1
|
von Konow I, Eliasson A, Nilsson J, Malm T. Impact of prolonged storage time on homograft ultrastructures: an attempt to find optimal guidelines for homograft processing. Cell Tissue Bank 2024; 25:649-662. [PMID: 38386211 PMCID: PMC11142956 DOI: 10.1007/s10561-024-10127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/10/2024] [Indexed: 02/23/2024]
Abstract
According to guidelines, total ischemic time for homografts at processing must be kept short to avoid degeneration. Many homografts are discarded due to practical inability to finish all steps from procurement to cryopreservation within the time limit. Although, several studies have shown that homografts with prolonged ischemic time show adequate quality and performance. Twenty aortic and 12 pulmonary homografts were collected and biopsies were retrieved at preparation (day 0) and after 1, 2, 3, 4, 7, 14, 21, 28, and 60 days in antibiotic decontamination at 4 °C. Biopsies were prepared for light microscopy (LM) and transmission electron microscopy (TEM). Assessment generated scores for cells, elastin, and collagen. Relative differences between times were compared with Wilcoxon signed rank test. Bonferroni corrected p value of 0.0056 was considered significant. LM could only reveal decrease in cell count at 60 days in aortic homografts, no other differences was detected. TEM showed affected cell appearance in day 3 and day 4 and beyond for aortic and pulmonary homografts respectively. Elastin appearance was affected at day 60 for aortic and day 21 for pulmonary homografts. Collagen appearance was affected at day 28 for aortic homografts, with no significant differences in pulmonary homografts. Cell degeneration starts early after homograft procurement, but elastic and collagen fibers are more resistant to degeneration. Overall structure integrity as seen in LM was not affected at all, while TEM could reveal small degeneration signs in individual elastic fibers and collagen bundles at 21 and 28 days respectively.
Collapse
Affiliation(s)
- Ida von Konow
- Department of Cardiothoracic Surgery, Skane University Hospital, Lund, Sweden.
- Department of Clinical Sciences, Thoracic Surgery, Lund University, Lund, Sweden.
- Tissue Bank Lund, Skane University Hospital, Lund, Sweden.
| | | | - Johan Nilsson
- Department of Cardiothoracic Surgery, Skane University Hospital, Lund, Sweden
- Department of Translational Medicine, Thoracic Surgery and Bioinformatics, Lund University, Lund, Sweden
| | - Torsten Malm
- Department of Clinical Sciences, Thoracic Surgery, Lund University, Lund, Sweden
- Tissue Bank Lund, Skane University Hospital, Lund, Sweden
- Department of Pediatric Cardiac Surgery Unit, Skane University Hospital, Lund, Sweden
| |
Collapse
|
2
|
Axelsson I, Gustafsson A, Isaksson H, Nilsson J, Malm T. Impact of storage time prior to cryopreservation on mechanical properties of aortic homografts. Cell Tissue Bank 2024; 25:27-37. [PMID: 36843158 PMCID: PMC10902001 DOI: 10.1007/s10561-023-10079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/04/2023] [Indexed: 02/28/2023]
Abstract
Optimal time spans in homograft procurement are still debatable among tissue banks and needs to be further investigated. Cell viability decreases at longer preparation intervals, but the effect on collagen and elastic fibers has not been investigated to the same extent. These fibers are of importance to the homograft elasticity and strength. The objective of this study was to analyze the mechanical properties of homograft tissue at different time spans in the procurement process. Ten aortic homografts were collected at the Tissue Bank in Lund. Twelve samples were obtained from each homograft, cryopreserved in groups of three after 2-4 days, 7-9 days, 28-30 days, and 60-62 days in antibiotic decontamination. Mechanical testing was performed with uniaxial tensile tests, calculating elastic modulus, yield stress and energy at yield stress. Two randomly selected samples were assessed with light microscopy. Procurement generated a total of 120 samples, with 30 samples in each time group. Elastic modulus and yield stress was significantly higher in samples cryopreserved after 2-4 days (2.7 MPa (2.5-5.0) and 0.78 MPa (0.68-1.0)) compared to 7-9 days (2.2 MPa (2.0-2.6) and 0.53 MPa (0.46-0.69)), p = 0.008 and 0.011 respectively. Light microscopy did not show any difference in collagen and elastin at different time spans. There was a significant decrease in elastic modulus and yield stress after 7 days of decontamination at 4 °C compared to 2-4 days. This could indicate some deterioration of elastin and collagen at longer decontamination intervals. Clinical significance of these findings remains to be clarified.
Collapse
Affiliation(s)
- Ida Axelsson
- Tissue Bank Lund, Baravägen 37, 22242, Lund, Sweden.
- Department of Cardiothoracic Surgery, Skane University Hospital, Lund, Sweden.
