1
|
Maizels RJ, Snell DM, Briscoe J. Reconstructing developmental trajectories using latent dynamical systems and time-resolved transcriptomics. Cell Syst 2024; 15:411-424.e9. [PMID: 38754365 DOI: 10.1016/j.cels.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/01/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
The snapshot nature of single-cell transcriptomics presents a challenge for studying the dynamics of cell fate decisions. Metabolic labeling and splicing can provide temporal information at single-cell level, but current methods have limitations. Here, we present a framework that overcomes these limitations: experimentally, we developed sci-FATE2, an optimized method for metabolic labeling with increased data quality, which we used to profile 45,000 embryonic stem (ES) cells differentiating into neural tube identities. Computationally, we developed a two-stage framework for dynamical modeling: VelvetVAE, a variational autoencoder (VAE) for velocity inference that outperforms all other tools tested, and VelvetSDE, a neural stochastic differential equation (nSDE) framework for simulating trajectory distributions. These recapitulate underlying dataset distributions and capture features such as decision boundaries between alternative fates and fate-specific gene expression. These methods recast single-cell analyses from descriptions of observed data to models of the dynamics that generated them, providing a framework for investigating developmental fate decisions.
Collapse
Affiliation(s)
- Rory J Maizels
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; University College, London, UK
| | - Daniel M Snell
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
2
|
Bai M, Liu ZL, Zhou YY, Xu QX, Liu TX, Tian HG. Influence of diverse storage conditions of double-stranded RNA in vitro on the RNA interference efficiency in vivo insect Tribolium castaneum. PEST MANAGEMENT SCIENCE 2023; 79:45-54. [PMID: 36086883 DOI: 10.1002/ps.7171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/10/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND A significant variation in RNA interference (RNAi) efficiency hinders further functional gene studies and pest control application in many insects. The available double-stranded RNA (dsRNA) molecules introduced into the target cells are regarded as the crucial factor for efficient RNAi response. However, numerous studies have only focused on dsRNA stability in vivo; it is uncertain whether different dsRNA storage conditions in vitro play a role in variable RNAi efficiency among insects. RESULTS A marker gene cardinal, which leads to white eyes when knocked-down in the red flour beetle Tribolium castaneum, was used to evaluate the effects of RNAi efficiency under different dsRNA storage conditions. We demonstrated that the dsRNA molecule is very stable under typical cryopreservation temperatures (-80 and -20 °C) within 180 days, and RNAi efficiency shows no significant differences under either low temperature. Unexpectedly, while dsRNA molecules were treated with multiple freeze-thaw cycles up to 50 times between -80/-20 °C and room temperature, we discovered that dsRNA integrity and RNAi efficiency were comparable with fresh dsRNA. Finally, when the stability of dsRNA was further measured under refrigerated storage conditions (4 °C), we surprisingly found that dsRNA is still stable within 180 days and can induce an efficient RNAi response as that of initial dsRNA. CONCLUSION Our results indicate that dsRNA is extraordinarily stable under various temperature storage conditions that did not significantly impact RNAi efficiency in vivo insects. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zi-Ling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yu-Yu Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qiu-Xuan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Therapeutic Advances of Rare ALK Fusions in Non-Small Cell Lung Cancer. Curr Oncol 2022; 29:7816-7831. [PMID: 36290895 PMCID: PMC9601201 DOI: 10.3390/curroncol29100618] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 01/11/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases and is the leading cause of cancer-related death. Despite advances in chemotherapy and immunotherapy, the prognosis for advanced patients remains poor. The discovery of oncogenic driver mutations, such as anaplastic lymphoma kinase (ALK) mutations, means that a subset of patients has opportunities for targeted therapy. With the improvement of genetic testing coverage, more and more ALK fusion subtypes and ALK partners have been discovered, and more than 90 rare ALK fusion subtypes have been found in NSCLC. However, unlike the common fusion, echinoderm microtubule-associated protein-like 4 (EML4)-ALK, some rare ALK fusions such as striatin (STRN)-ALK and huntingtin interacting protein 1 (HIP1)-ALK, etc., the large-scale clinical data related to its efficacy are still immature. The clinical application of ALK-tyrosine kinase inhibitors (ALK-TKIs) mainly depends on the positivity of the ALK gene, regardless of the molecular characteristics of the fusion partner. Recent clinical studies in the ALK-positive NSCLC population have demonstrated differences in progression-free survival (PFS) among patients based on different ALK fusion subtypes. This article will introduce the biological characteristics of ALK fusion kinase and common detection methods of ALK fusion and focus on summarizing the differential responses of several rare ALK fusions to ALK-TKIs, and propose corresponding treatment strategies, so as to better guide the application of ALK-TKIs in rare ALK fusion population.
