1
|
Badr OI, Anter A, Magdy I, Chukueggu M, Khorshid M, Darwish M, Farrag M, Elsayed M, Amr Y, Amgad Y, Mahmoud T, Kamal MM. Adipose-Derived Mesenchymal Stem Cells and Their Derived Epidermal Progenitor Cells Conditioned Media Ameliorate Skin Aging in Rats. Tissue Eng Regen Med 2024; 21:915-927. [PMID: 38913224 PMCID: PMC11286614 DOI: 10.1007/s13770-024-00643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Skin alterations are among the most prominent signs of aging, and they arise from both intrinsic and extrinsic factors that interact and mutually influence one another. The use of D-galactose as an aging model in animals has been widely employed in anti-aging research. Adipose tissue-derived mesenchymal stem cells (Ad-MSCs) are particularly promising for skin anti-aging therapy due to their capacity for effective re-epithelization and secretion of various growth factors essential for skin regeneration. Accordingly, we aimed to examine the potential utility of Ad-MSCs as a therapy for skin anti-aging. METHODS In this study, we isolated and characterized adipose-derived mesenchymal stem cells (Ad-MSCs) from the epididymal fat of male Sprague Dawley rats. We assessed the in vitro differentiation of Ad-MSCs into epidermal progenitor cells (EPCs) using ascorbic acid and hydrocoritsone. Additionally, we induced skin aging in female Sprague Dawley rats via daily intradermal injection of D-galactose over a period of 8 weeks. Then we evaluated the therapeutic potential of intradermal transplantation of Ad-MSCs and conditioned media (CM) derived from differentiated EPCs in the D-galactose-induced aging rats. Morphological assessments, antioxidant assays, and histopathological examinations were performed to investigate the effects of the treatments. RESULTS Our findings revealed the significant capability of Ad-MSCs to differentiate into EPCs. Notably, compared to the group that received CM treatment, the Ad-MSCs-treated group exhibited a marked improvement in morphological appearance, antioxidant levels and histological features. CONCLUSIONS These results underscore the effectiveness of Ad-MSCs in restoring skin aging as a potential therapy for skin aging.
Collapse
Affiliation(s)
- Omar I Badr
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Aya Anter
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Ihab Magdy
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Marvellous Chukueggu
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Moamen Khorshid
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Darwish
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Farrag
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Menna Elsayed
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Youmna Amr
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Yomna Amgad
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Tasnim Mahmoud
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
- Drug Research and Development Group, Faculty of Pharmacy, Health Research Center of Excellence, The British University in Egypt, Cairo, Egypt.
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
2
|
Hazrati R, Davaran S, Keyhanvar P, Soltani S, Alizadeh E. A Systematic Review of Stem Cell Differentiation into Keratinocytes for Regenerative Applications. Stem Cell Rev Rep 2024; 20:362-393. [PMID: 37922106 DOI: 10.1007/s12015-023-10636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/05/2023]
Abstract
To improve wound healing or treatment of other skin diseases, and provide model cells for skin biology studies, in vitro differentiation of stem cells into keratinocyte-like cells (KLCs) is very desirable in regenerative medicine. This study examined the most recent advancements in in vitro differentiation of stem cells into KLCs, the effect of biofactors, procedures, and preparation for upcoming clinical cases. A range of stem cells with different origins could be differentiated into KLCs under appropriate conditions. The most effective ways of stem cell differentiation into keratinocytes were found to include the co-culture with primary epithelial cells and keratinocytes, and a cocktail of growth factors, cytokines, and small molecules. KLCs should also be supported by biomaterials for the extracellular matrix (ECM), which replicate the composition and functionality of the in vivo extracellular matrix (ECM) and, thus, support their phenotypic and functional characteristics. The detailed efficient characterization of different factors, and their combinations, could make it possible to find the significant inducers for stem cell differentiation into epidermal lineage. Moreover, it allows the development of chemically known media for directing multi-step differentiation procedures.In conclusion, the differentiation of stem cells to KLCs is feasible and KLCs were used in experimental, preclinical, and clinical trials. However, the translation of KLCs from in vitro investigational system to clinically valuable cells is challenging and extremely slow.
