increased scorching and apoptosis in PC9/GR cells. Interfering with ANGPTL4 expression in PC9/GR cells was shown to promote sensitivity to gefitinib and to mediate the NLRP3/ASC/Caspase 8 pathway to induce cell scorching and apoptosis. CONCLUSIONS ANGPTL4 promotes gefitinib resistance in PC9/GR cells by regulating the NLRP3/ASC/Caspase 8 pathway to inhibit scorch death. ANGPTL4 may be an effective new target for inhibiting EGFR-TKI resistance in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Yue Fang
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230022, Anhui, China
| | - Xuan Li
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Hao Cheng
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Lu Zhang
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jiqing Hao
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| |
Collapse
|
11
|
Silencing of Angiopoietin-Like Protein 4 (Angptl4) Decreases Inflammation, Extracellular Matrix Degradation, and Apoptosis in Osteoarthritis via the Sirtuin 1/NF-κB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1135827. [PMID: 36071864 PMCID: PMC9442503 DOI: 10.1155/2022/1135827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Osteoarthritis (OA) is a frequently observed condition in aged people. OA cartilage is characterized by chondrocyte apoptosis, chondrocyte inflammation, and hyperactive catabolism of extracellular matrix. However, the specific molecular mechanisms remain unclear. Recent data has shown that Angptl4, a multifunctional cytokine, is involved in the regulation of inflammatory and apoptosis responses in different tissues. This study is aimed at defining the role of Angptl4 in the development of OA. We employed X-ray analysis, safranin O-fast green (S-O) staining, and hematoxylin staining to evaluate histomorphological characteristics in the knee joint of mice. Real-time quantitative polymerase chain reaction, Western blot assays, immunofluorescence staining, and enzyme-linked immunosorbent assays (ELISA) were performed to analyze the changes in gene and protein expression. Mechanically, our data demonstrated that Angptl4 knockdown improved the degradation of extracellular matrix and reduced TNF-α-mediated chondrocyte inflammation and apoptosis by suppressing sirtuin 1/NF-κB signaling pathway. In addition, animal studies showed that the suppression of Angptl4 expression might alleviate OA development. In conclusion, our findings revealed the underlying mechanisms of Angptl4 regulation in chondrocytes and its potential value in the treatment of OA.
Collapse
|
12
|
Wang L, Western D, Timsina J, Repaci C, Song WM, Norton J, Kohlfeld P, Budde J, Climer S, Butt OH, Jacobson D, Garvin M, Templeton AR, Campagna S, O’Halloran J, Presti R, Goss CW, Mudd PA, Ances BM, Zhang B, Sung YJ, Cruchaga C. Plasma proteomics of SARS-CoV-2 infection and severity reveals impact on Alzheimer and coronary disease pathways. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.07.25.22278025. [PMID: 35923315 PMCID: PMC9347279 DOI: 10.1101/2022.07.25.22278025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Identification of the plasma proteomic changes of Coronavirus disease 2019 (COVID-19) is essential to understanding the pathophysiology of the disease and developing predictive models and novel therapeutics. We performed plasma deep proteomic profiling from 332 COVID-19 patients and 150 controls and pursued replication in an independent cohort (297 cases and 76 controls) to find potential biomarkers and causal proteins for three COVID-19 outcomes (infection, ventilation, and death). We identified and replicated 1,449 proteins associated with any of the three outcomes (841 for infection, 833 for ventilation, and 253 for death) that can be query on a web portal ( https://covid.proteomics.wustl.edu/ ). Using those proteins and machine learning approached we created and validated specific prediction models for ventilation (AUC>0.91), death (AUC>0.95) and either outcome (AUC>0.80). These proteins were also enriched in specific biological processes, including immune and cytokine signaling (FDR ≤ 3.72×10 -14 ), Alzheimer's disease (FDR ≤ 5.46×10 -10 ) and coronary artery disease (FDR ≤ 4.64×10 -2 ). Mendelian randomization using pQTL as instrumental variants nominated BCAT2 and GOLM1 as a causal proteins for COVID-19. Causal gene network analyses identified 141 highly connected key proteins, of which 35 have known drug targets with FDA-approved compounds. Our findings provide distinctive prognostic biomarkers for two severe COVID-19 outcomes (ventilation and death), reveal their relationship to Alzheimer's disease and coronary artery disease, and identify potential therapeutic targets for COVID-19 outcomes.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Dan Western
