1
|
Ng TK, Chen CB, Xu C, Xu Y, Yao X, Huang L, Liang JJ, Cheung HS, Pang CP, Huang Y. Attenuated regenerative properties in human periodontal ligament-derived stem cells of older donor ages with shorter telomere length and lower SSEA4 expression. Cell Tissue Res 2020; 381:71-81. [PMID: 32043210 DOI: 10.1007/s00441-020-03176-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/22/2020] [Indexed: 02/05/2023]
Abstract
Periodontal ligament (PDL) stem cell properties are critical in the periodontal tissue regeneration for periodontitis. Previously, we have demonstrated that cigarette smoking attenuates PDL-derived stem cell (PDLSC) regenerative properties. Here, we report the findings on the regenerative properties of human PDLSCs with different donor ages and the underlying mechanisms. Human PDLSCs from 18 independent donors were divided into different age groups (≤ 20, 20-40, and > 40 years old). The proliferation of PDLSCs with donor age of ≤ 20 years old was significantly higher than that of the 20-40- and > 40-years-old groups, whereas the migration of PDLSCs with donor age of ≤ 20 and 20-40 years old was significantly higher than that of the > 40-years-old group. Moreover, the mesodermal lineage differentiation capabilities of PDLSCs were also higher in the donor age group of ≤ 20 years old than the donor age of > 40 years old. In addition, shorter telomere length and lower expression of SSEA4 were found in PDLSCs with donor age of > 40 years old, compared with those with donor age of ≤ 20-years-old group. Besides, PDLSCs with donor age of 20-40 and > 40 years old had higher IL6 and CXCL8 gene expressions. In summary, results from this study revealed the attenuated proliferation, migration, and mesodermal lineage differentiation properties in human PDLSCs with older donor ages. Donor age of PDLSCs should be considered as the selection criteria for the periodontal tissue regeneration treatment.
Collapse
Affiliation(s)
- Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China.
- Shantou University Medical College, Shantou, Guangdong, China.
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Chong-Bo Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Ciyan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Xiaowu Yao
- Dentistry Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Li Huang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Herman S Cheung
- Geriatric Research, Education and Clinical Center, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuqiang Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
2
|
Han YH, Jin MH, Jin YH, Yu NN, Liu J, Zhang YQ, Cui YD, Wang AG, Lee DS, Kim SU, Kim JS, Kwon T, Sun HN. Deletion of Peroxiredoxin II Inhibits the Growth of Mouse Primary Mesenchymal Stem Cells Through Induction of the G 0/G 1 Cell-cycle Arrest and Activation of AKT/GSK3β/β-Catenin Signaling. In Vivo 2020; 34:133-141. [PMID: 31882472 DOI: 10.21873/invivo.11754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIM Dermal mesenchymal stem cells (DMSCs) are pluripotent stem cells found in the skin which maintain the thickness of the dermal layer and participate in skin wound healing. MATERIALS AND METHODS The MTT assay was performed to detect cell proliferation and cell-cycle progression and cell-surface markers were assessed by flow cytometry. The levels of proteins in related signaling pathways were detected by western blotting assay and the translocation of β-catenin into the nucleus were detected by immunofluorescence. Red oil O staining was performed to examine the differentiational ability of DMSCs. RESULTS Knockout of PRDX2 inhibited DMSC cell growth, and cell-cycle arrest at G0/G1 phase; p16, p21 and cyclin D1 expression levels in Prdx2 knockout DMSCs were significantly increased. Furthermore, AKT phosphorylation were significantly increased in Prdx2 knockout DMSCs, GSK3β activity were inhibited, result in β-Catenin accumulated in the nucleus. CONCLUSION In conclusion, these results demonstrated that PRDX2 plays a pivotal role in regulating the proliferation of DMSCs, and this is closely related to the AKT/glycogen synthase kinase 3 beta/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Ying-Hua Jin
- Library and Information Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Nan-Nan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Jun Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Yong-Qing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Yu-Dong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Ai-Guo Wang
- Laboratory Animal center, Dalian Medical University, Dalian, P.R. China
| | - Dong-Seok Lee
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| |
Collapse
|
3
|
Niu X, Li J, Zhao X, Wang Q, Wang G, Hou R, Li X, An P, Yin G, Zhang K. Dermal mesenchymal stem cells: a resource of migration-associated function in psoriasis? Stem Cell Res Ther 2019; 10:54. [PMID: 30760317 PMCID: PMC6375130 DOI: 10.1186/s13287-019-1159-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic and systemic, immune-mediated, inflammatory disease. Mesenchymal stem cells have effects on the inflammatory microenvironment, including regulating the proliferation, differentiation, recruitment, and migration of immunocytes. METHODS To investigate whether dermal mesenchymal stem cells (DMSCs) may act on migration of immunocytes in psoriasis patients, 22 patients with psoriasis and 22 matching healthy controls (age and sex in this study) were recruited. Seven migration-associated genes including chemokine like receptor-1 (CMKLR-1), collagen type VIII alpha1 (COL8A-1), neuropilin and tolloid-like 2 (NETO-2), nik-related kinase (NRK), secreted frizzled-related protein (SFRP), sulfate 6-O-endosulfatase 2 (SULF-2), and synaptotagmin-like protein 2 (SYTL-2) were analyzed by quantitative real-time reverse transcription PCR and western blot. Peripheral blood-derived mononuclear cells (PBMCs) migration to MSCs was measured using a Thanswell chamber system. RESULTS We observed the upregulation of CMKLR-1, COL8A-1, NETO-2, NRK, SYTL-2, and SULF-2 in dermal mesenchymal stem cells derived from patients with psoriasis at both mRNA and protein level, however, a significant downregulation of SFRP-2 between two groups. By contrast, there were no significant between-group differences at the mRNA and protein expression level of NETO-2 and SULF-2. The migration assay showed that in vitro the normal PBMC migration to psoriatic DMSC group was a 6.3 ± 0.7-fold increase compared with the control group. CONCLUSIONS The results may suggest a potential pathogenetic involvement of DMSCs on migration of monocytes in psoriasis. Immune responses are regulated at the level of DMSCs, which probably represent the cells primarily involved in the "psoriatic march."
Collapse
Affiliation(s)
- Xuping Niu
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Junqing Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Qiang Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 15 Changle Road West, Xi'an, 710032, Shanxi Province, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Peng An
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China.
| |
Collapse
|