Collapse
|
4
|
Cabús L, Lagarde J, Curado J, Lizano E, Pérez-Boza J. Current challenges and best practices for cell-free long RNA biomarker discovery. Biomark Res 2022; 10:62. [PMID: 35978416 PMCID: PMC9385245 DOI: 10.1186/s40364-022-00409-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
The analysis of biomarkers in biological fluids, also known as liquid biopsies, is seen with great potential to diagnose complex diseases such as cancer with a high sensitivity and minimal invasiveness. Although it can target any biomolecule, most liquid biopsy studies have focused on circulating nucleic acids. Historically, studies have aimed at the detection of specific mutations on cell-free DNA (cfDNA), but recently, the study of cell-free RNA (cfRNA) has gained traction. Since 2020, a handful of cfDNA tests have been approved for therapy selection by the FDA, however, no cfRNA tests are approved to date. One of the main drawbacks in the field of RNA-based liquid biopsies is the low reproducibility of the results, often caused by technical and biological variability, a lack of standardized protocols and insufficient cohorts. In this review, we will identify the main challenges and biases introduced during the different stages of biomarker discovery in liquid biopsies with cfRNA and propose solutions to minimize them.
Collapse
Affiliation(s)
- Lluc Cabús
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Spain
- Flomics Biotech, Barcelona, Spain
| | | | | | - Esther Lizano
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
5
|
Mboumba Bouassa RS, Tonen-Wolyec S, Veyer D, Péré H, Bélec L. Analytical performances of the AMPLIQUICK® Respiratory Triplex assay for simultaneous detection and differentiation of SARS-CoV-2, influenza A/B and respiratory syncytial viruses in respiratory specimens. PLoS One 2022; 17:e0262258. [PMID: 34986156 PMCID: PMC8730414 DOI: 10.1371/journal.pone.0262258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/21/2021] [Indexed: 12/28/2022] Open
Abstract
Although patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A, influenza B and respiratory syncytial virus (RSV) show comparable or very similar manifestations, the therapeutic approaches of these respiratory viral infections are different, which requires an accurate diagnosis. Recently, the novel multiplex real-time reverse transcription-polymerase chain reaction assay AMPLIQUICK® Respiratory Triplex (BioSynex SA, Illkirch-Graffenstaden, France) allows simultaneous detection and differentiation of SARS-CoV-2, influenza A, influenza B, and RSV in respiratory tract samples. We herein evaluated the performance of the AMPLIQUICK® Respiratory Triplex for the detection of the four viruses in respiratory specimens, using Allplex™ Respiratory Panel 1 and 2019-nCoV assays (Seegene, Seoul, Korea) as reference comparator assays. A total of 359 archived predetermined respiratory samples, including 83, 145, 19 and 95 positive specimens for SARS-CoV-2, influenza A, influenza B and RSV respectively, were included. The AMPLIQUICK® Respiratory Triplex showed high concordance with the reference assays, with an overall agreement for SARS-CoV-2, influenza A, influenza B, and RSV at 97.6%, 98.8%, 98.3% and 100.0%, respectively, and high κ values ranging from 0.93 to 1.00, indicating an almost perfect agreement between assays. Furthermore, high correlations of cycle threshold (Ct) values were observed for positive samples of the four viruses between the AMPLIQUICK® Respiratory Triplex and comparator assays, with an overall high agreement between Ct values assessed by Bland-Altman analyses. In conclusion, these observations demonstrate that the multiplex AMPLIQUICK® Respiratory Triplex is a reliable assay for the qualitative detection and differentiation of SARS-CoV-2, influenza A, influenza B, and RSV in respiratory specimens, which may prove useful for streamlining diagnostics during the winter influenza-seasons.