Collapse
Affiliation(s)
- Raheleh Hazrati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Peyman Keyhanvar
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Dos Santos JF, Freitas-Marchi BL, Reigado GR, de Assis SR, Maria Engler SS, Chambergo Alcalde FS, Nunes VA. Mesenchymal stem cells express epidermal markers in an in vitro reconstructed human skin model. Front Cell Dev Biol 2023; 10:1012637. [PMID: 36712971 PMCID: PMC9878690 DOI: 10.3389/fcell.2022.1012637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction: In skin traumas, such as burns, epidermal homeostasis is affected, often requiring clinical approaches. Different therapeutic strategies can be used including transplantation, besides the use of synthetic or natural materials with allogeneic cells. In this context, tissue engineering is an essential tool for skin regeneration, and using mesenchymal stem cells (MSC) from the umbilical cord appears to be a promising strategy in regenerative medicine due to its renewal and differentiation potential and hypo immunogenicity. We evaluated the transdifferentiation of MSC from umbilical cord into keratinocytes in three-dimensional (3D) in vitro skin models, using dermal equivalents composed by type I collagen with dermal fibroblasts and a commercial porcine skin decellularized matrix, both cultured at air-liquid interface (ALI). Methods: The expression of epidermal proteins cytokeratins (CK) 5, 14 and 10, involucrin and filaggrin was investigated by real-time PCR and immunofluorescence, in addition to the activity of epidermal kallikreins (KLK) on the hydrolysis of fluorogenic substrates. Results and discussion: The cultivation of MSCs with differentiation medium on these dermal supports resulted in organotypic cultures characterized by the expression of the epidermal markers CK5, CK14, CK10 and involucrin, mainly on the 7th day of culture, and filaggrin at 10th day in ALI. Also, there was a 3-fold increase in the KLK activity in the epidermal equivalents composed by MSC induced to differentiate into keratinocytes compared to the control (MSC cultivated in the proliferation medium). Specifically, the use of collagen and fibroblasts resulted in a more organized MSC-based organotypic culture in comparison to the decellularized matrix. Despite the non-typical epithelium structure formed by MSC onto dermal equivalents, the expression of important epidermal markers in addition to the paracrine effects of these cells in skin may indicate its potential use to produce skin-based substitutes.
Collapse
Affiliation(s)
- Jeniffer Farias Dos Santos
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of Sao Paulo (EACH-USP), São Paulo, São Paulo, Brazil
| | - Bruna Letícia Freitas-Marchi
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of Sao Paulo (EACH-USP), São Paulo, São Paulo, Brazil
| | - Gustavo Roncoli Reigado
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of Sao Paulo (EACH-USP), São Paulo, São Paulo, Brazil
| | - Silvia Romano de Assis
- Skin Biology Group, iNOVA Pele, School of Pharmaceutical Sciences (FCF), University of São Paulo, São Paulo, São Paulo, Brazil
| | - Silvya Stuchi Maria Engler
- Skin Biology Group, iNOVA Pele, School of Pharmaceutical Sciences (FCF), University of São Paulo, São Paulo, São Paulo, Brazil
| | - Felipe Santiago Chambergo Alcalde
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of Sao Paulo (EACH-USP), São Paulo, São Paulo, Brazil
| | - Viviane Abreu Nunes
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of Sao Paulo (EACH-USP), São Paulo, São Paulo, Brazil,*Correspondence: Viviane Abreu Nunes,
| |
Collapse
|
4
|
Ghauri AK, Wahid M, Mirza T, Uddin JAA. Direct differentiation of cord blood derived mesenchymal stem cells into keratinocytes without feeder layers and cAMP inducers. Pak J Med Sci 2020; 36:946-951. [PMID: 32704269 PMCID: PMC7372670 DOI: 10.12669/pjms.36.5.1566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Objectives The purpose of our study was isolation of umbilical cord blood derived mesenchymal stem (UCB-MSCs), their direct differentiation towards keratinocytes without using feeder layers, cAMP inducers and hormones known for morphological maintenance and proliferation of keratinocytes and characterization of UCB-MSCs through flowcytometry and keratinocytes through immunofluorescence. Methods