1
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
2
|
Gao S, Qiu Y, Meng Y, Jia Y, Lang X, Zhao H, Sun H, Zhang J, Ding L. Blockage of PHLPP1 protects against myocardial ischemia/reperfusion injury in diabetic mice via activation of STAT3 signaling. J Bioenerg Biomembr 2023; 55:325-339. [PMID: 37584737 DOI: 10.1007/s10863-023-09977-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Diabetes can exacerbate myocardial ischemia/reperfusion (IR) injury. However, the sensitivity to IR injury and the underlying mechanisms in diabetic hearts remain unclear. Inhibition of PH domain leucine-rich repeating protein phosphatase (PHLPP1) could reduce myocardial IR injury, our previous study demonstrated that the expression of PHLPP1 was upregulated in diabetic myocardial IR model. Thus, this study aimed to investigate the mechanism of PHLPP1 in diabetic myocardial IR injury. Nondiabetic and diabetic C57BL/6 mice underwent 45 min of coronary artery occlusion followed by 2 h of reperfusion. Male C57BL/6 mice were injected with streptozotocin for five consecutive days to establish a diabetes model. H9c2 cells were exposed to normal or high glucose and subjected to 4 h of hypoxia followed by 4 h of reoxygenation. Diabetes or hyperglycemia increased postischemic infarct size, cellular injury, release of creatine kinase-MB, apoptosis, and oxidative stress, while exacerbating mitochondrial dysfunction. This was accompanied by enhanced expression of PHLPP1 and decreased levels of p-STAT3 and p-Akt. These effects were counteracted by PHLPP1 knockdown. Moreover, PHLPP1 knockdown resulted in an increase in mitochondrial translocation of p-STAT3 Ser727 and nuclear translocation of p-STAT3 Tyr705 and p-STAT3 Ser727. However, the effect of PHLPP1 knockdown in reducing posthypoxic cellular damage was nullified by either Stattic or LY294002. Additionally, a co-immunoprecipitation assay indicated a direct interaction between PHLPP1 and p-STAT3 Ser727, but not p-STAT3 Tyr705. The abnormal expression of PHLPP1 plays a significant role in exacerbating myocardial IR injury in diabetic mice. Knockdown of PHLPP1 to activate the STAT3 signaling pathway may represent a novel strategy for alleviating myocardial IR injury in diabetes.
Collapse
Affiliation(s)
- Sumin Gao
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yun Qiu
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yuming Meng
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yajuan Jia
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xuemei Lang
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hongmei Zhao
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hong Sun
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jinsong Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Lianshu Ding
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China.
| |
Collapse
|
3
|
Shao Y, Wang Y, Sun L, Zhou S, Xu J, Xing D. MST1: A future novel target for cardiac diseases. Int J Biol Macromol 2023; 239:124296. [PMID: 37011743 DOI: 10.1016/j.ijbiomac.2023.124296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Major heart diseases pose a serious threat to human health. Finding early diagnostic markers and key therapeutic targets is an urgent scientific problem in this field. Mammalian sterile 20-like kinase 1 (MST1) is a protein kinase, and the occurrence of many heart diseases is related to the continuous activation of the MST1 gene. With the deepening of the research, the potential role of MST1 in promoting the development of heart disease has become more apparent. Therefore, to better understand the role of MST1 in the pathogenesis of heart disease, this work systematically summarizes the role of MST1 in the pathogenesis of heart disease, gives a comprehensive overview of its possible strategies in the diagnosis and treatment of heart disease, and analyzes its potential significance as a marker for the diagnosis and treatment of heart disease.
Collapse
Affiliation(s)
- Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Li Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Sha Zhou
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|