Collapse
Affiliation(s)
- Ralph-Sydney Mboumba Bouassa
- Ecole Doctorale d’Infectiologie Tropicale, Franceville, Gabon
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Serge Tonen-Wolyec
- Ecole Doctorale d’Infectiologie Tropicale, Franceville, Gabon
- Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, The Democratic Republic of the Congo
| | - David Veyer
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Hélène Péré
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Laurent Bélec
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
6
|
|
7
|
Daneshvar M, Movahedin M, Salehi M, Noruzinia M. Alterations of miR-16, miR-let-7a and their target genes expression in human blastocysts following vitrification and re-vitrification. Reprod Biol Endocrinol 2021; 19:155. [PMID: 34627262 PMCID: PMC8501585 DOI: 10.1186/s12958-021-00842-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
Embryo cryopreservation is a widely used technique in infertility management and today is an essential part of assisted reproductive technology (ART). In some cases, re-vitrification can be applied to good quality supernumerary warmed embryos that have not been transferred in the present cycle. However, there is no study about re-vitrification impact on microRNA and gene expression in human embryos. The purpose of this study is to evaluate miR-16, miR-let7a and target genes expression in in vitro produced human blastocysts following re-vitrification.Day3 embryos obtained from ICSI cycles of fertile couples referring for family balancing program were biopsied and cultured individually. On the fourth day (post-ICSI) male ones (choices of their parents) were transferred and the females (good quality embryos) were donated for research. Donated embryos were cultured to blastocyst stage and assigned to three groups: fresh, vitrified and re-vitrification. Embryos were vitrified on Cryotech carriers. Then blastocysts of three groups were individually assessed for expression of miR-16, miR-let7a and target genes.The results showed that re-vitrification of human blastocysts did not affect the ability to re-expand in culture. In addition, significant decrease was observed in miR-16 and miR-let7a expression in re-vitrified group compared to fresh (p < 0.05). A significant upregulation of the target genes ITGβ3 and BCL-2 in re-vitrified and vitrified embryos was observed compared to the fresh group (p < 0.05). The expression of BAX as a pro-apoptotic gene showed a significant decrease in re-vitrification group comparing with the fresh one (P < 0.05).The results of this research indicated that re-vitrification of embryos changes the expression of miR-16, miR-let-7a and their target genes. These alterations include increased expression of BCl-2 and ITGβ3 genes which play important roles in embryo survival and implantation, respectively. Clinical proof of these effects requires further research.
Collapse
Affiliation(s)
- Maryam Daneshvar
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Noruzinia
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Holohan C, Hanrahan S, Feely N, Li P, O'Connell J, Moss C, Carr M, Tagit O, Lee GU. Influence of viral transport media and freeze-thaw cycling on the sensitivity of qRT-PCR detection of SARS-CoV-2 nucleic acids. NANOSCALE 2021; 13:15659-15667. [PMID: 34533168 DOI: 10.1039/d1nr03933d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Objective: The events of the last year have highlighted the complexity of implementing large-scale molecular diagnostic testing for novel pathogens. The purpose of this study was to determine the chemical influences of sample collection media and storage on the stability and detection of viral nucleic acids by qRT-PCR. We studied the mechanism(s) through which viral transport media (VTM) and number of freeze-thaw cycles influenced the analytical sensitivity of qRT-PCR detection of SARS-CoV-2. Our goal is to reinforce testing capabilities and identify weaknesses that could arise in resource-limited environments that do not have well-controlled cold chains. Method: The sensitivity of qRT-PCR analysis was studied in four VTM for synthetic single-stranded RNA (ssRNA) and double-stranded DNA (dsDNA) simulants of the SARS-CoV-2 genome. Results: The sensitivity and reproducibility of qRT-PCR for the synthetic ssRNA and dsDNA were found to be highly sensitive to VTM with the best results observed for ssRNA in HBSS and PBS-G. Surprisingly, the presence of epithelial cellular material with the ssRNA increased the sensitivity of the qRT-PCR assay. Repeated freeze-thaw cycling decreased the sensitivity of the qRT-PCR with two noted exceptions. Conclusions: The choice of VTM is critically important to defining the sensitivity of COVID-19 molecular diagnostics assays and this study suggests they can impact upon the stability of the SARS-CoV-2 viral genome. This becomes increasingly important if the virus structure is destabilised before analysis, which can occur due to poor storage conditions. This study suggests that COVID-19 testing performed with glycerol-containing PBS will produce a high level of stability and sensitivity. These results are in agreement with clinical studies reported for patient-derived samples.
Collapse
Affiliation(s)
- Cian Holohan
- School of Chemistry and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Republic of Ireland.
| | - Sophia Hanrahan
- School of Chemistry and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Republic of Ireland.
| | - Nathan Feely
- School of Chemistry and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Republic of Ireland.
| | - Peng Li
- Magnostics Ltd, Monkstown, Co. Dublin, Republic of Ireland.
| | - John O'Connell
- School of Chemistry and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Republic of Ireland.
| | - Catherine Moss
- School of Chemistry and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Republic of Ireland.
| | - Michael Carr
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, Republic of Ireland
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Oya Tagit
- Magnostics Ltd, Monkstown, Co. Dublin, Republic of Ireland.
| | - Gil U Lee
- School of Chemistry and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Republic of Ireland.