We have isolated and cultured UCB-MSCs (n=4) following critical parameters for successful isolation like sample processing within an hour of collection, gestational age not more than 38 weeks, no co-morbid and blood volume at least 80 ml. Cord blood mononuclear cells were isolated through ficoll based density-gradient centrifugation then cultured to isolate MSCs, defined by minimum criteria of International Society for Cellular Therapy. UCB-MSCs were then differentiated directly into keratinocytes. Differentiation was confirmed by morphology and characterized through immunofluorescence staining. UCB samples were collected from gynae/obstetric ward of OJHA campus under sterile conditions and processed at Stem cells and Regenerative medicine Lab, Dow Research Institute of Biotechnology and Biomedical Sciences, Ojha campus. The total duration of study was approximately 12 months. Results We have successfully isolated UCB-MSCs that were plastic adherent, spindle shaped, showed trilineage mesodermal differentiation potential and were positive for CD90, CD73 and CD105 and negative for CD34 markers. UCB-MSCs were directly differentiated towards keratinocytes without using cAMP inducers, hormones or feeder layers. Differentiated keratinocytes attained typical honeycomb morphology and were stained positive on immunofluorescence for anti-pan cytokeratin antibody. Conclusion Our study concludes possibility of direct differentiation of isolated and cultured UCB-MSCs into keratinocytes without using feeder layers and conventional keratinocyte culture media.
Collapse
Affiliation(s)
- Ayesha Kashmala Ghauri
- Ayesha Kashmala Ghauri, Stem Cells and Regenerative Medicine Lab, Dow Research Institute of Biotechnology and Biomedical Sciences, Karachi, Pakistan
| | - Mohsin Wahid
- Mohsin Wahid, Stem Cells and Regenerative Medicine Lab, Dow Research Institute of Biotechnology and Biomedical Sciences, Department of Pathology, Dow International Medical College, Dow University of Health Sciences (OJHA Campus), Karachi, Pakistan
| | - Talat Mirza
- Talat Mirza, Department of Research, Ziauddin Medical University, Karachi, Pakistan
| | - Jahan Ara Ain Uddin
- Jahan Ara Ain Uddin, Department of Gynecology and Obstetrics, Dow University Hospital, Karachi, Pakistan
| |
Collapse
|
5
|
Increased in vitro migration of human umbilical cord mesenchymal stem cells toward acellular foreskin treated with bacterial derivatives of monophosphoryl lipid A or supernatant of Lactobacillus acidophilus. Hum Cell 2019; 33:10-22. [PMID: 31811569 DOI: 10.1007/s13577-019-00308-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Migration and homing are known as critical steps toward regeneration of damaged tissues via cell therapies. Among various cellular sources of stem cells, the umbilical cord has been thus recognized as an interesting one endowed with high benefits. Accordingly, the main objective of the present study was to determine whether monophosphoryl lipid A (MPLA) or supernatant of Lactobacillus acidophilus (SLA) could increase migration of human umbilical cord mesenchymal stem cells (hUMSCs) toward acellular foreskin or not. In this study, the hUMSCs were isolated and cultured through acellular MPLA- or SLA-treated foreskin. Expression of some migration genes (i.e., VCAM-1, MMP-2, VLA-4, CXCR-4, and VEGF) was also investigated using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Moreover; vimentin, cytokeratin 5 (CK5), and matrix metalloproteinases-2 (MMP-2) were detected via immunohistochemistry (IHC) analysis. The hUMSCs in the presence of MPLA- or SLA-treated foreskin showed more tissue tropism compared with those in the control group. Besides, the scanning electron microscopy (SEM) results established that the hUMSCs had more migratory activity in the presence of MPLA- or SLA-treated foreskin than the untreated one. The IHC analysis results correspondingly indicated that expression of vimentin, CK5, and MMP-2 proteins had augmented in both treatments compared with those in the control group. It was concluded that MPLA had revealed more prominent results than SLA, even though both treatments could be regarded as inducing factors in migration. Ultimately, it was suggested to introduce the use of MPLA and probiotic components as a promising approach to improve therapies in regenerative medicine.