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Charlie Repaci
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Pat Kohlfeld
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Sharlee Climer
- Department of Computer Science, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Omar H. Butt
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Michael Garvin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Alan R Templeton
- Department of Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Shawn Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Jane O’Halloran
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel Presti
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA
| | - Charles W. Goss
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip A. Mudd
- Department of Emergency Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Beau M. Ances
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
13
|
Zhang BH, Yin F, Qiao YN, Guo SD. Triglyceride and Triglyceride-Rich Lipoproteins in Atherosclerosis. Front Mol Biosci 2022; 9:909151. [PMID: 35693558 PMCID: PMC9174947 DOI: 10.3389/fmolb.2022.909151] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is still the leading cause of death globally, and atherosclerosis is the main pathological basis of CVDs. Low-density lipoprotein cholesterol (LDL-C) is a strong causal factor of atherosclerosis. However, the first-line lipid-lowering drugs, statins, only reduce approximately 30% of the CVD risk. Of note, atherosclerotic CVD (ASCVD) cannot be eliminated in a great number of patients even their LDL-C levels meet the recommended clinical goals. Previously, whether the elevated plasma level of triglyceride is causally associated with ASCVD has been controversial. Recent genetic and epidemiological studies have demonstrated that triglyceride and triglyceride-rich lipoprotein (TGRL) are the main causal risk factors of the residual ASCVD. TGRLs and their metabolites can promote atherosclerosis via modulating inflammation, oxidative stress, and formation of foam cells. In this article, we will make a short review of TG and TGRL metabolism, display evidence of association between TG and ASCVD, summarize the atherogenic factors of TGRLs and their metabolites, and discuss the current findings and advances in TG-lowering therapies. This review provides information useful for the researchers in the field of CVD as well as for pharmacologists and clinicians.
Collapse
Affiliation(s)
| | | | - Ya-Nan Qiao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
14
|
Li Y, Gong W, Liu J, Chen X, Suo Y, Yang H, Gao X. Angiopoietin-like protein 4 promotes hyperlipidemia-induced renal injury by down-regulating the expression of ACTN4. Biochem Biophys Res Commun 2022; 595:69-75. [PMID: 35101665 DOI: 10.1016/j.bbrc.2022.01.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE The molecular mechanism of in hyperlipidemia-induced renal injury has not been elucidated. Angiogenin-like protein 4 (ANGPTL4) is a key regulator of lipid metabolism. The role of ANGPTL4 hyperlipidemia-induced renal injury has not been reported. METHODS Wild type C57 mice and gene angptl4 knockout mice were fed with 60% high fat diet or normal diet respectively. The serum lipid, urinary albumin and renal pathology were tested at the 9th, 13th, 17th and 21st week with high fat diet. RESULTS Elevated blood lipids in the wild-type mice with high-fat diet were found at 9th week. At the 17th week, the level of urinary albumin in high-fat fed wild type mice were significantly higher than which with normal diet, correspondingly, segmental fusion of podocyte foot process in kidney could be observed in these hyperlipidemia mice. IHC showed that the expression of ANGPTL4 in glomeruli of high-fat fed wild type mice began significant elevated since the 9th week. When given high fat diet, compared to the wild type, the gene angptl4 knockout mice showed significantly alleviated the levels of hyperlipidemia, proteinuria and effacement of podocyte foot process. Finally, the expression of ACTN4 showed remarkably lower in glomeruli podocyte of wild type mice fed high fat diet than that of wild type mice with normal diet at each time-point (P < 0.01). Differently, the expression of ACTN4 in gene angptl4 knockout mice did not happen significantly weaken when given the same dose of high fat diet. CONCLUSION ANGPTL4 could play a role in hyperlipidemic-induced renal injury via down-regulating the expression of ACTN4 in kidney podocyte.