| |
Collapse
|
9
|
Lu Z, Sankaranarayanan G, Rawlinson KA, Offord V, Brindley PJ, Berriman M, Rinaldi G. The Transcriptome of Schistosoma mansoni Developing Eggs Reveals Key Mediators in Pathogenesis and Life Cycle Propagation. FRONTIERS IN TROPICAL DISEASES 2021; 2:713123. [PMID: 36389622 PMCID: PMC7613829 DOI: 10.3389/fitd.2021.713123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Schistosomiasis, the most important helminthic disease of humanity, is caused by infection with parasitic flatworms of the genus Schistosoma. The disease is driven by parasite eggs becoming trapped in host tissues, followed by inflammation and granuloma formation. Despite abundant transcriptome data for most developmental stages of the three main human-infective schistosome species—Schistosoma mansoni, S. japonicum and S. haematobium—the transcriptomic profiles of developing eggs remain under unexplored. In this study, we performed RNAseq of S. mansoni eggs laid in vitro during early and late embryogenesis, days 1-3 and 3-6 post-oviposition, respectively. Analysis of the transcriptomes identified hundreds of up-regulated genes during the later stage, including venom allergen-like (VAL) proteins, well-established host immunomodulators, and genes involved in organogenesis of the miracidium larva. In addition, the transcriptomes of the in vitro laid eggs were compared with existing publicly available RNA-seq datasets from S. mansoni eggs collected from the livers of rodent hosts. Analysis of enriched GO terms and pathway annotations revealed cell division and protein synthesis processes associated with early embryogenesis, whereas cellular metabolic processes, microtubule-based movement, and microtubule cytoskeleton organization were enriched in the later developmental time point. This is the first transcriptomic analysis of S. mansoni embryonic development, and will facilitate our understanding of infection pathogenesis, miracidial development and life cycle progression of schistosomes.
Collapse
Affiliation(s)
- Zhigang Lu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | | | - Kate A. Rawlinson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Correspondence: Gabriel Rinaldi,
| |
Collapse
|
10
|
Rankin-Turner S, Vader P, O'Driscoll L, Giebel B, Heaney LM, Davies OG. A call for the standardised reporting of factors affecting the exogenous loading of extracellular vesicles with therapeutic cargos. Adv Drug Deliv Rev 2021; 173:479-491. [PMID: 33862168 PMCID: PMC8191593 DOI: 10.1016/j.addr.2021.04.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are complex nanoparticles required for the intercellular transfer of diverse biological cargoes. Unlike synthetic nanoparticles, EVs may provide a natural platform for the enhanced targeting and functional transfer of therapeutics across complex and often impenetrable biological boundaries (e.g. the blood-brain barrier or the matrix of densely organised tumours). Consequently, there is considerable interest in utilising EVs as advanced drug delivery systems for the treatment of a range of challenging pathologies. Within the past decade, efforts have focused on providing standard minimal requirements for conducting basic EV research. However, no standard reporting framework has been established governing the therapeutic loading of EVs for drug delivery applications. The purpose of this review is to critically evaluate progress in the field, providing an initial set of guidelines that can be applied as a benchmark to enhance reproducibility and increase the likelihood of translational outcomes.
Collapse
Affiliation(s)
- Stephanie Rankin-Turner
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Pieter Vader
- CDL Research, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Experimental Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstraβe 179, 45147 Essen, Germany
| | - Liam M Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Owen G Davies
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| |
Collapse
|
11
|
Mboumba Bouassa RS, Veyer D, Péré H, Bélec L. Analytical performances of the point-of-care SIENNA™ COVID-19 Antigen Rapid Test for the detection of SARS-CoV-2 nucleocapsid protein in nasopharyngeal swabs: A prospective evaluation during the COVID-19 second wave in France. Int J Infect Dis 2021; 106:8-12. [PMID: 33746093 PMCID: PMC7970753 DOI: 10.1016/j.ijid.2021.03.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES We herein assessed the analytical performances of the antigen-rapid diagnostic test (Ag-RDT) SIENNA™ COVID-19 Antigen Rapid Test Cassette (Nasopharyngeal Swab) (Salofa Oy, Salo, Finland), targeting the SARS-CoV-2 N nucleocapsid protein, for the diagnosis of COVID-19 in hospitalized patients with suspected SARS-CoV-2 infection, by reference to real-time RT-PCR (rRT-PCR). METHODS Nasopharyngeal swabs were collected from patients with COVID-19-like illness during the second epidemic wave in Paris, France, among which 100 and 50 were positive and negative for SARS-CoV-2 RNA, respectively. RESULTS Overall, the Ag-RDT showed high sensitivity, specificity, positive and negative predictive values of 90.0%, 100.0%, 100.0% and 98.1%, respectively, as well as high or almost perfect agreement (93.3%), reliability assessed by Cohen's κ coefficient (0.86), and accuracy assessed by Youden's J index (90%) to detect SARS-CoV-2. The analytical performances of the Ag-RDT remained high in the event of significant viral excretion (i.e., N gene Ct values ≤33 by reference rtRT-PCR), while the sensitivity of the Ag-RDT dropped to 69.6% with low or very low viral shedding (Ct > 33). CONCLUSIONS The SIENNA™ Ag-RDT presents excellent analytical performances for viral loads ≤33 Ct, classically corresponding to situations of symptomatic COVID-19 and/or proven contagiousness.