Collapse
|
6
|
Dos Santos JF, Borçari NR, da Silva Araújo M, Nunes VA. Mesenchymal stem cells differentiate into keratinocytes and express epidermal kallikreins: Towards an in vitro model of human epidermis. J Cell Biochem 2019; 120:13141-13155. [PMID: 30891818 DOI: 10.1002/jcb.28589] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 01/21/2023]
Abstract
Epidermal differentiation is a complex process in which keratinocytes go through morphological and biochemical changes in approximately 15 to 30 days. Abnormal keratinocyte differentiation is involved in the pathophysiology of several skin diseases. In this scenario, mesenchymal stem cells (MSCs) emerge as a promising approach to study skin biology in both normal and pathological conditions. Herein, we have studied the differentiation of MSC from umbilical cord into keratinocytes. MSC were cultured in Dulbecco's modified Eagle's medium (DMEM) (proliferation medium) and, after characterization, differentiation was induced by culturing cells in a defined keratinocyte serum-free medium (KSFM) supplemented with epidermal growth factor (EGF) and calcium chloride ions. Cells cultivated in DMEM were used as control. Cultures were evaluated from day 1 to 23, based on the cell morphology, the expression of p63, involucrin and cytokeratins (KRTs) KRT5, KRT10 and KRT14, by quantitative polymerase chain reaction, Western blot analysis or immunofluorescence, and by the detection of epidermal kallikreins activity. In cells grown in keratinocyte serum-free medium with EGF and 1.8 mM calcium, KRT5 and KRT14 expression was shown at the first day, followed by the expression of p63 at the seventh day. KRT10 expression was detected from day seventh while involucrin was observed after this period. Data showed higher kallikrein (KLK) activity in KSFM-cultured cells from day 11th in comparison to control. These data indicate that MSC differentiated into keratinocytes similarly to that occurs in the human epidermis. KLK activity detection appears to be a good methodology for the monitoring the differentiation of MSC into the keratinocyte lineage, providing useful tools for the better understanding of the skin biology.
Collapse
Affiliation(s)
- Jeniffer Farias Dos Santos
- School of Arts, Sciences and Humanities, University of Sao Paulo (USP), Sao Paulo, Brazil.,Department of Biochemistry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Nathália Ruder Borçari
- School of Arts, Sciences and Humanities, University of Sao Paulo (USP), Sao Paulo, Brazil
| | | | - Viviane Abreu Nunes
- School of Arts, Sciences and Humanities, University of Sao Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
7
|
Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur J Cell Biol 2015; 94:483-512. [PMID: 26344860 DOI: 10.1016/j.ejcb.2015.08.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022] Open
Abstract
Advances in cell culture methods, multidisciplinary research, clinical need to replace lost skin tissues and regulatory need to replace animal models with alternative test methods has led to development of three dimensional models of human skin. In general, these in vitro models of skin consist of keratinocytes cultured over fibroblast-populated dermal matrices. Accumulating evidences indicate that mesenchyme-derived signals are essential for epidermal morphogenesis, homeostasis and differentiation. Various studies show that fibroblasts isolated from different tissues in the body are dynamic in nature and are morphologically and functionally heterogeneous subpopulations. Further, these differences seem to be dictated by the local biological and physical microenvironment the fibroblasts reside resulting in "positional identity or memory". Furthermore, the heterogeneity among the fibroblasts play a critical role in scarless wound healing and complete restoration of native tissue architecture in fetus and oral mucosa; and excessive scar formation in diseased states like keloids and hypertrophic scars. In this review, we summarize current concepts about the heterogeneity among fibroblasts and their role in various wound healing environments. Further, we contemplate how the insights on fibroblast heterogeneity could be applied for the development of next generation organotypic skin models.
Collapse
|