Collapse
Affiliation(s)
- Yue Li
- Nephrology Department, Guangzhou Women and Children's Medical Center, Guangzhou, 510000, China
| | - Wangqiu Gong
- Nephrology Department, Guangzhou Women and Children's Medical Center, Guangzhou, 510000, China
| | - Jing Liu
- Pediatric Department, Gansu Province People's Hospital, Lanzhou City, 730000, China
| | - Xingxing Chen
- Pediatric Department, Gansu Province People's Hospital, Lanzhou City, 730000, China
| | - Yanhong Suo
- Pediatric Department, Gansu Province People's Hospital, Lanzhou City, 730000, China
| | - Huabing Yang
- Nephrology Department, Guangzhou Women and Children's Medical Center, Guangzhou, 510000, China
| | - Xia Gao
- Nephrology Department, Guangzhou Women and Children's Medical Center, Guangzhou, 510000, China.
| |
Collapse
|
15
|
Ali F, Khan A, Muhammad SA, Hassan SSU. Quantitative Real-Time Analysis of Differentially Expressed Genes in Peripheral Blood Samples of Hypertension Patients. Genes (Basel) 2022; 13:genes13020187. [PMID: 35205232 PMCID: PMC8872078 DOI: 10.3390/genes13020187] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension (HTN) is considered one of the most important and well-established reasons for cardiovascular abnormalities, strokes, and premature mortality globally. This study was designed to explore possible differentially expressed genes (DEGs) that contribute to the pathophysiology of hypertension. To identify the DEGs of HTN, we investigated 22 publicly available cDNA Affymetrix datasets using an integrated system-level framework. Gene Ontology (GO), pathway enrichment, and transcriptional factors were analyzed to reveal biological information. From 50 DEGs, we ranked 7 hypertension-related genes (p-value < 0.05): ADM, ANGPTL4, USP8, EDN, NFIL3, MSR1, and CEBPD. The enriched terms revealed significant functional roles of HIF-1-α transcription; endothelin; GPCR-binding ligand; and signaling pathways of EGF, PIk3, and ARF6. SP1 (66.7%), KLF7 (33.3%), and STAT1 (16.7%) are transcriptional factors associated with the regulatory mechanism. The expression profiles of these DEGs as verified by qPCR showed 3-times higher fold changes (2−ΔΔCt) in ADM, ANGPTL4, USP8, and EDN1 genes compared to control, while CEBPD, MSR1 and NFIL3 were downregulated. The aberrant expression of these genes is associated with the pathophysiological development and cardiovascular abnormalities. This study will help to modulate the therapeutic strategies of hypertension.
Collapse
Affiliation(s)
- Fawad Ali
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (F.A.); (A.K.)
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Arifullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (F.A.); (A.K.)
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
- Correspondence: (S.A.M.); (S.S.u.H.)
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (S.A.M.); (S.S.u.H.)
| |
Collapse
|
16
|
El Hini SH, Mahmoud YZ, Saedii AA, Mahmoud SS, Amin MA, Mahmoud SR, Matta RA. Angiopoietin-like proteins 3, 4 and 8 are linked to cardiovascular function in naïve sub-clinical and overt hypothyroid patients receiving levothyroxine therapy. Endocr Connect 2021; 10:1570-1583. [PMID: 34739390 PMCID: PMC8679937 DOI: 10.1530/ec-21-0398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/05/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Angiopoietin-like proteins (ANGPTL) 3, 4 and 8 are upcoming cardiovascular biomarkers. Experimental studies showed that thyroid hormones altered their levels. We assessed ANGPTL3, 4 and 8 as predictors of cardiovascular functions among naïve subclinical and naïve overt hypothyroidism (SCH and OH) and altered ANGPTL levels with levothyroxine replacement (LT4) and their association with improved cardiovascular risk factors and cardiovascular function. DESIGN AND METHODS The study was a prospective follow-up study that assessed ANGPTL3, 4 and 8 levels, vascular status (flow-mediated dilation% of brachial artery (FMD%), carotid intima-media thickness (CIMT), aortic stiffness index (ASI)), left ventricle (LV) parameters (ejection fraction (EF), myocardial performance index (MPI), and LV mass), well-known cardiovascular risk factors and homeostatic model for the assessment of insulin resistance, at two time points, that is, among naïve