Collapse
Affiliation(s)
- Ralph-Sydney Mboumba Bouassa
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, and INSERM, Paris, France
| | - David Veyer
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, and INSERM, Paris, France
| | - Hélène Péré
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, and INSERM, Paris, France
| | - Laurent Bélec
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, and INSERM, Paris, France.
| |
Collapse
|
12
|
Mboumba Bouassa RS, Tonen-Wolyec S, Rodary J, Bélec L. Comparative practicability and analytical performances of Credo VitaPCR™ Flu A&B and Cepheid Xpert® Xpress Flu/RSV platforms. Diagn Microbiol Infect Dis 2021; 100:115381. [PMID: 33852989 DOI: 10.1016/j.diagmicrobio.2021.115381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
To compare the practicability (usability and satisfaction) and analytical performances of VitaPCR™ Flu A&B Assay (Credo Diagnostics Biomedical Pte. Ltd., Singapore, Republic of Singapore) and Xpert® Xpress Flu/RSV kit (Cepheid, Sunnyvale, USA), two rapid point-of-care (POC) nucleic acid amplification tests (NAATs) by reference to multiplex RT-PCR for respiratory viruses. Nasopharyngeal swabs (n=117) were collected from patients with influenza-like illness in Paris, France. Thawed specimens were further analyzed with both NAATs. The usability was comparable for both NAATs. Satisfaction questionnaire was better for the VitaPCR™ platform for the short time of test result in 20 minutes. Both NAATs showed comparable sensitivities (VitaPCRTM: 95.0%; Xpert® Xpress: 97.5%) and specificities (100%) for influenza A/B RNA detection, with excellent reliability and accuracy between both NAATs. Both VitaPCR™ and Xpert® Xpress NAATs can be implemented in hospital setting as POC NAATs to rapidly detect influenza A/B RNA in symptomatic patients.
Collapse
Affiliation(s)
- Ralph-Sydney Mboumba Bouassa
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Ecole Doctorale Régionale D'Afrique Centrale en Infectiologie Tropicale, Franceville, Gabon
| | - Serge Tonen-Wolyec
- Ecole Doctorale Régionale D'Afrique Centrale en Infectiologie Tropicale, Franceville, Gabon; Faculté de Médecine et Pharmacie, Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Julien Rodary
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laurent Bélec
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Faculté de Médecine Paris Descartes, Centre Université de Paris, Université de Paris, Sorbonne Paris Cité, and INSERM, Paris, France.
| |
Collapse
|
13
|
Evaluation of the Xpert Xpress SARS-CoV-2/Flu/RSV Assay for Simultaneous Detection of SARS-CoV-2, Influenza A and B Viruses, and Respiratory Syncytial Virus in Nasopharyngeal Specimens. J Clin Microbiol 2021; 59:JCM.02965-20. [PMID: 33436456 PMCID: PMC8092745 DOI: 10.1128/jcm.02965-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
Patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A (flu A), influenza B (flu B), and respiratory syncytial virus (RSV) have overlapping clinical presentations, but the approaches to treatment and management of infections caused by these viruses are different. Therefore, rapid diagnosis in conjunction with infection prevention measures is important to prevent transmission of the diseases. Recently, a new Xpert Xpress SARS-CoV-2/Flu/RSV (Xpert 4-in-1) assay enables the detection and differentiation of SARS-CoV-2, flu A, flu B, and RSV in upper respiratory tract specimens. In this study, we evaluated the performance of the Xpert 4-in-1 assay by comparing it with that of the Xpert Xpress SARS-CoV-2 and Xpert Xpress Flu/RSV assays for the detection of the four viruses in nasopharyngeal (NP) specimens. A total of 279 NP specimens, including 66, 56, 64, and 53 specimens positive for SARS-CoV-2, flu A, flu B, and RSV, respectively, were included. The Xpert 4-in-1 assay demonstrated high concordance with the comparator assays, with overall agreement for SARS-CoV-2, flu A, flu B, and RSV at 99.64%, 100%, 99.64%, and 100%, respectively, and a high Cohen's kappa (κ) value ranging from 0.99 to 1.00, indicating an almost perfect correlation between assays. The cycle threshold value association between positive samples also showed a good correlation between assays. In conclusion, the overall performance of the Xpert 4-in-1 assay was highly comparable to that of the Xpert SARS-CoV-2 and Xpert Flu/RSV assays for the detection and differentiation of SARS CoV-2, flu A, flu B, and RSV in NP specimens.