- Department of Clinical Science, Cardiothoracic Surgery, Lund University, Lund, Sweden.
| | - Anna Gustafsson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Johan Nilsson
- Department of Cardiothoracic Surgery, Skane University Hospital, Lund, Sweden
- Department of Clinical Science, Cardiothoracic Surgery, Lund University, Lund, Sweden
- Department of Translational Medicine, Artificial Intelligence and Bioinformatics in Cardiothoracic Sciences, Lund University, Lund, Sweden
| | - Torsten Malm
- Tissue Bank Lund, Baravägen 37, 22242, Lund, Sweden
- Department of Clinical Science, Cardiothoracic Surgery, Lund University, Lund, Sweden
- Pediatric Cardiac Surgery Unit, Children's Hospital, Skane University Hospital, Lund, Sweden
| |
Collapse
|
3
|
Impact of Three Different Processing Techniques on the Strength and Structure of Juvenile Ovine Pulmonary Homografts. Polymers (Basel) 2022; 14:polym14153036. [PMID: 35894000 PMCID: PMC9332750 DOI: 10.3390/polym14153036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
Homografts are routinely stored by cryopreservation; however, donor cells and remnants contribute to immunogenicity. Although decellularization strategies can address immunogenicity, additional fixation might be required to maintain strength. This study investigated the effect of cryopreservation, decellularization, and decellularization with additional glutaraldhyde fixation on the strength and structure of ovine pulmonary homografts harvested 48 h post-mortem. Cells and cellular remnants were present for the cryopreserved group, while the decellularized groups were acellular. The decellularized group had large interfibrillar spaces in the extracellular matrix with uniform collagen distribution, while the additional fixation led to the collagen network becoming dense and compacted. The collagen of the cryopreserved group was collapsed and appeared disrupted and fractured. There were no significant differences in strength and elasticity between the groups. Compared to cryopreservation, decellularization without fixation can be considered an alternative processing technique to maintain a well-organized collagen matrix and tissue strength of homografts.
Collapse
|
4
|
Bogdanova M, Zabirnyk A, Malashicheva A, Semenova D, Kvitting JPE, Kaljusto ML, Perez MDM, Kostareva A, Stensløkken KO, Sullivan GJ, Rutkovskiy A, Vaage J. Models and Techniques to Study Aortic Valve Calcification in Vitro, ex Vivo and in Vivo. An Overview. Front Pharmacol 2022; 13:835825. [PMID: 35721220 PMCID: PMC9203042 DOI: 10.3389/fphar.2022.835825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Aortic valve stenosis secondary to aortic valve calcification is the most common valve disease in the Western world. Calcification is a result of pathological proliferation and osteogenic differentiation of resident valve interstitial cells. To develop non-surgical treatments, the molecular and cellular mechanisms of pathological calcification must be revealed. In the current overview, we present methods for evaluation of calcification in different ex vivo, in vitro and in vivo situations including imaging in patients. The latter include echocardiography, scanning with computed tomography and magnetic resonance imaging. Particular emphasis is on translational studies of calcific aortic valve stenosis with a special focus on cell culture using human primary cell cultures. Such models are widely used and suitable for screening of drugs against calcification. Animal models are presented, but there is no animal model that faithfully mimics human calcific aortic valve disease. A model of experimentally induced calcification in whole porcine aortic valve leaflets ex vivo is also included. Finally, miscellaneous methods and aspects of aortic valve calcification, such as, for instance, biomarkers are presented.
Collapse
Affiliation(s)
- Maria Bogdanova
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Arsenii Zabirnyk
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Anna Malashicheva
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Daria Semenova
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Mari-Liis Kaljusto
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | | | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia.,Department of Woman and Children Health, Karolinska Institute, Stockholm, Sweden
| | - Kåre-Olav Stensløkken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gareth J Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Institute of Immunology, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Arkady Rutkovskiy
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pulmonary Diseases, Oslo University Hospital, Oslo, Norway
| | - Jarle Vaage
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Comparison of the function and structural integrity of cryopreserved pulmonary homografts versus decellularized pulmonary homografts after 180 days implantation in the juvenile ovine model. Cell Tissue Bank 2021; 23:347-366. [PMID: 34453660 DOI: 10.1007/s10561-021-09948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
Homograft availability and durability remain big challenges. Increasing the post-mortem ischaemic harvesting time beyond 24 h increases the potential donor pool. Cryopreservation, routinely used to preserve homografts, damages the extracellular matrix (ECM), contributing to valve degeneration. Decellularization might preserve the ECM, promoting host-cell infiltration and contributing towards better clinical outcomes. This study compared the performance of cryopreserved versus decellularized pulmonary homografts in the right ventricle outflow tract (RVOT) of a juvenile ovine model. Homografts (n = 10) were harvested from juvenile sheep, subjected to 48 h post-mortem cold ischaemia, cryopreserved or decellularized and implanted in the RVOT of juvenile sheep for 180 days. Valve performance was monitored echocardiographically. Explanted leaflet and wall tissue evaluated histologically, on electron microscopical appearance, mechanical properties and calcium content. In both groups the annulus diameter increased. Cryopreserved homografts developed significant (¾) pulmonary regurgitation, with trivial regurgitation (¼) in the decellularized group. Macroscopically, explanted cryopreserved valve leaflets retracted and thickened while decellularized leaflets remained thin and pliable with good coaptation. Cryopreserved leaflets and walls demonstrated loss of interstitial cells with collapsed collagen, and decellularized scaffolds extensive, uniform ingrowth of host-cells with an intact collagen network. Calcific deposits were shown only in leaflets and walls of cryopreserved explants. Young fibroblasts, with vacuoles and rough endoplasmic reticulum in the cytoplasm, repopulated the leaflets and walls of decellularized scaffolds. Young's modulus of wall tissue in both groups increased significantly. Cryopreserved valves deteriorate over time due to loss of cellularity and calcification, while decellularized scaffolds demonstrated host-cell repopulation, structural maintenance, tissue remodelling and growth potential.
Collapse
|