SCH, naïve OH, and healthy subjects groups; and at 6 months after achieving the euthyroid state with LT4 by calculating their increased or decreased delta changes (∆↑ or ∆↓) in longitudinal arm among LT4-hypothyroid groups. RESULTS Significantly elevated levels of ANGPTL3, 4 and 8 among hypothyroid groups than the healthy subjects were reduced with LT4. Multivariate analysis revealed ANGPTLs as independent predictors of cardiovascular functions and the contributors for ANGPTL level included ANGPTL3 and 4 for impaired FMD%, and ANGPTL8 for LV mass among naïve SCH; ANGPTL3 for EF% and ANGPTL8 for CIMT in naïve OH; ∆↓ANGPTL3 for ∆↓ASI meanwhile ∆↑freeT4 for ∆↓ANGPTL3, ∆↓fasting glucose, ∆↓triglyceride, and ∆↓thyroid peroxidase antibody for ∆↓ANGPTL4 among LT4-SCH. ∆↓ANGPTL4 for ∆↓MPI and ∆↓LV mass, meanwhile ∆↓TSH and ∆↓triglyceride for ∆↓ANGPTL3, ∆↑free T3 and ∆↓HOMA-IR for ∆↓ANGPTL4, and systolic blood pressure and waist circumference for ∆↓ANGPTL8 among LT4-OH. CONCLUSION Elevated ANGPTL3, 4 and 8 levels are differentially independent predictors of endothelial and cardiac function and are reduced with LT4 in SCH and OH.
Collapse
Affiliation(s)
- Sahar Hossam El Hini
- Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Yehia Zakaria Mahmoud
- Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | | | | | - Mohamed Ahmed Amin
- Department of Radiology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Shereen Riad Mahmoud
- Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ragaa Abdelshaheed Matta
- Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
- Correspondence should be addressed to R A Matta:
| |
Collapse
|
17
|
Affiliation(s)
- Dominic S Ng
- Department of Medicine, St Michael's Hospital
- Department of Physiology
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Park S, Kim Y, Lee J, Lee JY, Kim H, Lee S, Oh CM. A Systems Biology Approach to Investigating the Interaction between Serotonin Synthesis by Tryptophan Hydroxylase and the Metabolic Homeostasis. Int J Mol Sci 2021; 22:ijms22052452. [PMID: 33671067 PMCID: PMC7957782 DOI: 10.3390/ijms22052452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity has become a global public health and economic problem. Obesity is a major risk factor for a number of complications, such as type 2 diabetes, cardiovascular disease, fatty liver disease, and cancer. Serotonin (5-hydroxytryptamine [5-HT]) is a biogenic monoamine that plays various roles in metabolic homeostasis. It is well known that central 5-HT regulates appetite and mood. Several 5-HT receptor agonists and selective serotonin receptor uptake inhibitors (SSRIs) have shown beneficial effects on appetite and mood control in clinics. Although several genetic polymorphisms related to 5-HT synthesis and its receptors are strongly associated with obesity, there is little evidence of the role of peripheral 5-HT in human metabolism. In this study, we performed a systemic analysis of transcriptome data from the Genotype-Tissue Expression (GTEX) database. We investigated the expression of 5-HT and tryptophan hydroxylase (TPH), the rate-limiting enzyme of 5-HT biosynthesis, in the human brain and peripheral tissues. We also performed differential gene expression analysis and predicted changes in metabolites by comparing gene expressions of tissues with high TPH expression to the gene expressions of tissues with low TPH expression. Our analyses provide strong evidence that serotonin plays an important role in the regulation of metabolic homeostasis in humans.
Collapse
Affiliation(s)
- Suhyeon Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.P.); (Y.K.); (J.L); (J.Y.L.)
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.P.); (Y.K.); (J.L); (J.Y.L.)
| | - Jibeom Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.P.); (Y.K.); (J.L); (J.Y.L.)
| | - Jeong Yun Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.P.); (Y.K.); (J.L); (J.Y.L.)
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Sunjae Lee
- Department of School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Correspondence: (S.L.); (C.-M.O.); Tel.: +82-10-7304-1213 (S.L.)
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.P.); (Y.K.); (J.L); (J.Y.L.)
- Correspondence: (S.L.); (C.-M.O.); Tel.: +82-10-7304-1213 (S.L.)
| |
Collapse
|