Collapse
|
14
|
Chan SK, Du P, Ignacio C, Mehta S, Newton IG, Steinmetz NF. Biomimetic Virus-Like Particles as Severe Acute Respiratory Syndrome Coronavirus 2 Diagnostic Tools. ACS NANO 2021; 15:1259-1272. [PMID: 33237727 PMCID: PMC7724985 DOI: 10.1021/acsnano.0c08430] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/19/2020] [Indexed: 05/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly transmissible disease that has affected more than 90% of the countries worldwide. At least 17 million individuals have been infected, and some countries are still battling first or second waves of the pandemic. Nucleic acid tests, especially reverse transcription polymerase chain reaction (RT-PCR), have become the workhorse for early detection of COVID-19 infection. Positive controls for the molecular assays have been developed to validate each test and to provide high accuracy. However, most available positive controls require cold-chain distribution and cannot serve as full-process control. To overcome these shortcomings, we report the production of biomimetic virus-like particles (VLPs) as SARS-CoV-2 positive controls. A SARS-CoV-2 detection module for RT-PCR was encapsidated into VLPs from a bacteriophage and a plant virus. The chimeric VLPs were obtained either by in vivo reconstitution and coexpression of the target detection module and coat proteins or by in vitro assembly of purified detection module RNA sequences and coat proteins. These VLP-based positive controls mimic SARS-CoV-2 packaged ribonucleic acid (RNA) while being noninfectious. Most importantly, we demonstrated that the positive controls are scalable, stable, and can serve broadly as controls, from RNA extraction to PCR in clinical settings.
Collapse
Affiliation(s)
- Soo Khim Chan
- Department of NanoEngineering,
Department of Medicine,
Department of Radiology,
Department of Bioengineering,
Center for Nano-ImmunoEngineering,
Moores Cancer Center, Institute for
Materials Discovery and Design, and Veterans
Administration San Diego Healthcare System, University of
California San Diego, 9500 Gilman Drive, La Jolla,
California 92039, United States
| | - Pinyi Du
- Department of NanoEngineering,
Department of Medicine,
Department of Radiology,
Department of Bioengineering,
Center for Nano-ImmunoEngineering,
Moores Cancer Center, Institute for
Materials Discovery and Design, and Veterans
Administration San Diego Healthcare System, University of
California San Diego, 9500 Gilman Drive, La Jolla,
California 92039, United States
| | - Caroline Ignacio
- Department of NanoEngineering,
Department of Medicine,
Department of Radiology,
Department of Bioengineering,
Center for Nano-ImmunoEngineering,
Moores Cancer Center, Institute for
Materials Discovery and Design, and Veterans
Administration San Diego Healthcare System, University of
California San Diego, 9500 Gilman Drive, La Jolla,
California 92039, United States
| | - Sanjay Mehta
- Department of NanoEngineering,
Department of Medicine,
Department of Radiology,
Department of Bioengineering,
Center for Nano-ImmunoEngineering,
Moores Cancer Center, Institute for
Materials Discovery and Design, and Veterans
Administration San Diego Healthcare System, University of
California San Diego, 9500 Gilman Drive, La Jolla,
California 92039, United States
| | - Isabel G. Newton
- Department of NanoEngineering,
Department of Medicine,
Department of Radiology,
Department of Bioengineering,
Center for Nano-ImmunoEngineering,
Moores Cancer Center, Institute for
Materials Discovery and Design, and Veterans
Administration San Diego Healthcare System, University of
California San Diego, 9500 Gilman Drive, La Jolla,
California 92039, United States
| | - Nicole F. Steinmetz
- Department of NanoEngineering,
Department of Medicine,
Department of Radiology,
Department of Bioengineering,
Center for Nano-ImmunoEngineering,
Moores Cancer Center, Institute for
Materials Discovery and Design, and Veterans
Administration San Diego Healthcare System, University of
California San Diego, 9500 Gilman Drive, La Jolla,
California 92039, United States
| |
Collapse
|
15
|
Kellman BP, Baghdassarian HM, Pramparo T, Shamie I, Gazestani V, Begzati A, Li S, Nalabolu S, Murray S, Lopez L, Pierce K, Courchesne E, Lewis NE. Multiple freeze-thaw cycles lead to a loss of consistency in poly(A)-enriched RNA sequencing. BMC Genomics 2021; 22:69. [PMID: 33478392 PMCID: PMC7818915 DOI: 10.1186/s12864-021-07381-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background Both RNA-Seq and sample freeze-thaw are ubiquitous. However, knowledge about the impact of freeze-thaw on downstream analyses is limited. The lack of common quality metrics that are sufficiently sensitive to freeze-thaw and RNA degradation, e.g. the RNA Integrity Score, makes such assessments challenging. Results Here we quantify the impact of repeated freeze-thaw cycles on the reliability of RNA-Seq by examining poly(A)-enriched and ribosomal RNA depleted RNA-seq from frozen leukocytes drawn from a toddler Autism cohort. To do so, we estimate the relative noise, or percentage of random counts, separating technical replicates. Using this approach we measured noise associated with RIN and freeze-thaw cycles. As expected, RIN does not fully capture sample degradation due to freeze-thaw. We further examined differential expression results and found that three freeze-thaws should extinguish the differential expression reproducibility of similar experiments. Freeze-thaw also resulted in a 3′ shift in the read coverage distribution along the gene body of poly(A)-enriched samples compared to ribosomal RNA depleted samples, suggesting that library preparation may exacerbate freeze-thaw-induced sample degradation. Conclusion The use of poly(A)-enrichment for RNA sequencing is pervasive in library preparation of frozen tissue, and thus, it is important during experimental design and data analysis to consider the impact of repeated freeze-thaw cycles on reproducibility. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07381-z.
Collapse
Affiliation(s)
- Benjamin P Kellman
- Department of Pediatrics, University of California, San Diego, USA.,Bioinformatics and Systems Biology Program, University of California San Diego, San Diego, USA
| | - Hratch M Baghdassarian
- Department of Pediatrics, University of California, San Diego, USA.,Bioinformatics and Systems Biology Program, University of California San Diego, San Diego, USA
| | - Tiziano Pramparo
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, San Diego, USA
| | - Isaac Shamie
- Department of Pediatrics, University of California, San Diego, USA.,Bioinformatics and Systems Biology Program, University of California San Diego, San Diego, USA
| | - Vahid Gazestani
- Department of Pediatrics, University of California, San Diego, USA.,Autism Center of Excellence, Department of Neuroscience, University of California San Diego, San Diego, USA
| | - Arjana Begzati
- Department of Medicine, University of California San Diego, San Diego, USA
| | - Shangzhong Li
- Department of Pediatrics, University of California, San Diego, USA.,Department of Bioengineering, University of California San Diego, San Diego, USA
| | - Srinivasa Nalabolu
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, San Diego, USA
| | - Sarah Murray
- Department of Pathology, University of California San Diego, San Diego, USA
| | - Linda Lopez
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, San Diego, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, San Diego, USA
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, San Diego, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, USA. .,Department of Bioengineering, University of California San Diego, San Diego, USA. .,Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, La Jolla, USA.
| |
Collapse
|
16
|
Zhang JX, Lau E, Paik DT, Zhuge Y, Wu JC. High-throughput Preparation of DNA, RNA, and Protein from Cryopreserved Human iPSCs for Multi-omics Analysis. ACTA ACUST UNITED AC 2020; 54:e114. [PMID: 32584494 DOI: 10.1002/cpsc.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We describe the procedure to isolate genomic DNA, RNA, and protein directly from cryopreserved induced pluripotent stem cell (iPSC) vials using commercially available solid-phase extraction kits, and we report the relationship between macromolecule yields and experimental and storage factors. Sufficient quantities of DNA, RNA, and protein are recoverable from as low as 1 million cryopreserved cells across 728 distinct iPSC lines suitable for whole-genome sequencing, RNA sequencing, and mass spectrometry experiments. Nucleic acids extracted from iPSC stocks cryopreserved up to 4 years maintain sufficient quantity and integrity for downstream analysis with minimal genomic DNA fragmentation. An expected positive correlation exists between cell count and DNA or RNA yield, with comparable yields recovered between cells across different cryostorage timespans. This article provides an effective way to simultaneously isolate iPSC biomolecules for multi-omics investigations. © 2020 Wiley Periodicals LLC. Basic Protocol 1: QIAshredder and AllPrep DNA/RNA/protein mini kit extraction and subsequent DNA quantification and quality analysis Basic Protocol 2: Broad-range RNA quantification and quality assay using QuBit 4 Fluorometer and associated kits.
Collapse
Affiliation(s)
- Jeffrey X Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California
| | - Edward Lau
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California.,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California.,Department of Radiology, Stanford University School of Medicine, Stanford, California.,Department of Medicine/Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David T Paik
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California.,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California.,Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Yan Zhuge
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California.,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California.,Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
17
|
Bertoni APS, Iser IC, de Campos RP, Wink MR. Normalization in Human Glioma Tissue. Methods Mol Biol 2019; 2065:175-190. [PMID: 31578695 DOI: 10.1007/978-1-4939-9833-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
For tissues obtained from glioma samples with/without nonneoplastic brain there is no consensus for universal reference gene but there are some potential genes that might have good stability, under certain conditions. Considering all points described in this work, the care with tissue collection, until gene amplification, directly impacts on the reliable characterization of its mRNA levels. Moreover, it is clear the importance of selecting the most appropriate reference genes for each experimental situation, to allow the accurate normalization of target genes, especially for genes that are subtly regulated.
Collapse
Affiliation(s)
- Ana Paula Santin Bertoni
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde (DCBS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Isabele Cristiana Iser
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde (DCBS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Rafael Paschoal de Campos
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde (DCBS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Laboratório de Sinalização e Plasticidade Celular, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosangela Wink
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde (DCBS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Establishing a correlation between RIN and A260/280 along with the multivariate evaluation of factors affecting the quality of RNA in cryopreserved cancer bio-specimen. Cell Tissue Bank 2019; 20:489-499. [DOI: 10.1007/s10561-019-09782-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
|
19
|
Role of X-linked inhibitor of apoptosis (XIAP) in frozen and thawed dormant and normal-hatched murine blastocysts. Cryobiology 2018; 82:112-117. [PMID: 29605544 DOI: 10.1016/j.cryobiol.2018.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 11/23/2022]
Abstract
Cryo-injury of mammalian blastocysts occurs during cryopreservation and induces apoptosis in trophoblast cells. This damage affects subsequent embryo development or may even cause death before implantation. X-linked inhibitor of apoptosis (XIAP) is an anti-apoptosis gene that has been widely studied in cancer research. However, only a few studies have investigated the activity of XIAP in cryopreservation. In this study, we investigate the role of XIAP in frozen and thawed murine blastocysts. A total of 1630 blastocysts were divided into fresh and freeze-thaw groups, and XIAP expression was investigated using qPCR, Western blot and confocal analyses. In addition, the effect of the embelin (a XIAP inhibitor) was also evaluated by co-culturing 390 dormant blastocysts. XIAP protein is primarily localized to the mitochondria of trophoblastic cells. Gene and protein expression is significantly down-regulated in blastocysts after cryopreservation, whereas embelin has negative effect on their survivals. These findings further broaden the understanding of mammalian embryonic cryopreservation.
Collapse
|
20
|
Dickerson C, Hsu Y, Mendoza S, Osman I, Ogilvie J, Patel K, Moreira AL. Quality Assurance After a Natural Disaster: Lessons from Hurricane Sandy. Biopreserv Biobank 2018; 16:92-96. [PMID: 29298082 DOI: 10.1089/bio.2017.0104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Biospecimen quality can vary depending on many pre- and post-collection variables. In this study, we consider a natural disaster as a post-collection variable that may have compromised the quality of frozen tissue specimens. To investigate this possible link, we compared the quality of nucleic acids, the level of antigenicity, and the preservation of histology from frozen specimens collected before and after the power outage caused by Hurricane Sandy. To analyze nucleic acid quality, we extracted both DNA and RNA and performed capillary electrophoresis to compare the quality and concentrations of the nucleic acids. To compare antigenicity, frozen sections were cut and immunostained for thyroid transcription factor 1 (TTF-1), a nuclear transcription protein commonly used as a diagnostic biomarker for multiple cancer types, including thyroid and lung cancers. Positive expression of TTF-1, as noted by homogenous nuclear staining, would demonstrate that the TTF-1 proteins could still bind antibodies and, therefore, that these proteins were not significantly degraded. Furthermore, representative frozen sections stained with hematoxylin and eosin were also assessed qualitatively by a trained pathologist to examine any possible histologic aberrations. Due to the similar quality of the tissue samples collected before and after the storm, Hurricane Sandy had no discernable effect on the quality of frozen specimens, and these specimens exposed to the natural disaster are still valuable research tools.
Collapse
Affiliation(s)
- Collin Dickerson
- 1 Center for Biospecimen Research and Development, New York University Langone Health , New York, New York
| | - Yanshen Hsu
- 1 Center for Biospecimen Research and Development, New York University Langone Health , New York, New York
| | - Sandra Mendoza
- 1 Center for Biospecimen Research and Development, New York University Langone Health , New York, New York
| | - Iman Osman
- 2 Department of Medicine, Center for Biospecimen Research and Development, New York University Langone Health , New York, New York
| | - Jennifer Ogilvie
- 3 Department of Surgery, New York University Langone Health , New York, New York
| | - Kepal Patel
- 3 Department of Surgery, New York University Langone Health , New York, New York
| | - Andre L Moreira
- 4 Department of Pathology, Center for Biospecimen Research and Development, New York University Langone Health , New York, New York
| |
Collapse
|
21
|
Ji X, Wang M, Li L, Chen F, Zhang Y, Li Q, Zhou J. The Impact of Repeated Freeze–Thaw Cycles on the Quality of Biomolecules in Four Different Tissues. Biopreserv Biobank 2017; 15:475-483. [PMID: 28930488 DOI: 10.1089/bio.2017.0064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xiaoli Ji
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min Wang
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lingling Li
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Chen
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyang Zhang
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Li
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Junmei Zhou
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|